American Mineralogist, Volume 64, pages 77-85, 1979 Thermodynamicsof meltingof anorthitededucedfrom phaseequilibriumstudies SrBveLuorNcroN U.S. Geological Suruey Denuer,Colorado80225 Abstract Applicationof freezing-pointdepression theoryto experimentally-determined meltingrelationsof anorthitein binarysystems with silica,orthoclase, leucite,albite,wollastonite, and diopsideyieldsresultswhichareconsistent with an enthalpyof fusionfor anorthiteof 81000 J,/mol,the bestestimateof Robieet al. (1978).The calculationsare madeusingthe 8-oxygen modelof silicatemeltssuggested by Burnham(1975).They alsoincorporatesolid-solution data among anorthite,quartz, and orthoclase.All temperatures are convertedto the International PracticalTemperatureScaleof 1968. The binary silicatesystemsstudieddo not appearto mix ideally,but theymay be described by regular solution theory. The deviationsfrom ideal behavior are related to the ionic potentialol the cations. Introduction Thus, This study originatedin an attempt to definethe enthalpyof fusion of anorthite by applicationof freezing-point depressiontheory to experimental phase-equilibrium studies.Thesedata might then be appliedto problemsinvolvingthe estimationof heat contentsof crystal-melt mixturesfor usein the delineation of geothermalenergyreserves. Hopesfor successwerebasedin part on thesuggestion by Burnham (1975)that many silicatemeltsmight, by judicious choiceof components and standardstates,be viewed as ideal mixtures.Subsequent to initiation of the project,calorimetricstudieson anorthitehavemore closelydelineated the boundson thepossiblerangeof valuesfor its enthalpyof fusion.Thiscommunication seeksto answersomequestionsabout the natureof silicatemelts, given some known thermodynamic quantitiesas boundaryconditions,and to showthat the melting behaviorof a phasedoes not closely constrainits enthalpyof fusion. H rot - I1at"r: A11S: TASH Q) If a componentof compositionA is presentin a solution,and a solidandliquid coexistat equilibrium at any temperatureZ, the chemicalpotentialof A in both phasesis equal,and we may write parsr: &n.r. B u t p o 1 " y: G e r " r * R Z l n 4 a 1 s yo1o d & e r , : G ^ o + R T ln aa11y. Equating the last two expressions, we have: AG- : RT ln (o661/as6) (3) A first approximation to the temperature and compositional dependenceof the enthalpy of fusion is to assume that the heat capacity difference, ACo, between the liquid and solid is constant.Thus equation (1) holds at any temperatureand, combining (l) and (3), we have: LH^ - T(LH^/T-) : R7" ln (aog)/aA1n) (4) Rearranging,we get: AH^ : R[n (ao,";/c^o)]/[(l/T) - (l/Z-)] (5) More complex equations which incorporate fewer simplifying assumptionsabout heat capacitiesmay be The stateof a pure solid phase,A, in equilibrium made, but they can be shown to have a much smaller with a liquid of its own compositionat its melting effect on calculated enthalpies or entropies than do temperature,?