SOLUTIONS TO PROBLEMS 9 (ODD NUMBERS) 9.1 The cross product is i j k a×b = 1 2 3 = 7i + 10j − 9k . 4 −1 2 The triple product is 4 −1 2 b ⋅ a ×c = 1 2 3 = 4(6 + 18) + 1(3 −15) + 2(−6 −10) = 52. 5 −6 3 9.3 This may be obtained in several ways using the rules for manipulating determinants. For example, adding multiples of row 1 to rows 2, 3, and 4, reduces column 3 to 1, 0, 0, 0: 3 7 1 2 9 18 0 3 2 4 0 −1 −14 −35 0 −6 Δ= 9 18 3 2 4 −1 −14 −35 −6 = , where we have expanded about column 3. Replacing c2 → c2 − 2c1 , then gives Δ= 9 0 3 2 0 −1 = 7 9 2 −1 −14 −7 −6 9.5 3 = −105. Expanding along the first row gives 1 1 0 0 0 0 −2 1 0 0 1 −2 1 0 = −2Δn−1 − Δn−2 . 0 0 0 0 1 −2 Δn = −2Δn−1 − 0 Hence Sn = Δn + Δn−1 = −(Δn−1 + Δn−2 ) = −Sn−1 for n > 2 , so that Sn = −Sn−1 = (−1)2 Sn−2 = (−1)n−2 S 2 = (−1)n on evaluating S 2 explicitly. Hence S9.1 Δn = (−1)n − Δn−1 = (−1)n −[(−1)n−1 − Δn−2 ] n = 2(−1)n + Δn−2 = 3(−1) − Δn−3 etc. = m(−1)m + (−1)m Δn−m . Putting m = n − 2 , and evaluating Δ2 = 3 explicitly, gives Δn = (n − 2)(−1)n−2 + 3(−1)n−2 = (n + 1)(−1)n . 9.7 This is equivalent to finding a solution of the homogeneous equations αx + 3y − 2z = 0, −3x + αy + (α + 4)z = 0, − x + 3y + 4z = 0, with z = 1 . Such a solution exists if α 3 −2 α 3 −5 = −3 α α + 4 −3 α 4 −1 3 1 −1 3 4 = α2 −17α + 42 = (α − 3)(α −14) = 0, i.e. if α = 3 or 14. For the latter, (1) becomes 14x + 3y − 2z = 0 −3x + 14y + 18z = 0 − x + 3y + 4z = 0 with solutions x :y :z = 14 18 −3 18 −3 14 :− : 3 4 −1 4 −1 3 = 2 : −6 : 5 by (9.13a). Since z = 1 , the values of x and y are x = 2 5, y = −6 5 . 