Improved Ligation Specificity with Chemically Modified Ligation Components Sabrina Shore, Alexandre Lebedev, Elena Hidalgo Ashrafi, Gerald Zon, Natasha Paul, Richard Hogrefe. TriLink BioTechnologies, Inc. San Diego, CA 92121. P 0.4 0.2 0 U A B C D 2) Acceptor Probe O Standard Conditions O 5' O P O O Enzyme A O P O O B2 P O O O P N OH H O HO O O -O OH P B3 Lead Modification Name O O O O O P HO O O O O O Nicked DNA 3' HO O B1 3' Chemical modifications to the base, sugar, or phosphate of the donor and acceptor probes were evaluated for their influence on improved mismatch discrimination C D A B C D Ligation Product Template Acceptor Donor P 5’- ... T C G T G T ... -3’ 3’- ... A G C - A C A ... -5’ P 5’- ... T C A T G T ... -3’ 3’- ... A G C - A C A ... -5’ (normalized to unmodified) B B No DNA Ligase C No ATP D Control Reaction The strong propensity for T4 DNA ligase to join mismatched ligation probes necessitates a screening of modified ligation components for improved stringency of ligation Ligation conditions: 1X Ligase Buffer (50 mM Tris (pH 7.5), 10 mM DTT, 10 mM MgCl2), Ligation Probes (1 µM), ssDNA Template (1 µM), ATP analogs (1 mM), T4 DNA Ligase (0.5 Weiss units), 20 µL. Thermal cycling conditions: 95ºC (3 min), 4ºC (3 min), add Ligase, 22ºC (60 min), 65ºC (10 min). 1.2 7 O HO P O P O P O 5 N 5' 4' 8 O 6 2 N9 4 X1=O, X02 = CH10 3 -0.3 20 Cycles ,30 Y3 = H 40 -0.3 ∆Cq T4 0.7 0 10 E. coli 20 30 1.7 -0.3 40 ∆Cq 0.7 0 10 Cycles Mismatch G-T 20 30 40 Cycles Mismatch C-T Mismatch T-T Mismatch G-T Mismatch C-T Mismatch T-T Modifications evaluated: Y1, Y2, Y3 = H or OCH3 Cq (dRn) ΔCq Cq (dRn) ΔCq Cq (dRn) ΔCq Cq (dRn) ΔCq X1, X2 = O, or CH3 Standard Conditions 20.15 0 20.96 1 21.48 1 21.10 1 Acceptor Modifications 2 22.97 0 24.40 4 29.84 40 34.31 14 Cofactor Modifications 2 22.52 0 28.14 8 28.09 8 30.45 10 Chemically modified ligation components increase ΔCq's between matched and mismatched targets compared to standard conditions PCR conditions: 1X PCR buffer (20 mM Tris (pH 8.4), 50 mM KCl, 2.5 mM MgCl2), CleanAmp™ Precision Primers (0.1 µM), 0.2 mM dNTPs, 5 µL Ligation product (Diluted 105), 1.25 U IVGN Taq DNA polymerase, SYTO®9 Green (2 µM), ROX (0.03 µM), 25 µL. Thermal cycling conditions: 95°C (10 min); [95°C (30 sec), 56°C (30 sec), 72°C (1min)] 40X. Cystic Fibrosis SNP detection by Ligase Detection Reaction (LDR) Ligation Probes C-T Mismatch 0.8 A-T Match 0.4 WT (+) or Mut (-) 0.4 0 0 ed fi di m Un PS ) ) ) ) ) ) (n n-1 (n n-1 (n n-1 ( Me ( Me ( PS P PMe '-O Me O 2 2' ed fi di o m Un P PS ) ) ) ) ) ) (n n-1 (n n-1 (n n-1 ( Me ( Me ( PS P PMe '-O Me O 2 2' + - + - + - + - + - + P 5'-... G T T A G T ... -3' 3'-... C A X - T C A ... -5' 5'-... G A C C T C ... -3' 3'-... C T X - G A G ... -5' X = wild type (A) or mutant (C) X = wild type (G) or Single Nucleotide Polymorphism (SNP) (A) Different lead acceptor probe modifications identified depending on the DNA ligase family (ATP or NAD+) Chemically modified components improve mismatch discrimination in LDR Ligation conditions: 1X Ligase Buffer (50 mM Tris (pH 7.5), 10 mM DTT, 10 mM MgCl2, 1 mM ATP), Ligation Probes (1 µM), ssDNA Template (1 µM), (0.5 Weiss units T4 DNA Ligase or 5 Units E.Coli DNA Ligase), 20 µL. T4 DNA Ligase Thermal cycling conditions: 95ºC (3 min), 4ºC (3 min), add Ligase, 22ºC (20 min), 65ºC (10 min). E.Coli DNA Ligase Thermal cycling conditions: 95ºC (3 