42. R 0(p) = p · f (p) + f (p) =sin 9000 600. Increasing the price by a 2· 1 = f (p) 2 + pf (p), so R (120) 2+ 2 + 120 · ( 80) = (x3. x)= 4. f 0(x) = 4 sin x cos x (x + sin x) f 0 (x) 4x2psin x 8x cos x 4. f (x) = 4 sin x cos x small amount p dollars would decrease the revenue by about 600 dollars. Exercise Set 2.5 Exercise Set p 10 2.5 0 = sin x(5 2x(5 2.7.f 0f(x) + cos x + sin x) cos cos x) 1 + 5(sin x cos x) = sec x tan x 2 sec x 0 (x) 3 x(5 + sin x)n cos x(5 4.x f 00 (x) = 4 sin x cos x 5.f 0f(x) = 1 + 5(sin sin cosn x)1) cos = x) · (0)2 1 · (nx n 1. 0(x)== 1x n 1 4 sin x + 2 cos x (x) 1.5. cos+xxsin x) (5 + sin x)f2 nx (x)== n4 sin = 43. ff(x) so fx0+ (x)2(5 = = = . 2 2 2n n+1 sin x) +sec sinx x) x 2 2 + 1) sec(5x + x x)(2x) = (x2 + x(5 0f 0 (x) = (x 8. tan x + (sec 1) tan x + 2x sin sec x(5x+ sin x) cos x(5 cos x) 1 + 5(sin x cos x) 3. f (x) = 4x102sin x 8x cos x 5. 2x f 00(x) (x) = 10 + cos x = (x odds + sin x) cos x sin x(2x + cos x) x2 cos x2. sin x 0 1= f 0f(x) + cos x 2 p2.6. 116/ – 25 f = 2 2 (x) = = (5 + sin x) (5 + sin x)2 3 3 +2.5 sin x)(xx cos xcsc x(x2cos xsin x) 2x 2sin x(x4 csc 2+ 2x(2x + cos x) 2 sin xx Exercise Set 00 (x) = + sin x) + 9. f x cot x 0 (x)==4 sin x cos x = 4.6.ff(x) (x2 + sin x)2 (x2 + sin x)2 00 2 p (x22 sin + sin cos x x sin x(2x + cos x) x2 cos x 2x sin x 3. f (x) = 4x sin x 8x cos x 3. ff 00(x) = 4x x x)8x cos 1.7.ff(x) = 4 + 2 cos x 00 2 secx(5 x tan sec x 6. (x) = = 10. f (x) (x)==sin sin x+xsin cscx)p x2 + x csc x cot x cos x(5 cos x) 1 + 5(sin x cos x) (x2 + sin x)2 (x2 + sin x)2 0 5.7.ff0 (x) = (x)== sec x tan x 2 sec22x 2 0 10 (5 + sin x) (5 + sin x) 4.8.f 0f0(x) = 4 sin x cos x 00 2 f (x) sinxx cos x p 2 2xx tan x + (sec x)(2x) = (x2 + 1) 3 sec 4. (x) ++1)cos sec x tan x += 2x4sec 2. 11.f f(x) (x)===(x sec 3 x(sec x) + (tan x)(sec x tan x) = sec x + sec x0 tan x x 0 2 2 7. f (x) = sec x tan 2 sec2 x 8. f (x) = (x2 + 1) sec x tan x + (sec x)(2x) = (x +2 1) sec x tan x + 2x sec xx sin x(5 + sin x) cos x(5 cos x) 1 + 5(sin x cos x) 0 2 (x + sin x) cos x sin x(2x + cos x) x cos 2x sin x sin x(5 cos x(5 cos x) 1 + 5(sin x cos x) 9.ff0f00f(x) = 42 cscx)( x cotcsc x+ 2 + sin x) 0(x)= 2 csc x 30 5. 6. 12. (x)= +x)(cot x)( csc x=cot=x)(5=+2sin cscx) x 5. f x02(x)2csc = x cot = 2 3. f (x) (x) ==4x(csc sin x (5 8x xsin 2 2 x) 64 Chapter 2(sec x)(2x) = (x2 + 2 x + 2x +cos sin (x + (x + sin x) 0 2 x)2 8. f (x) = (x + 1) sec x tan x + 1)+ sec x2 tan (5 + sin x) (5 sin x) 9. f 0 (x) = 4 csc x cot x + csc x 10. f0 (x) = sin x csc p x + x csc 2 x cot x csc x) cot x(0 csc xxcot csc x(x csc x csc2 x + cot2 x) 2(1x+cos 2 x) 64 2 4. f00f(x) 4 sin xx)( 0 = (x 0 sin 2 csc x cot x + csc2 x , but 1 + cot2 xChapter 2sin x(2x + cos x) + sin x) cos2xcsc cos x9.