9.9 (a) ⎛ 1 −2 0 ⎞⎟ ⎛ 9 3 −6 ⎞⎟ ⎛ −8 −5 6 ⎞⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎜ ⎟ ⎜ ⎟ ⎜ A − 3B = ⎜⎜ 3 2 5 ⎟⎟ − ⎜⎜ 3 0 6 ⎟⎟ = ⎜⎜ 0 2 −1 ⎟⎟ , ⎟ ⎟ ⎟⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎜⎜⎝ −1 3 1 ⎟⎟⎠ ⎜⎜⎜⎝ −6 12 9 ⎟⎟⎠ ⎜⎜⎝ 5 −9 −8 ⎟⎟⎠ ⎛ 1 1 −6 ⎞⎟⎟ ⎜⎜ ⎟ ⎜ AB = ⎜⎜ 1 23 13 ⎟⎟⎟, ⎟⎟ ⎜⎜ ⎜⎜⎝ −2 3 11 ⎟⎟⎠ ⎛ 8 −10 3 ⎞⎟⎟ ⎜⎜ ⎟⎟ ⎜ BA = ⎜⎜ −1 4 2 ⎟⎟. ⎟⎟ ⎜⎜ ⎜⎜⎝ 7 21 23 ⎟⎟⎠ S9.2 (1) (b) XY is defined only if the number of columns in X is the same as the number of columns in Y. So AC and DA are not defined, but ⎛ 1 −7 −2 ⎞⎟ ⎜ ⎟⎟, CA = ⎜⎜ ⎜⎜ 21 4 28 ⎟⎟⎟ ⎝ ⎠ ⎛ 25 25 ⎞⎟⎟ ⎜ ⎟, CD = ⎜⎜ ⎜⎜ 17 −16 ⎟⎟⎟ ⎝ ⎠ ⎛ 3 6 ⎜⎜ AD = ⎜⎜⎜ 2 17 ⎜⎜ ⎜⎝ −5 −5 ⎛ 37 7 ⎜⎜ ⎜⎜ DC = ⎜ 5 −13 ⎜⎜ ⎜⎜⎝ −18 21 ⎞⎟ ⎟⎟ ⎟⎟, ⎟⎟ ⎟⎟ ⎠ 11 ⎞⎟⎟ ⎟⎟ 7 ⎟⎟, ⎟⎟ −15 ⎟⎟⎠ are defined. 9.11 The rotation does not change z, while x and y transform as in (9.48) and Figure 9.1, so that ⎛ cos θ −sin θ 0 ⎞⎟ ⎜⎜ ⎟ R(θ) = ⎜⎜ sin θ cos θ 0 ⎟⎟⎟. ⎜⎜ ⎟⎟ ⎜⎝ 0 0 1 ⎟⎠ Then ⎛ cos θ −sin θ 0 ⎞⎟⎛ cos θ −sin θ 0 ⎜⎜ ⎟⎟⎜⎜ 1 1 2 2 ⎜⎜ ⎟⎟⎜⎜ R(θ1 )R(θ2 ) = ⎜ sin θ1 cos θ 0 sin θ cos θ 0 ⎜ ⎟ 1 2 2 ⎟⎟⎜⎜ ⎜⎜ ⎟ ⎜⎜ 0 0 1 ⎟⎟⎠⎜⎜⎝ 0 0 1 ⎝ ⎞⎟ ⎟⎟ ⎟⎟ ⎟⎟ . ⎟⎟ ⎟⎟⎠ Multiplying out, and using the trigonometric identities for cos(θ1 + θ2 ) and sin(θ1 + θ2 ) , gives R(θ1 )R(θ2 ) = R(θ1 + θ2 ) = R(θ2 + θ1 ) = R(θ2 )R(θ1 ) . Similarly, evaluating the inverse gives ⎛ cos θ sin θ 0 ⎞⎟ ⎛⎜ cos(−θ) −sin(−θ) 0 ⎞⎟ ⎜⎜ ⎟⎟ ⎟⎟ ⎜⎜ −1 ⎟ R (θ) = ⎜⎜⎜ −sin θ cos θ 0 ⎟⎟⎟ = ⎜⎜ sin(−θ) cos(θ) 0 ⎟⎟ = R(−θ) ⎟⎟ ⎟⎟ ⎜⎜ ⎜⎜ 0 0 1 ⎟⎠ ⎜⎜⎝ ⎜⎝ 0 0 1 ⎟⎟⎠ and also R−1(θ) = RT (θ) as required. 