min), 4ºC (3 min), add Ligase, 16ºC (20 min), 65ºC (20 min). LDR conditions: 1X Ligase Buffer (20 mM Tris (pH 7.5), 20mM KCl, 1 mM DTT, 10 mM MgCl2, 0.1% IGEPAL®), 0.01 mM Cofactors, 0.50 µM Donor probe, 0.25 µM Acceptor probe, ssDNA template (50 nM), 4 Units Pfu DNA Ligase, 20 µL. Cycling conditions: 94°C (2 min), Cycle 20x [94°C (30 sec), 65°C (4 min)] Conclusion Ligation Product Template Ligation Probes N 3 1) Chemical modifications made to the ATP cofactor, donor probes and acceptor probes provide improved ligation specificity for T4 DNA ligase. 2) Optimal chemical modifications to acceptor probes vary depending on the DNA ligase family (ATP or NAD+). 2'-OMe (n-2) 2'-OMe (n-1) 2'-OMe (n) PMe (n-2) PMe (n-1) No Modification Investigation of chemically modified donor probe modifications Match A-T N1 PMe (x-1) Y1, Y2, Y3 = H 1.7 2.7 0.8 Core Structure of ATP Cofactor H2N X1=CH0.73, X2 = O DNA ligase Ligation Product No Ligase Design of chemically modified ATP Cofactors PMe (x) 2.7 3.7 ssDNA Template Figure 7 Figure 3 Modification on position Y 3.7 1.2 1.6 o A No Template 2.7 Modification o 1.7 Cofactor Modifications 2 E.Coli DNA Ligase (NAD+ dependent) T4 DNA Ligase (ATP dependent) Relative Ligation Yield A 2' OMe (n-1) Donor Cofactor Modification 1 Cofactor Modification 2 Figure 10 Comparison of acceptor probe modifications using ATP or NAD+ ligases Mismatch Match 3.7 Match A-T Figure 6 Limitations of T4 DNA ligase in mismatch discrimination Acceptor Modifications 2 Match A-T O O Donor P Probe 2, Y3 = H, F, or OCH3 -O O Acceptor Probe B1 B2 X1, X2 = O, S, CH3 Joined DNA Figure 2 D E F Real-time ligation-PCR using chemically modified ligation components Fluorescence (dRn) B3 O 3) Donor Probe Unmodified PMe (n) Acceptor 2' OMe (n-1) Acceptor PMe (n-1) Donor Mismatch T-T No Ligase Three Potential Components to Modify: 1) ATP Cofactor O -O DNA-AMP Mismatch C-T F Figure 9 E-AMP Donor Probe Nicked DNA E Ligation conditions: 1X T4 Ligase buffer (50 mM Tris (pH 7.5), 10 mM DTT, 10 mM MgCl2), Ligation probes (1 µM), ATP analogs (1 mM), ssDNA template (1 µM), T4 DNA Ligase (0.5 Weiss units), 20 µL. Thermal cycling conditions: 22°C (1 hour), 65°C (10 min). Acceptor and donor modifications evaluated AMP P Mismatch G-T D Each of the modified ligation components can improve discrimination between match and mismatched targets Ligation conditions: 1X Ligase Buffer (50 mM Tris (pH 7.5), 10 mM DTT, 10 mM MgCl2), Ligation Probes (1 µM), ssDNA Template (1 µM), ATP analogs (1 mM), T4 DNA Ligase (0.5 Weiss units), 20 µL. Thermal cycling conditions: 95ºC (3 min), 4ºC (3 min), add Ligase, 22ºC (20 min), 65ºC (10 min). -O O % Ligation Yield No Template Modification F Modification E Modification D 5'-... G T T A G T ... -3' 3'-... C A X - T C A ... -5' Modified Cofactors B and C provide robust ligation yield and improved match versus mismatch discrimination O O U A B C C Cofactor 2 Acceptor Probe OH F B Match A-T P Lysine O P O O O P HO O O O O P HO O O Cofactor OH E A X = wild type (A) or mutant (C) NH 2 O 0.2 Cofactor 1 OH OH 0.4 PMe (n-1) acc. HO 0.6 Mismatch T-T Modification Lysine O 0.8 PMe (n) acc. O HO PPi OH O O P N OH H 1 U Template Lig. Probes Mismatch C-T Enzyme A 1.2 0 Unmodified A O O O O P O P O P OH OH OH OH OH Modification C Match C-G 0.6 O Lysine Relative Ligation Yield to Standard Conditions Lig. Product 5' Enzyme NH 2 O Mismatch C-T