=f2x 13. = (x) = 4 0 (x) tan x (x + sin x) cos sin x(2x + cos x) x2=coscsc x 2 x2x sin x 7. f (x) = sec x tan x sec x 0 2 x 10. (x)== sin x 2 csc(because x + x(1csc xcsc cot x2 x = (sin 6. f ff(x) = x)(1/ + x) (1 + csc x) 17. sin x sec cos x) = tan x), so 2 6. f (x) = = 0(x) = 3 2 2 2 2 + sinx)(sec x) x tan x) = sec x + (xsec +xsin 11. f (x) = sec x(sec x)(x+ (tan tanx) x 2 2 1 +x(5 x tan x (x2 + sin x)2 csc x( csc(xx + sin x) sin + sin cos2x(5 cos x) 0 12 + 5(sin x csc cos x) 1) 0 x 2x) 0(identity), 2 tan xsec 10. f (x) sin csc x + x csc x cot x 2=2x 2sec 0 2 xp 31) sec thus cot x csc x = 1, so f (x) = = . 5. = 8. f (x) = (x + 1) tan x + (sec x)(2x) = (x + x tan x + x 2 2 2 11. (x) = = sec x(sec + sin (tan xx[x(sec tan x)(sin =x) sec x +cos sec xcsc tan 2x 2sintan 2 (1 + x tanx) x)(sec x)x)(sec + (tan x)(1)] sec 1 17. ff00(x) (because x sec x= x)(1/ x) = tan x), x so tan xp x 2 3 sin x) 2x) (1 + x) 2 64 Chapter 2 12.f 0ff(x) (x) (csc x)( x) + (cot csc x csc x cot2 x 1 + csc 7. x tan x csc 2 sec x x)( csc x 2cot x) =(5 + (x)===sec 2 1+ x tan x(5 + 7. f 0 (x)== (1 sec+xxtan xx)2 = 2 sec x x tan x)2 (because sec x (1 + x tan x) tan (1 + 0 2 3 00 2 2 + (tan x)(sec x tan x) = sec x + sec x tan2 x 2 2 x(sec 11. sec 2 tan 2 3f (x) =sec 9. fftan (x)2 = 4(1 xx cot xx)(sec +x) csc2+2 x) x x)( +x)( tan tan(sec x[x(sec x) +2=(tan x)(1)] x x sec23 x 1 2csc 2x)x 12. = (csc csc (cot csc x cot csc x csc x cot x 22xx) 64 Chapter 2 x = (x + sin x) cos x sin x(2x + cos x) cos x 2x sin x 00f 00(x) 21). 2 cot (1 + tan x)(sec x tan x) x)(sec x) sec x tan x + sec x tan x csc x)( csc x) cot x(0 csc x x) csc x( csc x csc + cot (x) = = = x) = (because x2 8. ffff(x) = (x + (sec x)(2x) =2 (x=+ 1)=sec x tan 2 0 (x) 2 0 x + 2x sec 2 x 2 cscsec tan1)xsec x tan x +(1 2 tan x(1 2 6. (x) == 14. = 13. (x) = , but 1 + cot x = x 8. f (x) = (x + 1) sec x + (sec x)(2x) = (x + 1) sec x tan x + 2x + x tan x) (1 + x tan x) + x tan x) 2 2 2 2 2 2 2 x = (sin x)(1/ 17. f (x) = (because sinx) x socscx)x)2 2 (x +(1 sin x) (xcos +x) sin x)tan + tan (1x), ++ tan 0= x)sec (1 12. fcsc (x) = (csc x)( csc csc x)( csc x cot x) = csc3 x csc x co 2 2+ csc 2 x) + (cot 1 sin + tan xx)(x +(1 10. f00tan (x)2 = x csc x csc x cot x 2 x x = 1). (1 + csc csc x) cot x(0 csc x cot x) x( csc x x + cot x) +x1) cot x csc22x2 2 0 = (x 2 csc 0x 1) csc x tan xcot 0 2 x csc 9. 