In[1]:= Integrate@ 2 ê L * Sin@n * Pi * x ê LD ^ 2, 8x, 0, L<D Out[1]= 1- In[2]:= 1- Out[2]= 1- In[3]:= Sin@2 n pD 2np Sin@2 n pD 2np H*Proves these are orthonormal since Sin@2*n*PiD=0.*L Sin@2 n pD 2np Plot@82 x, 2 H1 - xL<, 8x, 0, 1<, PlotStyle Ø 8Red, Blue<D 2.0 1.5 Out[3]= 1.0 0.5 0.2 0.4 0.6 0.8 1.0 In[4]:= H*Shows fHxL for h=1.*L In[5]:= Integrate@u * Sin@uD, 8u, 0, n * Pi ê 2<, Assumptions Ø 8n œ Integers<D Out[5]= In[6]:= - In[7]:= In[25]:= In[9]:= 2 n p CosB np 2 F + SinB np 2 F Integrate@Hn * Pi - uL * Sin@uD, 8u, n * Pi ê 2, n * Pi<, Assumptions Ø 8n œ Integers<D 1 Out[6]= 1 2 n p CosB np 2 F + SinB np 2 F - Sin@n pD H*Two integrals for Fourier coefficients in notes.*L y@m_, x_, t_D := 8 ê Pi ^ 2 ê H2 * m + 1L ^ 2 * H- 1L ^ m * Sin@H2 * m + 1L * Pi * xD * Cos@H2 * m + 1L * Pi * tD H*Taking h=L=v=1.*L 2 13.4.nb In[27]:= Plot@Sum@y@m, x, 0D, 8m, 0, 100<D, 8x, 0, 1<, PlotRange Ø 8- 1, 1<, AxesLabel Ø 8x, y<D y 1.0 0.5 Out[27]= 0.2 0.4 0.6 0.8 1.0 x -0.5 -1.0 H*This is the function y@x,0D which agrees with BC III the plucked string.*L In[31]:= Plot3D@Sum@y@m, x, tD, 8m, 0, 100<D, 8x, 0, 1<, 8t, 0, 10<, PlotRange Ø 8- 1, 1<, AxesLabel Ø 8x, t, y<D Out[31]= H*This shows the string oscillating up and down in time!*L 13.4.nb In[29]:= Animate@Plot@Sum@y@m, x, tD, 8m, 0, 100<D, 8x, 0, 1<, PlotRange Ø 8- 1, 1<, AxesLabel Ø 8x, y<D, 8t, 0, 10<, AnimationRunning Ø TrueD t y 1.0 0.5 Out[29]= 0.2 0.4 0.6 0.8 -0.5 -1.0 H*This is an animation of the string in time.*L 1.0 x 3
© Copyright 2025 Paperzz