CALCULATION OFTHEAMOUNTOF ENERGY RELEASED BYHEATING PIPES INAGREENHOUSEAND ITSALLOCATION BETWEEN CONVECTIONAND RADIATION Cecilia Stanghellini ABSTRACT The energy output from aheating system in agreenhouse ismostly known onlywithinbroad limitsand forlongperiodsof time. Thevalues forheattransfer coefficients calculated fora single pipe in laboratory conditions cannot easilybe applied to conditions in the greenhouse whereheating pipes are usually grouped within the canopy.Themethod described allows theheat transfer coefficient of agivenpipe system tobe estimated using simple temperature data, measured when the system iscooling.Theparameters of the theoretical cooling function,i.e. the totalheat transfer coefficient and theapparent thermal conductivity of thepipe system, can thusbe derivedbybestfitting.The smalldifference between the latterparameter and the thermal conductivity ofwater is discussed. Itis further shown that,when theeffectof radiation is eliminated from the totalheat transfer coefficient,theNusselt number can be calculated for the system.Theresulting relation isthenapplied to estimate the system's energy output and temperature when cooling. .'-•" H• « H »«A G %^ ' : :[ •fltt^ S I G N : i m W-V2.0-O3 SIGN: J - » / 3 EX.NO* NO* S EX. MLVÏ « J a ^ S o S » CONTENTS Abstract •*• Symbols * 1 Theory 2 Materialsandmethods 3 Results 4 Conclusions 1" 15 ^° Acknowledgements 19 References 20 SYMBOLS Capital Gr =Grashof number = gl^_ V T s -T f 2 H =energy (J) Jn =Bessel function of order Tf n Nu =Nusseltnumber = 1/6 Pr =Prandtlnumber = V / K Q =heat flux (Wm - 2 ) Re =Reynolds number = ul/V T = temperature (K) Lower case r = correlation coefficient x = aspatial coordinate (m) Italic a d = specific heat (Jkg ) =diameter (m) g = acceleration due togravity (9.81ms - 2 ) 1 = ageneric dimension (m) T = radius (m) s = standard deviation t = time (s) u =airvelocity (ms~l) Greek a =heat transfer coefficient (Wm_2K~l) 6 = thickness (m) E = emissivity coefficient K = thermal diffusivity = A/pe (m2s_l) X = thermal conductivity (Wm^K - *) v =kinematic viscosity (m2s"l) p =density (kgm~3) 0 = Stefan-Boltzmann constant (5.67 10 - ^ W m - 2 K - Subscripts a =air c =convection f =fluid m =mean r =radiation s =surface w =water 5- CALCULATIONOFTHEAMOUNTOFENERGYRELEASEDBYHEATINGPIPESINA GREENHOUSEANDITSALLOCATIONBETWEENCONVECTIONANDRADIATION Toassesstheenergybalanceofagreenhousetheamountofenergyreleased bytheheatingsystemmustbeknown.Moreover,sincethecanopy(and thegreenhouseenvironmentingeneral)doesnotnecessarilymakethe sameuseofradiationandsensibleheat,oneshouldalsobeableto separatelyevaluatetheamountofenergytransferredintheradiative andconvectivemoderespectively. 1.THEORY Ingeneral,heatisbeingtransferredinthreeways:by convection, i.e.byairinmotion,and conduction, radiation, whichisthe exchangeofkineticenergyatmolecularlevelinsolidsorstillfluids. Moreover,twotypesofconvectionareimportant: forced convection, ortransferthroughanairstream (therateofheattransferthus dependsonthevelocityoftheflow);and free convection, which dependsonverticaldisplacementofairmassesduetotemperature gradients. Inthepresentstudy,radiativeheattransferbetweentwobodiesat temperaturesTjandT2respectivelywillbeestimatedaccordingtothe muchusedlinearizationoftheStefan-Boltzmannformula,i.e.: Qr =ea(Tj1-T|)=4EOT^ (T1 -T 2 )=ar(T1-T 2 ) wm~2 (1) wheretemperaturesareinKandthesubscriptmdenotesthemeanofthe