4 csc 2x2p 13. ff(x) (x) = sec= x(tan xx+ tan x)tan sec 1)x(cos 2 x2.+ csc2 x , but 1 + cot x = csc x 2secxsin 18.f (identity), (x) == cos x csc =x) (cos x)(1/ sin x) ==sec cot thus cot x+x(because csc = 1, f=x (x) = =42x), 2so 9. (x) csc xcsc cot 17. (x) (because x=x) sec x x(tan (sin x)(1/ x)f x) = x), so1+so (13x +tan tan x)(sec x[x(sec + (tan x)(1)] x tan x 1 2x) 2tan (1 + csc (1 x) 0 2 7. fff00= (x) = sec x 2 sec x cot x (1 + csc + csc x 2 2 2 x x)2 32 1 +2x(sec x tan (x)==sec = (1 + csc csc x)( = csc x) cot x(0 (because csc x cotsec x) x csc x( csc 11. f0 (x) x) + tan(1 x)2+=tan secx) xcsc +13. sec x tan 0 x x (1 (x (1 ++ 1) tan cot x (tan x)(sec 1) (1 x2xtan x) + x tan x)2 2x (1 + x2 tan x)2 2 (x) =cot 202 2 x( fcsc 2 2 2 2x 2 x+ 10. = sin x csc + x cot x 2csc 2 6x cot x 2x cot x 3(x + 1) csc x = (3 cot x)[2x cot x (x + 1) csc x] (x + 1) cot x csc x 18.f (identity), f0(x) (x) = (because cos x csc x = (cos x)(1/ sin x) = x), so thus cot x csc x = 1, so f (x) = = . 0 (1 + xcot tanxx)(sec x) tan x[x(sec2 x) x)(1)] x=x2 1tan xx3+ 1 x)x 2 +x csc ( 10. fcsc (x) = sin csc x(1csc cot 2sec 23 2 + (tan 00 (x) x = 1). f(x) = .2 x (1 + x) + csc x (1 + tan x)(sec x tan x) (sec x)(sec x) sec x tan x + sec x tan x sec x 8. ftan = (x + 1) sec x tan x + (sec x)(2x) = (x + 1) sec x tan x + 2x sec x f (x) = = = (because sec 22 0 2 (3 cot (3 cot x) 2 csc x( csc x 1) 14. (x)==(csc = 15.f0f0f(x) sin2x)( x +2 cos (identity), sox2x) f202(x) 12. csc22 xx)=+1(cot x)( csc cot x)3= 0.2 csc3 x csc x cot x 64 Chapter 2 0 (1 + x tan x) (1 + x tan x) (1 + x tan x) 2 2 2 2 2 2 2 2 2 cot x =x 1,3(x so f+(x) = + tan x) (12 x + tan x) 6x cotxx csc 2x cot 1) = csc x (3x(sec cotx) x)[2x cot x (x x + 1)x) csc= x] cot xthus 11. f (x) + (1 (tan x)(sec tan sec x(x+ + sec1)x(identity), tan 0 2= sec 0 x csc + xcsc x)22x 2 3 x)(sec x tan x) = sec3 x +(1 2 =(x 1). =tan22 x . sec 0f (x)x= 22 x) 11.xftan (x)x = sec x(sec x) +sec (tan tan (1 + tan x)(sec x tan (sec x)(sec x) sec + sec x x + 1) cot x 2 9. f tan (x) = 4 csc x cot x + csc x 2 2 0 sec x(tan x + tan x sec x(tan 1)sin (32sec cotxxx) 2 d2x) 22 sin x 2(3 sin x x sin sin 14. ==(1tan = = cot x) 18. fdy/dx (x) (because cos x =x x(cos x)(1/ x)xx= so 19. 0= x sin xx)( +2cos x, =csc cos x2cot sin = cot xx), cos xcsc + csc csc x) 2y/dx cot x) csc xalso, x +=cot 0(x)= 2 csc = 2xx(0 2f (x) 2 x) 2 so xcot 16. 