-, may be describedas follows. For the uncertaintiesof the data used in this study. - Thermodynamic framework the reaction,A(s) : A(l), AG- = Garl Gor"r: 0. AG*, the free energyof fusion, may also be written AS: AG- : Ho,, - Ho," - I-(5o6r - So,",) (l) 0003-004x/79/0102-0077$02.00 Precision and accuracy of calculations Adoption of the new temperature scale, Irrs-68, reguires that accurate thermochemical data be refer77 't8 LUDINGTON: MELTING OF ANORTHITE point. DifferencesbetweenGL-12 and lprs-68 are strongly temperature-dependent, and while for hydrothermalexperimentsbelow 1200K the differences No. IPTS-68 GL-I2 Dlfference may perhapsbe ignored,at the high liquidustemper1 Zt 419.58 4r9.4 0 .1 8 aturesof the studiedsystemsthe differencesare sig2 s 4 4 4, 6 74 o.L24 nificant. Table I and Figure I show the difference sb 3 6 3 0. 7 4 530.0 o.74 betweenthe two scalesas a function of temperature; 9 5 1 . 93 960.2 L.73 Figure I wasusedto convertthe temperatures usedin Au LO64.43 L062.6 r.83 this study. 6 Cu 1084.5 1082.8 L.? Liquidus temperaturesreportedin melting experi7 Pd t554 1 5 4 9. 5 ments are commonly bracketedby two runs any8 Pt t7 72 Lt)) L7 where from 4 to 30 degreesapart, one in which all The cafibtation in the tabie cotrespond to the trDints nuntbered sgnbols in Figute 1. AlL temtrEratutes are relting glassis obtained,and one in which somecrystalsare exptessed in degrees Ce]sjus, except sul_fur, Ioints, which point present.Suchexperimentsareseldomreversed.Startis the boiTing at one atrcspbere. I?TS-5q teftperatures (7974). ate ftom PowefT et aL. GL-72 temlEratures ate fton ing materialsare generallycrystalline,occasionally glass.In very few casesis a temperaturewell defined enced to the new temperatures.Temperaturesre- above which crystals melt completely,and below ported in phaseequilibriumstudiesaregenerallyref- which glassstartingmaterialsyield somecrystals.In erencedin three ways: (l) Iprs-48 international this study I assumedthat reportedliquidus temper. temperaturescale,(2) 1912CarnegieInstitutionof atureswere more likely to be too high, becauseof Washington,GeophysicalLaboratory(hereafterGL- lack of reversal,than too low, becauseof lack of 12) temperaturescale,and (3) unspecified.The pre- equilibrium.Accordingly,the generalprocedurewas ponderanceof the data are GL-12 temperatures, to choosean upper bracket2o higherthan the lowest chieflybecauseof the wide acceptance of the melting temperatureat which all glasswas obtained,and a point of diopside(1391.5'C,GL-12) as a calibration lower bracket 7o below the upper bracket.Table 2 and Figure2 show the resultsof calculationsusedto testthe resultantuncertainties in enthalpiesoffusion, given commonlyencounteredtemperatureand compositionaluncertainties in the input data. Equation (5) is very sensitiveto activitiesof the solids.However,few quantitativecompositionaldata are known about solid solutionsin silicatesystemsat near-liquidus temperatures. Sincemostof the studies consideredhereweremadewithout the benefitof the electronmicroprobe,anorthite has been commonly assumedto have end-membercomposition. Figure 3 illustratesthe effectsof solid solution in o phaseA (Table2, Fig.2) on calculatedenthalpies of r fusion at 1750 K. The compositional effects can be F relativelylarge, and may easilyovershadowtemperature uncertainties.In calculatingenthalpiesof fusion, all melt and crystalcomponentswere assumed 7 to mix ideally, and activitieswere set equal to mole fractions.Departuresfrom ideal mixing are thus reflectedin the extracteddata. The ability to calculatemole fractions correctly dependscritically on understandingthe structureof 600 1000 1400 silicate melts. Such