Problem 4.62

Problem 4.62
(Difficulty: 2)
4.62 The lower tank weighs 224 𝑁, and the water in it weighs 897 𝑁. If this tank is on a platform scale,
what weight will register on the scale beam?
Given: Tank weight: 𝐹𝑑𝑑𝑑𝑑 = 224 𝑁. Water weight: 𝐹𝑀𝑀𝑀𝑀𝑀 = 897 𝑁. All the other parameters are
shown in the figure.
Find: The weight on the scale beam.
Assumptions: Flow is steady
Density is constant
Solution:
Basic equation:
Continuity
Bernoulli equation;
0=
πœ•
οΏ½ πœŒπœŒβˆ€ + οΏ½ πœŒπ‘‰οΏ½ βˆ™ 𝑑𝐴̅
πœ•πœ• 𝐢𝐢
𝐢𝐢
𝑝 𝑉2
+
+ 𝑔𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2
𝜌
Momentum equation for the y-direction
𝐹𝑠𝑠 + 𝐹𝐡𝐡 =
πœ•
οΏ½ π‘£π‘£π‘£βˆ€ + οΏ½ 𝑣𝑣𝑉� βˆ™ 𝑑𝐴̅
πœ•πœ• 𝐢𝐢
𝐢𝐢
For the upper surface of the lower tank, from Bernoulli equation we have:
𝑉12
βˆ’ π‘”β„Ž1 = 0
2
β„Ž1 = 7.8 π‘š
𝑉1 = οΏ½2π‘”β„Ž1 = οΏ½2 × 9.81
For the bottom of the lower tank, we have:
π‘š
π‘š
× 7.8 π‘š = 12.36
2
𝑠
𝑠
𝑉22
βˆ’ π‘”β„Ž2 = 0
2
β„Ž2 = 1.8 π‘š
𝑉2 = οΏ½2π‘”β„Ž2 = οΏ½2 × 9.81
The mass flow rate of the lower tank is:
π‘š
π‘š
×
1.8
π‘š
=
5.94
𝑠2
𝑠
π‘˜π‘˜
π‘š πœ‹
π‘˜π‘˜
πœ‹
π‘šΜ‡ = πœŒπ‘‰2 𝐴2 = πœŒπ‘‰2 𝐷22 = 999 3 × 5.94 × × (0.075 π‘š)2 = 26.22
π‘š
𝑠 4
𝑠
4
Force on scale:
𝐹𝑦 = βˆ’π‘‰1 π‘šΜ‡ + 𝑉2 π‘šΜ‡ = 26.22
Direction is going down.
π‘˜π‘˜
π‘š
π‘š
× οΏ½5.94 βˆ’ 12.36 οΏ½ = βˆ’168.3 𝑁
𝑠
𝑠
𝑠
Weight on the scale beam:
𝐹𝑀 = 𝐹𝑦 + 𝐹𝑑𝑑𝑑𝑑 + 𝐹𝑀𝑀𝑀𝑀𝑀 = 168.3 𝑁 + 224 𝑁 + 897 𝑁 = 1289 𝑁