0f(x) (x)== 23sec tan x x) sec x+(cot tan sec xtan =x) 23 xcsc3x( = 0;tan sec2x)x, but tan12 x+=cot 122(identity), x(because tan x) (1 + 2 (1 2=3 csc 12. x)( csc + x)( csc x cot x) csc x cot x 13. = x = csc x x + sec (1 + tan x) (1 + 17.fff0(x) (x) = = (csc sin x sec x = (sin x)(1/ cos x) = tan x), so 0 2 2 2 2 x)x+ cos x cos x (1 + tan x)(sec tan x) (sec x)(sec x) sec 12. f (x) = (csc x)( csc (cot x)( csc x cot x) == cscx3 tan x csc x co (1 + csc x) (1 + csc x) (x + 1) cot x 0 0 = 1+ x tan x 10. f (x) sin x csc x + x csc x cot x 2 2 2 2 2 2 2 2 2 2 2 14. f (x) = f (x) = 0. 2 6x cot x 2x cot x 3(x + 1) csc x (3 cot x)[2x cot x (x + 1) csc x] (x + 1) cot x csc 2 2 2 3 19. dy/dx = x sin x + cos x, d y/dx = x cos sin x sin x = x cos x 2 sin x sec x(tan x + tan x sec x) sec x(tan x 1) 18. f (x) = (because cos x csc x = (cos x)(1/ sin x) = cot x), so 2 0 20. f= dy/dx = csc x cot x, d y/dx = [(csc x)( csc x) + (cot x)( csc x cot x)] = csc x + csc x cot x csc x( csc x 1) csc x (1 + tan x) (1 + t 2 2 2 2 2 x= csc (x) = (1 . 0 x)x+ 23 =1, 2 0csc cot x22x)(sec + x)( x) cot x(0 cot csc x(seccsc x) (1thus + x tan tan (tan x= tan2 x x + cot 1 cot x)2 2 = 15.(identity), x csc ++ cos = 12 x) (identity), so (x) cot x csc x= so (x) = . 2 (3 2 csc 2 x) x)(1)] 2 0f 0(x) = sin 2 csc2 x (3x[x(sec cot (1 (1ff+x) tan x)30. 2 2 0(x) 2tan x) 13. f = = , but 1 + cot x = 2 2 f (x) = = = (because sec x (1 + csc x)( csc x) cot x(0 csc x cot x) csc x( csc (1 +x csc x) 16x + csc 2x2tan 2x) = 2 sec x2 + 2(1 + 2 2 11. f (x) = sec x(sec x) + (tan x)(sec sec tan xx(tan 2 xx(1 2x 0 sec x+ tan seccot x)2 xx)2sec x(tan x 1) 2 2 x 2(x + csc x) csc x) cot cot x)[2x + [(csc 1) cscx)( x] csc (x2x) + x csc xx tan (1 + x= tan x) (1 x) tan 13. fcot (x) =+ 20. fdy/dx dy/dx =(3 csc x cot x, cot d(1 y/dx +1) (cot x)( csc x cot x)] x = csc+3 xx + csc x23(x cot2 + x 1) csc x . = 0 = = 21. = x(cos x) + (sin x)(1) 3( sin x) = x cos x + 4 sin x, (x) = = ( 2 2 (1 + csc x) (1 2 x x 1) (1 + csc csc x( sincsc tanxx)sec tan 2 2 0 22 sin x 2 x)2 + tan x) 0 2 2sec2cot 0f 2 2 (3 x) 2 2= 16.