Notes 8.3 Conics Sections – The Hyperbola I. Introduction A.) The set of all points in a plane whose distances from two fixed points(foci) in the plane have a constant difference. 1.) The fixed points are the FOCI. 2.) The line through the foci is the FOCAL AXIS. 3.) The CENTER is ½ way between the foci and/or the vertices. B.) Forming a Hyperbola - When a plane intersects a double-napped cone and is perpendicular to the base of the cone, a hyperbola is formed. C.) More Terms 1.) A CHORD connects two points of a hyperbola. 2.) The TRANSVERSE AXIS is the chord connecting the vertices. It’s length is equal to 2a, while the semi-transverse axis has a length of a. 3.) The CONJUGATE AXIS is the line segment perpendicular to the focal axis. It’s length is equal to 2b, while the semi-conjugate axis has a length of b. D.) Pictures – By Definition P(x, y) Focus (x, y) Focus d2 d1 (-c, 0) Vertex (-a, 0) (c, 0) Vertex (a, 0) Pictures -ExpandedConjugate Axis Transverse Axis Focus (0, b) Focus (-c, 0) Focal Axis (c, 0) (0, -b) Vertex (-a, 0) Vertex (a, 0) a b Asymptotes are y   x or y   x b a E.) Standard Form - 2 2 x y  2  1 or 2 a b Where b2 + a2 = c2. 2 2 y x  2 1 2 a b F.) HYPERBOLAS - Center at (0,0) St. fm.. Focal axis Foci Vertices y2 x2  2 1 2 a b x2 y 2  2 1 2 a b x  axis y  axis   c, 0    a, 0   0, c   0,  a  Semi-Trans. a a Semi-Conj. b b Pyth. Rel. c  a b Asymptotes 2 2 b y x a 2 c  a b 2 2 a y x b 2 G.) HYPERBOLAS - Center at (h, k)  x  h   y  k   1 a2 b2 2 St. fm.. yk Focal axis Foci Vertices 2  y  k    x  h  1 a2 b2 2 2 xh  h  c, k   h  a, k   h, k  c   h, k  a  Semi-Trans. a a Semi-Conj. b b Pyth. Rel. Asymptotes c  a b b y    x  h  k 2 2 a 2 c  a b 2 2 2 a y    x  h  k b II.) Examples A.) Ex. 1- Find the vertices and foci of the following hyperbolas: 1.) 3x  4 y  12 2 2 2.)  y  3 9 x2 y2  1 4 3 Vertices = Foci =   2, 0  7, 0  2 x  2   4 2 1 Vertices =  2, 6  and (2, 0)  Foci = 2,3  13  B.) Ex. 2- Find an equation in standard form of the hyperbola with 1.) foci (0,±15) and transverse axis of length 8. 2 2 y x  1 16 209 2.) Vertices (1, 2) and (1, -8) and conjugate axis of length 6.  y  3 25 2 x  1   9 2 1 C.) Ex. 3 - Find the equation of a hyperbola with center at (0, 0), a = 4, e = 3 , and containing a vertical focal axis. 2 c 3 c e   a 2 4 c  a b 2 2 36  16  b c6 20  b 2 2 y x  1 16 20 2 2 2 III.) Discriminant Test A.) The second degree equation Ax  Bxy  Cy  Dx  Ey  F  0 2 is 2 a hyperbola if B 2  4 AC  0 a parabola if B 2  4 AC  0 an ellipse if B 2  4 AC  0 except for degenerate conics B.) Ex. 1 – Identify the following conics: 1.) 2 x  3 y  12 x  24 y  60  0 2 2 B 2  4 AC  0  4  2  3  0 Hyperbola 2.) 10 x  8 xy  6 y  8 x  5 y  30  0 2 2 B 2  4 AC  64  4 10  6   0 Ellipse
© Copyright 2025 Paperzz