9.13 (a) (A + B)3 = (A + B)(A + B)(A + B) = (A + B)(A2 + AB + BA + B2 ) = (A3 + A2B + ABA + AB2 + BA2 + BAB + B2A + B3 ) (b) S9.3 e Ae B = (I + A + 12 A2 +)(I + B + 12 B2 +) = I + A + B + 12 (A2 + 2AB + B2 ) + e (A+B) = I + (A + B) + 12 (A + B)2 = I + (A + B) + 12 (A2 + AB + BA + B2 ) + so that e Ae B = e (A+B) (1) requires that A and B commute, i.e. AB = BA . If this is satisfied, then A and B behave algebraically like ordinary numbers and (1) is satisfied to all orders in A and B. 9.15 (a) A matrix A is unitary if it satisfies the relation AA† = A†A = I . Now A† is ⎛ ⎞ ⎜⎜ 0 (−1 −i) 6 2 6 ⎟⎟ ⎟⎟ ⎜ ⎟⎟ , A† = ⎜⎜ 1 0 0 ⎟⎟ ⎜⎜ ⎜⎜ 0 (1 + i) 3 1 3 ⎟⎟⎟ ⎝ ⎠ so ⎛ ⎞⎟ ⎛ ⎞ 0 1 0 ⎜⎜ ⎟⎟ ⎜⎜ 0 (−1 −i) 6 2 6 ⎟⎟⎟ ⎜ ⎟⎜ ⎟ AA† = ⎜⎜ (−1 + i) 6 0 (1 −i) 3 ⎟⎟ ⎜⎜ 1 0 0 ⎟⎟⎟ ⎟⎟ ⎜⎜ ⎜⎜ ⎟⎟ ⎟⎟ ⎜ ⎜⎜ 2 6 0 1 3 ⎟⎠ ⎜⎝ 0 (1 + i) 3 1 3 ⎟⎟⎠ ⎝ ⎛ 1 0 1 ⎜⎜ ⎜ = ⎜⎜ 0 (1 −i)(1 + i) 6 + (1 −i)(1 + i) 3 (−1 + i) 3 + (1 −i) 3 ⎜⎜ −(1 + i) 3 + (1 + i) 3 2 3+1 3 ⎜⎝ 0 ⎞⎟ ⎛ ⎟⎟ ⎜⎜ 1 0 0 ⎟⎟ = ⎜ ⎟⎟ ⎜⎜ 0 1 0 ⎟⎟ ⎜⎜⎝ 0 0 1 ⎠ Likewise, A†A = I . (b) By construction, ⎛ A = ⎜⎜⎜ 1 2 ⎜⎝ 3 2 T T ⎞⎟ ⎛ ⎞ ⎟⎟ = ⎜⎜ 1 3 ⎟⎟⎟, ⎟⎠ ⎜⎜⎝ 2 2 ⎟⎠ and AS = 12 (A + AT ) is a symmetric and AAS = 12 (A − AT ) is an anti-symmetric matrix. So, ⎞ 1⎛ AS = ⎜⎜⎜ 2 5 ⎟⎟⎟, 2 ⎜⎝ 5 4 ⎟⎠ and ⎞ 1⎛ AAS = ⎜⎜⎜ 0 −1 ⎟⎟⎟, 2 ⎜⎝ 1 0 ⎟⎠ and 1⎛ A = ⎜⎜⎜ 2 5 2 ⎜⎝ 5 4 9.17 ⎞⎟ 1 ⎛ 0 −1 ⎞⎟ ⎟⎟ + ⎜⎜ ⎟. ⎟⎠ 2 ⎜⎜⎝ 1 0 ⎟⎟⎠ (a) From the definition, S = ST and A = −AT , so that S9.4 ⎞⎟ ⎟⎟ ⎟⎟. ⎟⎟ ⎟⎠ Tr(SA) = ∑ (SA)ii = ∑ ∑ Sik Aki = ∑ ∑ Ski Aik i i k k i = Tr(ST AT ) = −Tr(SA), which implies that Tr(SA) = 0 . (b) Let the two diagonal matrices be Dij = dii δij and Fij = fii δij . Then, (DF)ij = ∑ Dik Fkj = ∑ dii δik f jj δkj = dii f jj ∑ δik δkj k k k = dii f jj δij = dii fii . Similarly, by interchanging F and D we can show that (FD)ij = fii dii so that FD = DF and F and D commute. 