twotemperatures. Ontheotherhand,conductiveheattransferthroughanairmassin agreenhouseenvironmentcanbeneglectedduetothesmallconductivity ofstillair (A =2.53-10-2Wm _1 K _1 ,fordryairat15°C)whichis manyordersofmagnitudesmallerthanan"apparentconductivity"for convectionevenatthefairlylowairvelocitiesexperiencedina greenhouseenvironment. Heatfluxduetoeonvectioncanbedescribedformallybytheequation forconductionofheatinasolid: Q=-XVT Wm~2 (2) Whensuchanequationismeantforheattransferthroughamovingfluid, Awillratherbean"apparentconductivity"andthethicknessofthe layerwherethetemperaturegradienthastobeconsideredwillbe an"equivalentthickness",accountingfortheneteffectofthe presenceofasurfacelosingheattothemovingfluid. Non-dimensionalgroups,suchasthevariousnumbers,helpinsolving particulartransferproblems.Thus,theGrashofnumber (Gr)isa measureoftheimportanceofbuoyancyduetothedifferenceintemperature betweenthesurfaceandthefluid,whiletheReynoldsnumber(Re) describestheeffectofthesurfaceitselfonturbulenceinthefluid. AtalargeReynoldsnumber,heattransferisduemoretothefluidstream thantobuoyancyandforcedconvectiontakesplace,whilewithlarge Grashofnumbers (Gr>Re2)thereverseistrue,andtheprevailing transfermechanismisfreeconvection. Inagreenhouseclimateitisoftenacaseofmixedconvection,since itisusuallyimpossibletospecifytheprevailingdrivingforcefor heattransfer.Anothernon-dimensionalgroup,theNusseltnumber(Nu), canbehelpful,beingtheratiobetweenacharacteristicdimensionof thesurfacetothethicknessofan"equivalentboundarylayer"through whichthetransferofheattakesplace.TheNusseltnumberisafunction eitheroftheGrashofnumberinfreeconvectionoroftheReynolds numberinforcedconvection. IntheintermediateregionitisagoodpracticetocalculateNuas afunctionofeitherandusethelargestNutoestimatetherateof heattransfer.Theheattransfercoefficientforconvectiona is c easilyrelatedtoNu.Infact (2)canbewrittenforone-dimensional convectionthroughtheequivalentboundarylayeroffinitethickness6 (Tg-Tf) _ Q c=X ' "m * (3) 6 whereT^denotestheprevailingtemperatureofthefluidatdistance6 fromthesurface,andthesignispositiveforfluxesleavingthe surface.AftersubstitutionofNu= 1/6, (3)becomes A Q c =Nu- (Ts -T f )=Ctc (Ts -T f ) -2 Wm (4) where îisatypical dimension of the surface. Since radiative heat loss isalsopresentwhenadifference in temperature isexperienced,a surface immersed ina fluid losesheat according to Q = (<xr+a c )( T S -T f )=a(T s -T f ) Wm~ (5) where atotalheat transfer coefficienta isdefined as the sum of the radiative and convective coefficients. Ifit isassumed that theenergy input inagreenhouse by radiation of theheating system isknownwhen the temperature of the heating elements isknown (eq,(l)),and conduction isneglected,the problem ofestimating the energy released by theheating system is reduced totheknowledge of a First,ithas tobe decided whether theprevailing transfer mechanism is freeor forced convection,according to themethodbriefly described above. Forheatingpipes thediameter isanatural choice for the typical length; then forpipes ofdiameter d =0.06 m, 15°cwarmer than the —1 surrounding air,and anairvelocity u s0.1 ms ,Re =4*10 and c _5 o-1 2 Gr =4*10 (kinematic viscosity ofairv = 1.5-10 m s ) .It appears then that free convection should bemore important than forced convection andNu should be calculated asa functionofGr. There isagreement in the literature that for systemswith Gr <10 Nu=C(Pr-Gr)1 / 4 g (6) with C a constant and Pr thePrandtl number of the fluid (0.71 forair). The value of the constant depends on the shapeof the surface losing heat, andmostly there isno complete agreement on it:Jodlbauer (1933) proposed C =0.455 for longhorizontal cylinders,whileMcAdams (1954) suggested avalue of 0.525.Monteith (1975)quotes C =0.523 from previousworks and Stoffers (1976)calculated C= 0.614 from measurements inagreenhouse environment. Since,assubstitutionof (6)in (4)shows, a c=CA (Gr-Pr)1/4 Wm~2K-1 (7) aninaccuracyof30%,say,inCmeansthesameinaccuracyinthe convectiveheatflux;itappearsthenthatagoodestimateofCfor agivensystemisthebottlenecktotheknowledgeofitsenergy output. -9 2.MATERIALSAND METHODS As stated above,anestimate of theenergy input from theheating system andof its allocation between convection and radiation,wasamuch neededpartof a larger experiment aimed atdefining the energy balance of agreenhouse.The experiment isdescribed elsewhere:Stanghellini (1981); Bot et al. (1983);van 'tOoster (1983); Stanghellini (1983),and only the relevant instrumental set-up for thepresent subjectwill be described here. The greenhouse isaVenlo-type,8spans 3.20 m each,22m long, oriented E-W.Heating isprovided byhotwater circulated inpipes (diameter: 5.735'10 m) laid a few centimeters above ground,one element (supply and return lines) foreach canopy row.A secondary system isatgutter level,onepipe foreach span.Toprevent side effects,a setof fourpipes one above theother isbrought to each wall.Thewall network isdirectly coupled totheground one,while the gutter system is switched inonly ifnecessary.The total length of theground network is588m, thatof the gutter one 164m,while thewall system is 433m in length.Thisadds up toatotal volume ofwater inthepipe system of 3.06 m .Thewater inthepipe system isheated inaheatexchanger inwhich steam is circulated.Abuffervessel (0.4m )isplaced inparallelbetween theheatexchanger and thepipe system.Water is continuously circulated in thepipe system,evenwhen the valvebetween itand theheatexchanger-vessel system is closed. The total energy input tothe greenhouse wasmeasured in twoways: a.bymeasuring the amount and temperature of condensed water flowing atthe outlet of theheatexchanger in the greenhouse; b. bymeasuring thewater flow tothepipe system and temperature decaybetween the inletand outletof that system. It soonappeared thatenergy inputestimateswith the firstmethod wereby fartoohigh, leading to the conclusion that some steam is being condensed already at the inletof theheatexchanger;no further attemptwasmade to improve the reliability of thismethod.For the second one,on theotherhand,a commercial devicewas installed,which workedproperly for about threemonths. Itceasedworking for reasons - 10 stillunclear;itis,however,possiblethatafaultintheheating system,whenboilingwaterwaspushedintothepipes,hasdamaged thesensoroftheflowmeter.Thetemperatureofthegroundpipeline systemwasmeasuredbytwothermocouples (onthesupplyandreturnlines) atonesectioninthemiddleofthehouse;thatofthegutteronewas measuredinthesameway,ataboutthesamespot,whilethetemperature ofthewallsystemwasnotchecked. ThetemperatureoftheairwasmeasuredbyAssmannaspiratedpsychrometers atvariousheightsaboveground.Airtemperaturereferredtohereafter wasmeasured0.8mabovethepipes. Theairvelocitywasmeasuredbyfourhot-bulbanemometers (denOuden, 1958)alsoatvariousheightsabovethepipesystem.Hereafterthe averageofthefourvalueswillbeusedforeachmeasurement. Thetotalheattransferfromthepipesystemcouldbecalculated