a melt consistsof an array of T,"rr-ua, oG cations,free oxygenions,and silicateions displaying polymerization.Polymer theory Fig. L The discrepancy betweenI prs-68and GL- I 2 temperature various degreesof has applied to silicatemelts by Masson(1972), been scales.Numberedsymbolscorrespondto the calibrationpoints listedin Tablel. but the theory has not beenextendedto ternary and Table l. Someprimary calibrationpointson the Iprs-68and GLl2 temperaturescales 444. )) 4.) N F @ rv @ F LUDINGTON' MELTING OF ANORTHITE Table 2. Samplecalculationto show constraintson precisionof calculatedenthalpiesof melting T(K) 1750 X(an) ltquld I650 0.720 AH2 AH3 87.49 97.95 90.08 93.93 73.30 71.?8 _to:to 85.85 74.73 61.95 90.25 87.t5 8q.04 93.89 AH4 A!5 107.65 83.E9 0,a52 _ 1700 AHI AHn _ _ 83.60 81,84 71.7A 80.08 78,4t 74.52 84.17 87.99 A6.32 87,57 90.o2 82.74 19.50 80.83 19.66 76.90 0 . 6 0 2 8 3 , 55 Nunbers 1n the !able ue re obtained aB folloest pnase A uas as6uned to h€ve a neltlng tenperaiure of 1800 (, and a true en!haIpy of neltlng of 83,68 KJ/mot, lrole fractions of A ln the nelt uere calculated fron equatton (5), then !he enthelpy uas rec6lculsced fron those nole fracEions. which 6re eccurate to the nearest,00t, AHI represents t2 deg uncertalnty in tenpereture, A{2 represents ! 7 aee. AH3 represen!s !1 nol Z uncertalnty ln conposltlon. AH4 and All5 represent conblned naxlmun uncertalnties of mcthods I and 3, and 2 and 3, respectivel LJJ ^^ YU -J o - I E 80 higher-ordersystemswith any greatsuccess, so I did not attempt to apply it in the presentstudy, which dealswith ternaryand higher-order oxidesystems of appreciable aluminacontent. Thoughvariousmodels were explored,the procedureadoptedwas to considerthe unit of silicatemelt to be 8 oxygenatoms and the cations associatedwith them (Burnham, 1975). Results 17 5 0 Preuiouswork Bowen(1913)demonstrated that freezing-point depressiontheory appliedto the plagioclasephasediagram yields a value for the enthalpyof fusion of anorthiteoflapproximately 121000 J/mol. Theresults of Pecket al. (1977),basedon thermalmodelingof the Alae Lava Lake, Hawaii, are consistentwith Bowen'sestimate.Ferrier(1969)madea calorimetric determinationof 167000J/mol for the enthalpyof fusionof anorthite.Klein and Uhlmann(1974),using a kinetic study of anorthitecrystallization,estimated an enthalpyof fusionof betweenI 17000and 188000 J/mol Yoder(1975)reportedunpublished dataof O. J. Kleppa and T. V. Charlu, who determinedenthalpiesof solutionof anorthiteand anorthiteglassin molten lead borate, which yield an enthalpy differenceat 973 K of 78200J/mol. Robie et al. (t978), usingthe heatcapacities of Krupka, Robie,and Hemingway (in preparation)and the standard enthalpiesof anorthiteand anorthiteglassmeasured at 298 K (Kracek and Neuvonen,1952),report a value of 81000I/mol. The apparentlack of agreement in the calorimetricstudiessuggests the utility of an examinationof the phaseequilibria studies. 