9.19 The determinant of A is −2 1 2 −2 1 A = −1 1 1 = −1 1 0 −2 1 = 1, 0 =− −1 1 0 2 −1 0 2 −1 so A is non-singular. The co-factors are: A11 = −3, A12 = −1, A13 = −2, A21 = 5, A22 = 2, A31 = −1, A32 = 0, A23 = 4, A33 = 1. So, by (9.65), A −1 ⎛ −3 5 −1 ⎜⎜ = ⎜⎜ −1 2 0 ⎜⎜ ⎜⎝ −2 4 −1 ⎞⎟ ⎟⎟ ⎟⎟ ⎟⎟ ⎟⎟⎠ and ⎛ 6 −2 ⎞⎟ ⎛ ⎜⎜ ⎟⎟ ⎜⎜ −3 5 −1 ⎜ ⎟⎟ = ⎜⎜ −1 2 4 0 ⎜ X=A ⎜ 0 ⎟⎟ ⎜ ⎜⎜ ⎜⎜ ⎟ ⎟ 3 ⎠ ⎝ −2 4 −1 ⎜⎝ 1 −1 9.21 ⎞⎟⎛⎜ 6 −2 ⎞⎟ ⎛ ⎞ ⎟⎟ ⎜⎜ 1 3 ⎟⎟ ⎟⎟⎜⎜ ⎟⎟⎜ 4 0 ⎟⎟⎟ = ⎜⎜ 2 2 ⎟⎟⎟ . ⎟⎟⎜⎜ ⎟⎟ ⎟ ⎜ ⎟⎟⎠⎜⎜⎝ 1 3 ⎟⎟⎠ ⎜⎜⎝ 3 1 ⎟⎠ Using the notations of equation (9.72), we have ⎛ 2 3 −1 ⎞⎟⎟ ⎜⎜ ⎟⎟ ⎜ A = ⎜⎜ 1 −1 1 ⎟⎟ with det A ≡ Δ = −15. ⎟⎟ ⎜⎜ ⎜⎜⎝ −1 1 2 ⎟⎟⎠ Also S9.5 ⎛ 0 3 −1 ⎞⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ Δx = det ⎜ 1 −1 1 ⎟⎟ = −3, ⎟⎟ ⎜⎜ ⎜⎜⎝ 2 1 2 ⎟⎟⎠ ⎛ 2 0 −1 ⎞⎟ ⎜⎜ ⎟⎟ ⎜ ⎟ Δy = det ⎜⎜ 1 −1 1 ⎟⎟ = −3 ⎟⎟ ⎜⎜ ⎜⎜⎝ −1 1 2 ⎟⎟⎠ and ⎛ 2 3 0 ⎞⎟⎟ ⎜⎜ ⎟ ⎜⎜ Δz = det ⎜ 1 −1 1 ⎟⎟⎟ = −15. ⎟⎟ ⎜⎜ ⎜⎜⎝ −1 1 2 ⎟⎟⎠ so that x= 9.23 Δ Δ 1 1 = , y = y = , z = x = 1. Δ 5 Δ 5 Δ Δx (a) the condition for a unique solution is 4 2 α det A = 7 3 4 ≠ 0 1 1 2 i.e. 4a −12 ≠ 0 . Thus, unique solutions exist for α ≠ 3 , independent of the value of β. (b) For α = 2 det A = −4 and A−1 ⎛ 2 ⎜ 1 ⎜⎜⎜ = − ⎜ −10 4 ⎜⎜ ⎜⎜⎝ 4 −2 6 −2 2 ⎞⎟⎟ ⎟⎟ − 2 ⎟⎟ , ⎟⎟ − 2 ⎟⎟⎠ where the matrix is the transposed matrix of the co-factors of A. Thus, ⎛ x ⎞⎟ ⎛ 3 ⎞⎟ ⎛⎜ 12 ⎜⎜ ⎜ ⎜ ⎟⎟ ⎜⎜ y ⎟⎟ = A−1 ⎜⎜ 8 ⎟⎟⎟ = ⎜⎜ −5 2 ⎜⎜ ⎟ ⎜ ⎜⎜ ⎟⎟ ⎜⎜⎝ 4 ⎟⎟⎟⎠ ⎜⎜⎜ ⎟ ⎜⎝ z ⎠ 3 ⎜⎝ ⎞⎟ ⎟⎟ ⎟⎟ . ⎟⎟ ⎟⎟ ⎟⎠ (c) For α = 3 , multiplying the first equation by 2 and comparing to the sum of the second and third equations, gives 8x + 4y + 6z = 2β and 8x + 4y + 6z = 12 , respectively. So in case (i) β = 6 , a solution exists, but is not unique, while in case (ii) β = 2 , no solutions exist. S9.6
© Copyright 2025 Paperzz