(identity), (x)x= == 21). sec x+tan xx xcsc 22xx) tan x(sec xx 2 x3tan 0;sec also, fx(x) tancot x = 1 (identity), so 2 x== sin 15. (x) = sin xtan cos xx)x = 1(cot so (x) 0.sec 19. = xx)( sin x + cos x, d(identity), y/dx cos x sin x== x=xcos sin 2 02 2sec thus cot =x)( 1,=csc so fx= (x) .x3 xx (3 csc x( csc x 1) (1 + x)(sec tan x)(sec x) + tan x sec 3= 3 x xcsc 2 12. ffdy/dx (csc csc + cot x) csc x x cot x 2 0 2 2 cos x cos 0d(x) y/dx = x( x) sin+x)(sin + (cos + 4 cos x = x=sin 5 cos (1x++csc x) x (identity), thus1 + cotcscxx csc =x = 1, so f (x) = = 14. (x) 0 21.ffdy/dx x)(1)x)(1) 23( sin x) = x cos x + 4 sin x,(1 + tan (x)===0.x(cos 2 x)2 2 0 2 (1 + csc x)2 (1 2+ tan 15. f (x) = sin x + cos x = 1 (identity), so f (x) = 0. (x + 1) cot x 2 2x) 2 2 2 3 2 sin x sin x 19. fdy/dx dy/dx = x sin xcot + x, cos = cos sin = csc x cos x2cscx)] x3cot2x2x) 2 d y/dx 22 sin 2 2(1 + 02 = = 2xxx)( 20. dx, y/dx = xx+ [(csc x)xsin +2+ (cot csc x cot + csctan x cot 18. (x) (because cos csc x)(1/ x) =x)( x), so csc x)( x) cot x(0 csc xxcsc cot csc x(cot x= +=csc 2= 2csc 2x) 2x y/dx sin x) + x)(1) 44x)(sec cos x x sin 52x cos x=sec 2x)(2x) 16. (x) =(1 2= sec xx tan x(cos 2x) tan sec x= =(cos sec x =x 1 (identity), so 0d sec x)(sec x(cos tan x) (sec xxtan xxalso, tan xfx,(x) sec x x , but 22.f0fdy/dx x3+ (tan sin +csc + cos x x sinx= + cos x0;+ 4 cos xx) x(tan xx( +cot tan xsec sec sec x(tan x=x) 1) 3 xsec 3xx+ 13. (x) = == 1 + cot22 x = csc2 x cos cos 2 2 14. f=(x) = = = tan x) x sec xsin tanxx + sec (1tan + csc (1++x) csc x) 2 x tan2 x) (sec 2x) 2 x)(sec 2tan x)2 22 2 +(1 2 x)(sec 2cot 0 csc fd20 (x) =2 0.(1 + 2 21) csc22sin (1 + x) (1= 2x)[2x 2 x(sin 2 2 + 1)(1 3 x2xtan tan x)(sin +x) cot xxx= 2x 3(x + cotx) (x csc x]= xsin (x + 1)+4cos cot x xsin 14. f x] (x) 16. 2tan sec tan sec xcot x x+ sec xsin = 0; (cos x) + x)(2x)] +cos 2[x( x) + 4=1) x6x (2 )csc cos 4(x 1) 20. cot x, d(cos y/dx = [(csc x)( csc x) (cot x)( csc x4=x cot x)] x +x) csc cot x=x x3.= 2 3 (1 0 y/dx=(3 2csc 2x 21. x(cos + x)(1) 3( sin cos sin x, 2 csc x( csc x csc x fdy/dx (x) == = = (1 + tan 22.(identity), dy/dx xthus ( [xx sin x) + x)(2x) + 4 x = x sin x + 2x cos x + cos x, 0 cos x cos x + t cot22 x sec csc22 x) x =(3 sec 1,cot so f 2(x) = 1) = . (3 cot x)2 sec x(tan x + tan x(tan x x) 0 2 f cos (x) 0. 2 22 2 (1x++csc x) x= 1 tan + csc 2 2x =d(x) = + 4so 2sin2x)2+ (cos x)(1) 0x = 2 x sin = xx(+[xcos cos sec x(tan secx2 x)4(x sec x(tan 2 5 x] 15. = sin x(sin =x)+ 1x)(1) =sin 0. d2y/dx y/dx x) (sin + 2[x( + 4cos 4 sin xx=+(2 xx ) cos + 1) sin xx 1) (1 +x)( tan (1 +fx) tan x) 23.f dy/dx (sin sin +(identity), (cosx)(2x)] x)(cos x) =(x) cos x x) sin x, 21. == x(cos x)(cos +x) 3( sin = x cos x + sin x, = = 2 2 2 +22tan x) (1 + tan x)2 19. dy/dx =2(1 + x sin + cos x x,tan d y/dx = x)(sec x cos x2 x)sin xsec x