Fluorescence (dRn) Lysine Ligation Product Mismatch G-T 0.8 E-AMP Enzyme O Modification B 1 Modification A 1.2 Unmodified (ATP) C-T Mismatch No ATP Cofactor C-G Match U A B C D E F Template Ligation Probes Figure 5 E + ATP HO Match A-T 5'-... T C X T G T ... -3' 3'-... A G C - A C A ... -5' Proposed approach for improved DNA ligase specificity O Evaluation of lead probe and cofactor modifications with T4 DNA Ligase Fluorescence (dRn) Figure 1 Evaluation of chemically modified cofactor analogs No Ligase Ligases are gaining utility in molecular biology applications, such as nucleotide sequence detection, single nucleotide polymorphism (SNP) detection, protein detection and “next generation” sequencing by ligation. With the increased demand for DNA ligases in the field of biotechnology, comes increased demand for ligation fidelity. Described approaches to improved ligation fidelity include ligases from different biological sources, point mutations of key amino acid residues within the ligase, modified reaction conditions and addition of crowding reagents, such as PEG. Although most approaches to improved ligation fidelity have focused on the ligase itself, further improvements are needed and may be attainable by a different approach. Herein a strategy to improve the discrimination between matched and mismatched targets is described which employs chemical modification to the nucleic acid components of the reaction, such as the donor probe, the acceptor probe and the ATP cofactor. The results demonstrate that chemically modified components increase the stringency of DNA ligase-mediated nucleic acid detection, providing a unique approach for SNP genotyping. A Figure 8 Figure 4 Ligation Yield (normalized to ATP) Abstract 3) Cofactor modifications provide the greatest improvement to ligation fidelity of T4 DNA ligase. 4) The lead ATP cofactor demonstrated the most consistent increase in ΔCq’s in real-time PCR. 1' 3' 2' HO OH Ligation Product Mismatch C-T Adenosine-5'-triphosphate (ATP) P Legend Base modifications Sugar modifications Triphosphate modifications Template Ligation Probes Crystal structure suggests several key amino acid contacts with AMP Crystal structure of ligase adenylate structure of the Cholorella virus DNA ligase. Image captured from Tomkinson et. al. Chem Rev. (2006) 106, 687-99. Chemical modifications to the cofactor may influence interactions at key ligase contacts to improve ligation fidelity 5'-... G T T A G T ... -3' 3'-... C A X - T C A ... -5' X = wild type (A) or mutant (C) Several candidate modifications to the donor probe decrease mismatch ligation 5) LDR reactions employing chemically modified ligation components yield more specific match vs. mismatch discrimination. Acknowledgements: Terry Beck, Angela Tenenini, Anton McCaffrey, Julie Powers, Elizabeth Hill NIH Grants: 1R43GM085860-01, 2R44GM085860-02 & 5R44GM085860-03 For further information, please contact Natasha Paul, npaul@trilinkbiotech.com Ligation conditions: 1X Ligase Buffer (50 mM Tris (pH 7.5), 10 mM DTT, 10 mM MgCl2), Ligation probes 1 μM, ssDNA Template 1 μM, ATP 1 mM, T4 DNA Ligase 2 Units, 20 uL Thermal Cycling Conditions: 95°C (3min), 4°C (3 min), add Ligase, 16°C (20 min), 65°C (10 min) 9955 Mesa Rim Road San Diego, CA 92121 800-863-6801 | www.trilinkbiotech.com | info@trilinkbiotech.com The Modified Nucleic Acid Experts
© Copyright 2025 Paperzz