whilewarmingitupandthenlettingitcooldown.Infact,the temperature (T)asafunctionoftime (£)anddistancefromtheaxis(x) ofacircularcylinderofradius (r)andinfinitelength,losingheat atitssurfacetoamediumatzerotemperatureaccordingtoalinear law,aseg. (5),isknown (CarslawandJaeger,1948) _ß2 < t n To r2 w=l J0<25a> 2A 3^+A2 r J0(ß„) whereT 0istheconstanttemperatureofthecylinderattime t =0; &Xaretherootsofthetranscedentequation &Jl(B)=AJ0(3) (9) andAisrelatedtoaby: A=£ a =r_°U (10) i.e.excanbecalculatedfromAand<iftheyareknown. Thiswasachievedbydefininga"meanpipe"withasurfacetemperature whichisthemeanofthemeasuredones,andthenfindingbytheleast squaremethodthebestfitof (8)onthecoolingportionofthe temperaturevs.timefunction.Itshouldbenotedthatwhentemperature ismeasuredatadistancexfromthepipeaxis,equaltoitsradius r} 11 Table 1-Averagevaluesovereachtimeinterval,onwhichpipe surfacewascooling,usedforthebestfitprocedure. Symbolsareasusedinthetext,temperaturesarein°C andtimesinhoursandminutes. Timeinterval Date from to Feb.20,'81 18.10 19.40 20.10 Feb.21,'81 s T -T s a T m 14.80 42.85 28.05 28.83 T a T 21.30 14.64 44.35 29.70 29.50 22.00 23.30 14.39 45.49 31.11 29.94 0.00 1.20 14.30 45.64 31.34 29.97 1.50 3.10 14.13 46.23 32.11 30.18 3.40 5.00 14.60 45.90 31.30 30.25 5.30 6.50 14.49 46.30 31.81 30.39 7.20 8.10 16.04 52.28 36.24 34.16 Mar.14,'81 19.40 23.40 14.07 28.11 14.04 21.09 Mar.15,'81 0.00 3.50 14.33 28.67 14.34 21.50 4.20 7.20 15.31 32.75 17.44 24.30 Apr.15,'82 22.44 1.26 17.14 33.13 16.00 25.13 Apr.16,'82 1.56 4.23 17.06 34.64 17.58 25.85 II - 12- thelastfactorontheright-handsideof (8)equalsone.Moreover, onlythefirsttermofthesummationwasfitted. Sincethesurroundingaircouldnotbeconsideredatconstanttemperature, thedifferencebetweenthemeasuredpipeandairtemperaturewasused foreachstep.Anyhow,inordertodecreaseinaccuracyduetothis, thecalculationsweremadeonlyonnight-timevalues,thusminimizing airtemperaturevariationsnotduetopipeheating. Calculationswereperformedon13coolingperiodsofthreenights withvariousclimaticconditions.Averagevaluesforeachcoolingare summarizedinTableI.Thestrictrelationshipshouldbenotedbetween airvelocityandpipe-airtemperaturedifference,showninFig.1 forthesamedata.Thisisactuallyanindicationthatmostoftheair movementisduetobuoyancy.Itappearsthatafunctionofair velocitycouldaswellbesubstitutedineq. (7)insteadofthefunction ofthedifferenceintemperature,leadingtothesuggestionthatin suchconditionsNucouldalsobecalculatedasafunctionofthe Reynoldsnumber.Inanycase,thisismoreanacademicquestionthana practicalone,sinceitiseasierandcheapertomeasuretemperatures thanairvelocitiesatsuchlowlevels. Theregressioncoefficientscalculatedfortheprocedureoutlined abovewerealwaysabover=0.99andnoinfluenceofthetimeinterval betweensubsequentdatawasrevealed;dataeverythreeortenminutes wereused.Themagnitudeofthe2ndordertermin (8)wascalculated a posteriori: itscontributionwasabout0.5°Cinthefirstfewsteps andbecamequitenegligibleafterafewminutes. 