sintan x= xsec cosx(1 xtan xsec3 x 2 tanxsin x)(sec x) (sec x+ xsin 2 2(cos 2sinx)(cos 0 2 y/dx= x)( sin x) + (cos x)( sin x) [(sin x) + (sin x)(cos x)] = 4 sin x cos x 2 d = x( x) + (cos x)(1) + 4 cos x = x x + 5 cos x 2 2 2 0 2 sin x sin x 22. dy/dx x ( sin x) + (cos x)(2x) sin x + 2x cos x + 4 cos x, 14. (x) = = (sin = = 23.fff(x) x) + 2(cos x)(cos2 x) = x sin 0dy/dx 15. x+ cos xsin xsec = (x)cos = 0. 2 16. (x)==sin 2 sec xx)( tan 2 x,3 (1 =+ 0; tan also, = sec2 x tan22x = 10 (identity), so (1x1+(identity), tantan x)2x secso xf = 2 x) f (x) 2 2 3 32 x 15. 22 22 csc x2cot x, d2 y/dx2 = [(csc x)( cos cos x f (x) = sin x + cos x = 1 (identity), sosin f (x) 20. dy/dx = csc x) + (cot x)( csc x cot x)] = csc x + x cot x d0d y/dx =2(cos [x x)( (cos (sin (cos x)(2x)] + sin 2[x( sin[(sin x) + cos x] 4 sin x = (2 x ) cos x csc4(x + 1) x = 0. 2 x) y/dx sin+ x) 2sec 2 x)(cos x) + (sin x)(cos x)] = 4 sin x cos x (x) = 0. = sec x(tan x(2+x,sin tan x+ x) sec x(tan x 1) 24.f dy/dx = sec d2x) y/dx = 2+ 2x)(2x) sec2 xx)( tan x xx) 22. x (cos + 4 cos = x sin x + 2x cos x + 4 cos x, 2 sin sin x 2 0 2 2 16. f=(x) = 2 sec xx) sec2 x 2 tan= x sec(1 x+= 2 3 = 0; also, f (x) = sec x tan x = 1 (identity), sosin x 2 (1x2+tan tan tanxcos x) 2 + 2 2 x, cos 2 2 x(cos 23 x 21. dy/dx = x) (sin x)(1) 3( x)2[x( = cos xx) + sin 4 sin 0x 2 sin x 2 sin x 2 sin 2 +(sin 2 sin+ d y/dx = [x (cos x) + x)(2x)] sin + cos x] 4 sin x = (2 x ) cos x 4(x + 1) 23. dy/dx = (sin x)( x) (cos x)(cos x) = cos x x, 16. f (x) = 2 sec x tan x sec x 2 tan x sec x = 2 = 0; a 0 24.f Let dy/dx == sectan x,x, d then y/dx f 0= 2 sec x2tan (x) f=(x) 0. 25. (x) = sec x. x cos3 x cos3 x 2 0 2 =2 x( sin 2 dd22y/dx x) + (cos x)(1) + 4 cos x = x sin x + 5 cos x f (x) 0. x)(cos x)] = 4 sin x cos x y/dx x)( x sin + (cos x)(sosin x) =[(sin x) +=(sin 15. f (x) = sin= x(cos + cos = 1x)(identity), f 0 (x) 0. x)(cos 0 (cos x)(cos 2 x) = cos2 x 23. = (sin x)(x, then sin sin2 x, 25. dy/dx Let f (x) = tan = sec x. 0 x)f+(x) (a) f (0) 2= 0 and f (0) = 1, so y 0 = (1)(x 2 0), y = x. 22. dy/dx =2 x ( 2 sin x) + (cos x)(2x)2 + 4 cos x =2 sin x xsin x +sin 2xxcos x + 4 cos x, 2 24. dy/dx =2 = sec(cos x, d2xy/dx =+ 22 sec tan2 x d y/dx x)( sinx2 x) (cosxxx)( sin=x) [(sin x)(cos x) = + (sin x)(cos x)] = = sec42sin 16. f 0 (x) = sec x tan sec tan sec x 2 0; also, f (x) x x cos tan2xx = 1 (identity), so ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ 3x 2 2 ⇡ = 0 2and f 0 (0) = cos cos ⇡ 1,x)(2x)] ⇡ (2 x2 ) cos x 4(x + 1) sin x f (0) so y +0 2[x( = (1)(x y⇡ = d0(a) y/dx = [x (cos x) + sin3x)x0), + cos x]x. 4 sin x = 0 (sin f 0. = 1 and f 0 = 2, so y 1=2 x , y = 2x + 1. f (b) (x) = 2 x,2then 2f 4 2 2 x. 4⌘ 2 25. f (x) = sec 24. Let dy/dx = sec x, d y/dx ⇣=(x) 2 sec x tan x ⇣ 4⇡= ⌘tan ⌘ ⇣ ⇡ x)(cos x) = cos2 x sin2⇡x, ⇡ 23. dy/dx x)(1 and sin x) (b) f= f 0 + (cos + 1. ⇣ (sin ⌘= ⇣ =⇡2, ⌘ so y 1 = 2 x ⇣ , y⇡ = ⌘ 2x ⇡ 4 4 4 2 + ⇡ 1. 0 0 2 2 = 0= (c) f0 (x) =2 x. y +[(sin 1 =0), 2 y x=+x. ,(sin y =x)(cos 2x (0) f and (0)x) so sec yx)( 02,sin =so(1)(x y/dx ==4(cos x)( sin +1,(cos x) x)(cos x) + x)] 25. d(a) Let ff(x) tanand x, 1then f= = 4⌘ 2 = 4 sin x cos x ⇣ ⇡⌘ ⇣ 4⇡ ⌘ ⇣ ⇡ ⇡ ⇣ ⇡ ⌘2 = 2 1 and ⇣f⇡0 ⌘ 2 = 2, so y + 1⇣ = 2 ⇡x⌘+ (c) f = , y = 2x 1. ⇡ + 0 20 = 0 2 sec 4x tan x 24. dy/dx sec x, d y/dx 4 4 (a) (0) = = sin 0 and f (0) 1, =so2, y sox.0y = (1)(x 26. (b) Let ff(x) then cos = 1x,and f f =(x) 1 = 2 x0), y =, x. y = 2x + 1.2 4 4 4 2 ⇣ ⇡==⌘tan ⇣0 (x) ⇣ ⌘ 0 ⌘ 2 x. 26. Let Let f (x) sin x, then f (x) = cos 0 f ⇡ ⇡ ⇡ 25. f (x) x, then = sec x. ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ (a) ff (0) ⇡ = 0 and f (0) so y = x.⇡ ⇡2,y so 0y = (1)(x ⇡ (b) f 0 f=0 1, = x0), + (c) f 4 ==1 and 1 and = 2, so1y=+21 = 2 4x +, y =, 2x y = 2x + 1. 1. 4 2 4 4 4 2 0 0 (a) 0),0), y⇣ = x. x. (a) fff(0) (0) = and 0= (1)(x y⇡), = 0(0)==1,1,soso (b) (⇡) =0⌘00and andfff(0) (⇡) =⇣ 1,⇡yso 0(1)(x = ( 1)(x y⇡=⌘ x + ⇡. ⇡ ⇣ =⇡ ⌘y y0 = 0 (c) ff(x) 1 and⇣f 0f(x) , y = 2x + 1. 26. Let x.2, so y +⇣1 = 2⇡ ⌘x + ⇣ ⇡= ⌘ sin=x, then ⌘ = cos= ⇡ 0 0 ⇡ ⇣ ⌘4 4 ⇣ ⌘ (b) ff (⇡) ⇡), y4= ⇡ ==01and 1andff (⇡)0= ⇡= 1, ⇡ 1 (b) 2, so so 1yy 01 = = 2( 1)(x x1 ,1y ⇣ = 2x ⇡x⌘++⇡.1. 21 p +p . 2, y = p x (c) f 4 = p and f4 = p , so y p =4 p x 0 4⌘ 0 ⇣1, (0)4 = 0 and f (0)f = socos y x.20 = (1)(x 20), y =2 x. 2 4 2 2 ⌘ sin ⌘ ⇣ 26. (a) Let ff(x) x,2then (x)4 = ⇣⇣ ⇡= ⇡ 1 ⇡ ⌘= p1 and f00 ⇣ ⇡ ⇡ ⌘= p1 , so y p1 ⇣= p1 ⇡ ⌘x ⇡ , y = ⇡ p1 x p p (c) f + . (c) f 4 = 21 and f 0 4 = 2, so y + 1 = 2200 x + 2 , y =4 2x + 1. 0 27. (b) (a) If y= x then x +y 2x cos x (and y =⇡), 2 cos x xx + sin⇡.x 2so y200 + y 4= 2 cos x.2 4=x0sin 41, so 4y = f (⇡) and f 0 = 1)(x 0 (⇡)y== sin (a) f (0) = 0 and f (0) = 1, so y 0 = (1)(x 0), y = x. 00 ⇣y⇡== ⌘sin ⇣ xy (4)⇡x+ ⌘sin 26. x,1x then f 0 (x) cos 27. Let (a) f (x) If x sin then y 0⇣=⇡=⌘ sin xx.+ costwice x and1more y 00 =to + yx.= (b) Di↵erentiate the of part get y 00x=so1y2 cos 1 x(a) 12 cos ⇡ 2 cos 1x. 0 0 result
© Copyright 2025 Paperzz