17 0 0 16 5 0 KELVINS TEMPEBATURE, Fig.2. Uncertainties in AH- resulting from (l) *2o temperature uncertainty,(2) +7" temperatureuncertainty,(3) t I molepercent (4) a combination compositional uncertainty, of I and3, and(5) a combination of 2 and3. Anorthite-albite Data wereextractedfrom Bowen's(1913)studyin the followingmanner.Bowenwasso thoroughas to publishhis galvanometer readings,and it was possible to converthis temperatureto Iprs-68 in a very rigorousmanner.A graph of EMF us. temperature was constructed,basedon a straightline betweenhis low and high calibrationpoints of lithium metasilicate (m. p. l208oC,Irrs-68), and anorthite(m. p. 1558.5oC,Irrs-68). Reversalbracketsfor the liquidus were constructedby noting the lowesttemperature at which all glasswasobtainedfrom crystalline starting materials(upper bracket), and the highest temperatureat which crystalswereobservedstarting with glass(lowerbracket).Maximumand minimum permissibleliquidi were then drawn through the resultingbrackets.Data for discretetemperatureinter- 80 LUDINGTON: MELTING OF ANORTHITE microprobeand X-ray diffraction analysisof the resulting feldsparsshow no more than 2 mole percent solid solution at thosetemperatures.Probeanalyses of the glassagree,within analyticaluncertainty,with Schairerand Bowen's liquidus curve. Accordingly, the solid phase in equilibrium with liquids in the anorthitefield wasassigneda compositionof AnrrOrs to vary linearly at the eutectic(1641K) and assumed with temperatureto Anrooat pure anorthite. Interpolatedvalueswerethen assignedto eachofSchairer and Bowen'sliquiduspoints. Data for anorthite-diopsideand anorthite-wollastonite weretakenfrom Osborn(1942).Inthe absence of any quantitative data on solid solution among thesephases,mole fractionsof crystallineanorthite weretaken to be unity. 18 0 0 a" a z IU Y F a = k. rO \"1 090 095 MOLE FRACTION aHm(1750K) 83.7 kJ 78.7 kJ 56.9 kJ 28.9 kJ SOLIDUS No ss 1 2 J Fig. 3. Calculated enthalpies offusion for the hypothetical phase considered in Table 2, showing the effect of different amounts of solid solution. valswerethen readfrom the resultingphasediagram. The soliduswasassumedto be accurate. Othersystems Data for anorthite-leucite.anorthite-orthoclase. and anorthite-silicawere taken from Schairerand Bowen (1947),exceptfor solidusdata on anorthitesilica from Longhi and Hays (1976).Schairerand Bowenusedthermocouplecalibrationpoints of palladium (m. p. l554oc, Irrs-68) and gold (m. p. 1064.43'C,Irrs-68) to correctthe temperatures. For solidus data in the systemanorthite-silica,a solid compositionwasestimatedby interpolationfrom the data of Longhi and Hays for each liquidus point reported by Schairer and Bowen. Leucite was assumedto exhibit no solid solution with anorthite. Orthoclase.however.dissolves in anorthiteto some extent.Somelunar feldspars(Ryder et al., 1975)are reportedto exhibit extensiveternarysolid solution. To test this hypothesis,two experimentswere performedwith the help of B. R. Lipin. Mixturesof 60 mole percentanorthiteand 40 mole percentorthoclase(both crystalline)wereequilibratedfor 5 hours, one sampleat 1673K and one at 1698K. Electron of results Discussion Calculatedenthalpiesare presentedin Table 3 and plotted as a function of anorthitecontentof the melt in Figures4 through 6. The enthalpiesdo not present a coherentpattern nor easily lend themselvesto a model. Particularlydisturbing is the comprehensive fact that someof the enthalpydata tend to approach pure anorthitein an asymptoticmannerinsteadof extrapolatingto a commonvaluefor the enthalpyof fusion. High-temperaturedata might be lessreliable for the following reasons: ( I ) Temperaturemeasurement above1700K is less precisethan at lower temperatures; thermalgradients greater thermal conmay be larger becauseof ductivitiesat high temperatures. (2) Small temperatureerrorsnear ?'