13 o 4 • S Ê O >tH O O _1 iü > H < UJ CD < OL UJ > < 25 38 35 AV.PIPE-AIR TEMP.DIF"C Fig. 1 - Air velocity as a function of the difference in temperature between the pipe surface and air 0.8 m above ground. Each point shows averages over a whole cooling interval. - 14 3.RESULTS Thecontinuouscirculationofwaterinthepipesystemintroducesa perturbationinthecoolingpattern.Duetotheforcedcirculation, itmustbeassumedthatconvectionandnotconductionisthemainheat transfermechanism,alsoinsidethepipe:ithastobeexpectedthat temperaturedecayofthepipesurfacepointstoahigherconductivity (andhencediffusivity)thanifstillwaterwaspresent.Ontheother hand,itisacknowledgedthattheheatexchanger-buffervesselsystem isalwaysgainingheatduetoleakagesthroughthevalveplacedatthe steaminletoftheheatexchanger.Thevalvebetweentheheatexchangervesselloopandthepipeloopisalsoleaking,althoughtoalower degree;itmaybeconcludedthenthatthewatersteadilybroughtto anygivensectionofthepipesystemiswarmerthanthewaterit replaces,i.e.thecoolingrate (anddiffusivitydirectlyrelatedtoit) issmallerthanitshouldbe. Theseconsiderationsandthepresenceofmanydifferentthermalconductivitiesbetweentheaxisofthepipeandthesurfacewherethe temperatureismeasured (water,iron,coating)leadtotheconclusion thatdiffusivityKhastobeanoutputparameterofthebest-fit procedureandnotaninput,i.e.anapparentdiffusivityforsuchasystem iscalculated. ThecalculatedKastheaverageoftheresultingdiffusivitiesforeach coolingintervalis1.12*10 mzs7 9-1 (withastandarddeviation s=0.314*10")whichisindeedsmallerthanthediffusivityofwater K =1.52"10~ ms" at40°C.Itmeansthattheeffectofleakages fromtheheatexchangeroutweighstheeffectofconvectioninsidethe pipesection,andthatofthemuchgreaterdiffusivityofapartofit -5 2-1 (K. =1.2-10 ms ). iron Usingthetotalheattransfercoefficientacalculatedfrom (10)the energyHreleasedbythepipesystemwascalculatedastheintegral ofÖoverpipeareaandtimeforthetwonightsforwhichenergy consumptiondataofthegreenhousewereavailable.Thetotalamount ofheatreleasedduringthe8coolingintervalsofFebruary20-21,1981, g wasH=2.81*10 j (theguttersystemwascoupledtothemainnetwork) andthetimeintervaloverwhichreadingsoftheenergymeterare - 15- 50 45 48 û Lü > a. 35 Lu </> m o Lü a < ce LU CL Lü LU CL H CL 2 4 27-28MAR1981 Fig. 2-Observed and calculated pipe surface temperature (usingeq. (8)).The starting temperature for each cooling is input into theprocedure.Note thatwhen the air temperature is influenced by other factors thanpipeheating (after 8.30 a.m.) the predicted temperature deviates more from themeasured one. - 16 hours available is 33% longer (some time and one more warming-cooling after the last temperature measurement,plus all the intervals when the pipe Q temperature was rising); thispoints to a value H = 3.72*10 J for the 9 whole time,which is in good agreement with H = 3.96*10 J provided by themeter. It is suggested that some energy is lost outside the heating system, in the connecting sections.On the other hand, for the measurements of 14-15March, 1981,the time interval between readings of the meter was 10%longer than the total cooling time,and the gutter system was not connected. The total heat released in the three cooling intervals was H = 1.01*10 J x 1.1 = l.ll'lO 9 J that is g again a small underestimate of H = 1.16*10 J provided by the meter. In order to enable estimates of heat released in other circumstances, without having to go through this cumbersome procedure all over again, c*cwas calculated from each a by means of (5) (a r was calculated from (1)with E= 0.95),and the corresponding Nusselt number according to (4)was written,using the above-mentioned value for X it was then calculated as a function of the Prandtl and Grashof numbers, i.e. the value of the constant C of (6)was estimated. Itwas found that for such a system Nu = 0.330 (Gr.Pr) 1 / 4 (11) with a standard deviation of C,s = 0.048. The value of the coefficient is