- have a large effecton calculatedenthalpiesbecausethe absolute of temperaturevariation is a much largerpercentage T^-7. (3) Experimentsat high temperaturestend to be very short and may not alwaysreachequilibrium. Extrapolationof thesedata to pure anorthitecomposition fall into two groups. Binary systemswith albite,leucite,and diopsideindicate aheat of fusion near 109000J/mol, while the orthoclase,silica, and wollastonitedatapoint to a figurenear 146000J/mol. The large uncertaintymay be a result of poor data or poor modeling.Probablythe uncertaintyis as large as the uncertaintiesof the highesttemperature points(+25000J/mol). If suchan uncertaintyis assigned,all the valuesoverlapand the "determined" enthalpy of fusion of anorthite is approximately J/mol, which includesall the dis126000+54000 paratecalorimetricdata reported.The conclusionis that this methoddoesnot closelydelineateenthalpies of fusion. LUDINGTON: MELTING OF ANORTHITE 8l Table 3. Calculatedenthalpyof fusionof anorthite TEI,IP(K) SOLID Anorthite-atbi 1825 1823 1 E1 3 1E13 1 79 3 1793 1773 1773 1 75 3 1 75 3 1 73 3 1733 1 71 3 1 71 3 16 9 3 't693 1 6 73 1 6 73 1653 1653 1633 1633 1 6 13 1613 17 0 6 16 9 9 0 . 9 83 0 . 9 83 0.960 0 . 9 60 0 . 9 15 0.9r5 0 . 8 7/ , 0 . 8 71 0.E36 0.836 0.799 o.7cc 0 . 76 3 0.763 0.728 o . 72 8 o.692 o 692 0.656 0.656 0 . 6 19 0.619 0.5E1 0.5E1 0.950 0.961 0.887 0.906 0.77? 0.800 0.689 1.701 0.581 0.609 0.50E c.529 o. 1 1 ? 0.161 0.385 0.402 0.329 0.3r.8 0.279 1.298 3.231 0.?54 0.191 0 . 2 1Z 135307 89689 12E333 9 3 94 Z 12 5 3 0 0 99031 112563 104391 12 6 0 1 5 1 0 9 74 1 12 3 10 8 11 2 0 9 7 1 ? 16 1 9 11?213 120762 111658 1?0551 ' l1 1 4 4 8 1 2 11 E 1 112122 1 22 6 9 1 11?348 125818 11 1 0 2 1 0.901 c.901 0.807 0.807 c.7t9 0.709 0.610 0.510 3.510 c.485 0.485 13 ? 2 E ? 98827 126535 10 9 3 9 0 142083 127760 145403 13 1 3 6 7 118610 1 3 9 71 3 ' 1 5 11 7 1 1 1 2 79 1 0.900 0.900 0.800 0.800 0.70c 0.700 161112 113932 191535 1 5 2 11 E 1 6 8 3 7I 1 1 E 16 5 TEMP(K) SOLID LlaulD 1752 1715 1750 1723 1694 1687 1679 1672 1657 1650 't641 1634 Anorthite-si 1814 1807 1781 '1777 l. ?80 1.9E0 1.980 1.9E0 1.980 1.980 1.980 1.980 3.?70 ).970 1.970 3.970 ti ca l.?95 l . ?9 5 1.980 1.980 3.965 1.965 l . ?5 5 l.?55 1.940 c.940 1.935 l . ?3 5 l.?15 1 . 9 ' 15 0.600 0.600 0.500 0.500 0.400 0. 100 0.350 0.550 0.300 0.300 0.25C 0.250 15 7 5 7 1 1t3251 177131 151E76 159325 150E15 171192 115781 17 1 1 1 8 153573 179115 171981 0.8E6 0.886 o.776 0.776 0.668 0.66E 0.616 0.616 0.564 0.561 0.514 0.514 0.473 o.173 2 J O 11 7 r I 8595 1t 7 ? 2 6 119 1 6 7 1 1 2 2 15 t4816 ??490 t 3399 96811 ?1592 ?77J9 ?2479 )1548 ?0355 0.903 0.903 0.806 0.806 0.708 0.708 0.609 0.609 0. 509 0.509 17 6JO9 1?r768 t5155 85029 3 ? 15 3 76724 78 ? 2 3 71549 f???5 70a25 1735 1 72 8 1715 1708 16 9 1 1687 1 6 73 16 6 6 16 5 1 'l617 te 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 0 0 0 1.000 Anorthite-orthoc 181/, 1807 1E00 1793 1776 1 76 9 aHh(J/M0L) te Anorthite-teuci 1 80 9 18 0 2 l784 1777 1 76 5 1758 1 71 0 1755 1 71 2 LICUID tase 0.990 0.990 0.990 0.990 0.980 0.980 6Hh(J/rrt0L) Anorth ite-Ci )Dsi de 1Et4 1807 1 76 9 1 76 2 1 72 0 1713 1669 16 6 2 1604 't 597 1.900 1. 0 0 0 1. 1 0 0 1.900 1.t00 1.C00 1.000 1.t00 1.300 1.000 Anorth ite-rctt as toni te 1790 1.300 0.817 1 78 3 1 71 5 1 73 8 1605 1598 t .100 1.C00 1.300 r.J00 1.900 0.817 o.722 0.722 9.s?7 0.527 1 3 75 1 7 1 1 6 56 3 1 J 1 ?1 5 ?3626 695?3 5 7 13 1 Data for anorthite-aLbite are {rOn Boyen (1915), tor anortlite-teucite, anorthit!-orthOclase, and anorthite-siIica from schairer and Bouen (1917)t for ancrtlite-diopside and anorthite-dcl,tastonite 'sotidr trom 0sborn ('1912>. Cotuons entitted and . Liquid' refer to mote fractions of alcrthite. Our imperfectknowledgeof the structureof calcium-rich plagioclase at high temperature complicatesthe picture(seeSmith,1975).For pureanorthite, a completelydisorderedcrystal has 23.05J/ mol.K of configurationalentropy (Ulbrich and Waldbaum, 1976).A 42000J/mol differencethus existsbetweenthe enthalpyof fusion of completely ordered and completelydisorderedanorthite, with the orderedphaseexhibitinga higher value.On the basisof TEM (transmissionelectronmicroscopy)ob(1977,oralcommuniservations, G. L. Nord suggests cations)that pure anorthiteformed at temperatures higher than 1700K probably crystallizesin the disorderedCl structure.However,it is the high-temperature data in Figures 4 through 6 which suggest anomalouslyhigh enthalpiesof fusion, and hence crystallization as the ordered phase. This contradictionremainsunresolved. (1952)deterGrantedthat KracekandNeuvonen's minationof the heatof solutionof anorthitecrystals and glassis approximatelycorrect,one is led to agree with Robie et al. (1978) and to concludethat the differencein enthalpy betweenanorthite glass and crystalsat themeltingpointis verynear81000J/mol. Data of Krupka and others(in preparation)do reqirire a long extrapolation,but the heat contentdifference,A(I1r*o - Hrr), betweenglassand crystals must lie betweenabout 6000and 15000J/mol. An enthalpyof fusionin the neighborhood of 150000 J/ mol is untenablein the light of the best available calorimetricdata. If the enthalpyof fusionof anorthiteis near 8 1000 LUDINGTON: MELTING OF ANORTHITE 630 E Itrrffrf a o 6 o x ! I f E <25 r25_ o E ? f E 100 EXPLANATION A Albite tr Oiopside ? On c 15L 10 80 06 o4 o2 XLX,iro,s,,o, Fig. 4. Calculatedenthalpiesof fusionfor thesystemsanorthiteorthoclaseand anorthite-silica. E E o o v a - I I E EXPLANATION o Leucite O wollastonite 8 v^ tiquid Car.l2Si2OB Fig. 5. Calculatedenthalpiesof fusionfor thesystems anorthiteleuciteand anorthite-wollastonite. Fig. 6. Calculatedenthalpiesof fusionfor the systems anorthitealbite and anorthite-diopside. J/mol, the discrepancies in the enthalpiescalculated in thispapermight be ascribedto non-idealmixingin the silicateliquids.To assess the natureand degreeof this possiblenon-ideality,activitiesof anorthite in liquid werecalculatedfor the variousbinary systems, assumingthe enthalpyof fusion of anorthiteto be 81000J/mol. Solid activitieswere assumedto be equal to mole fractions, and the temperatureused was the midpoint of the temperaturerange of the original data. The resultingactivitiesand activity coefficientsare shownin Figures7 and 8, respectively. The activity coefficientis simply the quotient of the calculatedactivity and the liquid composition. Figure 8 looks remarkably like similar plots for