lower than any value found for similar systems (with stillwater,however) in the literature cited,and can be explained by the considerations made above. Eq. (1),(4)and (11)were substitutecKin (5)to get 1/4 a = 2.155-10" 7 T 3 + 3.505 t—B m 2_) Wm~ 2 K~ 1 (12) x T T a . .d d ' and (8)with substitution of (12)was applied to data of a fourth night, to calculate the pipe temperatures.The results are shown in Fig. 2,together withmeasured values and allow the conclusion that (12) gives satisfactory estimates of the convective (and radiative) heat transfer coefficient for such a system. 17 4.CONCLUSIONS Theheattransfercoefficientthuscalculatedforconvectionaveraged 65%ofthatforradiation.Thisshowsthatforsuchasystemradiation isamoreefficientwayoflosingenergythanconvection.From literaturevalues,suchastheonesmentioned,itismostlyconcluded thatinthepresentrangeoftemperatures,suchasystemshouldlose abouthalfofitsenergyeitherway,whilethefindingsofStoffers (1976)indicatedthatconvectionshouldbemoreefficient.Ithas tobestressedthattheconditionsofthevariousexperimentswere hardlysimilar,andnoattemptismadeheretoinvestigatethe combinedeffectofthemanydifferences. However,itmaybeconcludedthatthemethodoutlinedhereallows agoodestimateoftheheattransfercoefficientstobemadefora givensystem,bymeansofafewandsimplemeasurements.Ithastobe stressedthatnoactionhadtobeundertakenonthesystemtomake suchcalculationspossible.Inthisway,theenergyoutputfroma givensystemunderitsnormalworkingconditionthroughbothconvection andradiationcanbeeasilyestimated. - 18- ACKNOWLEDGEMENTS FinancialsupportfromtheDutchMinistryofAgricultureforthe wholeprojectisgratefullyacknowledged.Iamverymuchindebted toIr.W.P.Mulderandthestaffofthe"ClimateControl"department ofIMAGfortheirstimulatingsupport.Ir.G.P.A.Botofthe AgriculturalUniversityinWageningencontributedheavilytothe wholeresearchandF.J.S.M.Dormans,A.van 'tOosterandJ.E.M.Reinders, studentsofthesameUniversity,putintoitalotoftheirskill andenthusiasm.DiscussionsaboutthissubjectwithDr.M.Menenti andDipl.Phys.J.A.Stofferswereformealwaysfruitful. 19 REFERENCES Bot,G.P.A.;J. Meyer;C M . Stanghellini andA.J. Udink ten Cate, 1983 Development and application of ahigh precision weighing lysimeter. Submitted toJournal ofAgricultural Engineering Research. Carslaw,H.S.andJ.C.Jaeger, 1948 Conduction ofheat in solids.Clarendon Press,Oxford:pp 176-177. Jodlbauer,K., 1933 DasTemperatur und Geschwindigkeitsfeld imgeheizten Rohr bei freier Konvektion.Forschung auf dem Gebiete des IngenieurWesens; Zeitschrift Technische Mechanik und Thermdynamik, 4(4):pp 157-172. McAdams, W.H., 1954 Heat Transmission.McGraw-Hill,New York:pp 172-176. Monteith,J.L., 1975 Principles of Environmental Physics. Edward Arnold, London:pp 225. Ooster,A.van 't,1983 Metingen aan en simulatie van het klimaat in een geschermde kas. Doctoraal verslag,Agricultural University Wageningen:pp 15-28. Ouden, H.Ph.L. den, 1958 Hetmeten van luchtsnelheden VI.Verwarming en Ventilatie,15: pp 232-240. Stanghellini,C.M., 1981 Evaporation and energy consumption ingreenhouses. Acta Horticulturae, 119:pp 273-279 Stanghellini,C M . , 1983 Forcing functions ingreenhouse climate and their effect on transpiration of crops. IMAG,Research Report,83-4. Stoffers,J.A.,1976 Heat transfer measurements in screened greenhouses. Proc. of the Symposium on Technical and Physical Aspects of Energy Saving in Greenhouses.Karlsruhe, Sept. 22-24:pp 35-37. 20-
© Copyright 2025 Paperzz