metalalloys(Richardson,1974,chapter4), implying that the data are compatiblewith a regularsolution model.The modelseemsto hold for mole fractionsof <0.75, but the behaviorof the activity coefficients at mole fractions of anorthite )0.75 is very uncertain and subject to large perturbationsas the result of smallchangesin the assumedenthalpiesof fusionand meltingpoint of anorthite. The slopeof the lines in Figure 8 can be roughly correlatedwith the ionic potential df the cationsin the solutions, with the largest positive deviations from ideality shown by systemscontaining potassium,the ion with the lowestpotential. LADINGTON. MELTING OF ANORTHITE 83 10.0 8.O 0.6 o o a N .=< t(U ;o (! 0.4 EXPLANATION o Orthoclase o Leucite a Albite a Silica D Diopside O Wollastonite o.2 o.2 o4 06 0.8 1.0 ',r,liquid ^ caAlrsiro, Fig.7. Calculatedactivity-composition relationsusingthe assumptions that theenthalpyoffusion ofanorthiteis 81000J/moland that its meltingpoint is 1830K. Sizeof the symbolsfor anorthite-albitereflectsthe uncertainty.The othersymbolsareaboutonehalf the size of their uncertainties for clarity.The straightline represents ideal mixing behavior. The intent of this communicationis to suggestthat a regularsolutionmodelmay be applicableto silicate melts;analysisof the modelwill requiremore extensivetestingwith moredataand perhapsmoresophisticated thermodynamicmodels.The great variation in the slopesof the linesin Figures8 and 9, however, stronglysuggests that a simpleabandonment of the assumption of constantACowill not greatlysimplify the situation. An interestingimplicationof this data for experimental petrology is that valuable thermodynamic data may be gatheredfrom close-spaced and precise data on liquidussurfaces.It could be very illuminating to study one of the systemsconsideredin this study at 2 to 5 mole percentintervals,along with a careful determinationof the melting point of anorthite. A necessityin such a study would be careful determinationof the structural state of the calcic 84 LUDINGTON: MELTING OF ANORTHITE Orthoclase N 6 Albite Leucite @ ^ ^ UJ 'i< *6 .= - x -. 1 02 Diopside Wollastonite 0 01 0.2 03 0.4 A v tiquid 1z \'-^ cantrsiror/ 0.5 06 0.7 F i g 8 N a t u r a l l o g a r i t h m o f c a l c u l a t e da c t i v i t y c o e f f i c i e n t sp l o t t e d u s . t h e s q u a r eo f t h e m o l e f r a c t i o n o f t h e s o l u t e . S t r a i g h t l i n e s a r e - , Y U F X i l " , , o(, ) 0 . 2 a r e e y e b a l lb e s t f i t s t o t h e d a t a o v e r t h e r a n g e i n w h i c h t h e y a p p e a r t o e x h i b i t r e g u l a r s o l u t i o n b e h a v i o r .P o i n t s a t ( l omitted for clarity plagioclase.It might also be particularly revealingto study the molar volume of a seriesof glassesin some of these binary systemsto seeif such data could be correlated with the mixine behavior deduced from phasediagrams. Summary and conclusions An examination of the thermodynamicsof melting of anorthite in binary systems suggestssome basic conclusionsabout silicatemelts containing anorthite as a component. (l) Calculated enthalpies of fusion based on an ideal solution model are not compatible in detail with each other or with the calorimetrically-constrained figure of 81000 J/mol suggested by Robie et al. ( 1978). (2) Calculated activity-composition relations for anorthite-bearing melts suggest that the binary systems under study may be describedby regular solu- controlledby the tion theory,with mixingparameters ionic potentialsof the ions in the melt. Acknowledgments I wish to thank D. R. Wones, B. R. Lipin, J. L. Haas, G. L. Nord, D. B. Stewart, and C. Wayne Burnham for encouragement and stimulating discussion throughout the study. The manuscript was read at an early stage by Herb Shaw, and reviewed by P. C. H e s s , R . A . R o b i e , a n d J . B . M o o d y . T h e i r h e l p f u l c o m m e n t sa r e gratefully acknowledged; the shortcomings remain my own. References B o w e n , N . L . ( 1 9 1 3 ) T h e c r y s t a l l i z a t i o no f t h e p l a g i o c l a s ef e l d s p a r s .A m . J . 9 c i , 3 5 , 5 7 7 - 5 9 9 . Burnham, C. W. (1975) Water and magmas; a mixing model. Geochim. Cosmochim Acta. 39. 1077-1084. Ferrier, A. (1969) Etude experimentalede I'enthalpie de l'anorthite synthetique entre 298 et 1950 K. C. R Acad Sci. (Paris), Ser. C, 269,9st-954. K l e i n , L . a n d D . R . U h l m a n n ( 1 9 7 4 ) C r y s t a l l i z a t i o nb e h a v i o r o f a n o r t h i t e J G e o p h y s .R e s, 7 9 , 4 8 6 9 - 4 8 7 4 . K r a c e k , F C . a n d K . J . N e u v o n e n ( 1 9 5 2 ) T h e r m o c h e m i s t r yo f LUDINGTON.. MELTING OF ANORTHITE plagioclaseand alkali feldspars.Am J. Sci, Bowen Volume. CaAl,SirO,glasses and of anorthite.Am. Mineral .63. l0g-123. 293-3I 8. Ryder,G., D. B. Stoeser, U. B. Marvin and J. F. Bower(1975) Longhi,J. and J. F. Hays (1976)Solidsolutionand phaseequiproc 6th Lunar Lunar graniteswith uniqueternaryfeldspars. join fibria on the anorthire-silica(abstr.).Am. Geophys.Union Sci. Con"f.,Geochim.Cosmochim.Acta Supp 6, 435-449. Trans.,57,340. Schairer,J. F. and N. L. Bowen (19a7)The systemanorthiteMasson,C. R. (1972)Thermodynamics and constitutionof silicate Ieucite-silica. Bull. Comm Geol.Finlande.140.67-87. slags."/. Iron SteelInst.,210,89-96. Smith,J. V. (1975)Phaseequilibriaof plagioclase. In p, H. Ribbe, Osborn,E. F. (1942)The systemCaSiOr-diopside-anofthite. Am. Ed., FeldsparMineralogy, Chapter7 Mineral. Soc. Am. Short J . S c i . 2, 4 0 . 7 5 1 - 7 8 8 . CourseNotes2. Peck,D. L., M. S. Hamiltonand H. R. Shaw(1977)Numerical Sosman,R. B. (1952)Temperaturescales and silicateresearch. analysisof lavalakecoolingmodels.part ll, applicationto Alae A m -J . S c i . , 2 5 0 Ap, t . 2 , 5 1 7 - 5 3 2 . l a v al a k e ,H a w a i i A . m . J . 9 c i , 2 7 7 , 4 1 5 - 4 3.' 1 Ulbrich,H. H. and D. R. Waldbaum(t976)Structuraland other Powell,R. L., W. J. Hall, C. H. Hyink, Jr., L. L. Sparks,C. W. contributionsto the thirdJaw entropiesof silicates.Geochim. Burns,G. Scrogerand H. H. plum (1974)Thermocouplerefer_ CosmochimActa. 40. l-24. encetables basedon the lprs-68. National Bureauof Standards Yoder,H. S., Jr. (t975) Heat of meltingof somesimple systems Monograph125. relatedto basaltsand eclogites.CarnegieInst lt/ash year Book, Richardson,F. D. (1974)PhysicalChemisrryof Melts in Meral_ 74,5t5-519. lurgy, u. /. AcademicPress,London and New york. Robie,R. A., B. S. Hemingwayand W. H. Wilson(1978)LowManuscripl receitsed,September 22, 1977; temperatureheat capacitiesof KAlSirOr, Na AlSirO", and acceptedlor publication, June 16, 1978.
© Copyright 2025 Paperzz