JamesBoswellExam VWOMathematicsB Date: 2014 Time: 13:00–16:00hours Numberofexercises: Numberofsubexercises: 23 No.ofattachments: 1(doublesided) Maximumscore: 85points 5 • • • • • Writeyournameoneverysheetofpaperthatyouhandin. Useaseparatesheetofpaperforeachexercise.Usetheattachedworkingsheet forexercise3ofthisexam. Foreachexercise,showhowyouobtainedyouranswereitherbymeansofa calculationor,ifyouusedagraphingcalculator,anexplanation.Nopointswillbe awardedtoananswerwithoutanexplanation. Makesurethatyourhandwritingislegibleandwriteinink.Nocorrectionfluidof anykindispermitted.Useapencilonlytodrawgraphsandgeometricfigures. Youmayusethefollowing: o Graphingcalculator(withoutCAS); o Drawingutensils; o Protractorandcompass; o Dictionary,subjecttotheapprovaloftheinvigilator. Exercise1.Powerfunctions. Letthefamilyoffunctions: Figure1 !! ! = ! ! − !! ! begiven.Figure1showsthegraphsof!! and!! . Thegraphof!! istangenttothe!-axisatthe origin! 0,0 anditintersectsthe!-axisatpoint A. 4p a. Inanexactmanner,deriveanequation forthetangentlinetothegraphof!! atpointA. Thegraphof!! hasthreepointsincommonwiththeline! = 3!. 3p b. Calculateanalyticallythecoordinatesofthesethreepoints. !isthesurfaceareaenclosedbythegraphof!! andthe!-axis. 4p c. !isrevolvedaroundthe!-axis. Analyticallycalculatethevolumeoftheresultingsolidofrevolution. Forevery! ≠ 0,thegraphof!! hastwo Figure2 extremevalues. InFigure2,thegraphsofseveralfunctions!! havebeenplotted.Inaddition,thedashedline ! showsthegraphof! ! = − ! ! . ! Thefiguresuggeststhatallextremepointsof!! lieonthegraphofg. 5p d. Provethatforallvaluesof! ≠ 0,the extremepointsof!! lieonthegraphofthe ! function! ! = − ! ! . ! → Exercise2.Twoexponentialfunctions. Letthefollowingfunctionsbegiven: ! ! = Figure3 ! !! − 6! ! and ! ! = 2 − 2! ! . !! + 2 Thegraphsof!and!havebeenplottedin Figure3.Let!betheintersectionpointofthe graphsof!and!. 3p a. Showanalyticallythat!! = ln 2 . (ln (!)denotesthenaturallogarithmof!.) 3p b. Provethat ! ! ! !! + 4! ! − 12 !! ! = . !! + 2 ! Figure3showsoneextremevalueofthegraphof!. Thequestionarises,whether!hasanymoreextremesthatarenotshowninthefigure. 4p c. Calculateanalyticallythenumberofextremesofthegraphof!. LetVbetheareaenclosedbythegraphof!,thegraphof!andthe!-axis. 4p d. Provethat! ! = ! ! − 8 ln(! ! + 2)isanantiderivative(i.e.primitivefunction)of! ! . 4p e. Analyticallycalculatethesurfaceareaof!. → 4p 4p 4p 3p Exercise3.Fromakiteonacircletoacyclicsquare. Usetheattachedworkingsheettoanswerexercise3. Figure4showsacyclic(orinscribed)quadrilateral Figure4 !"#$withitscircumscribedcircle. Thecyclicquadrilateralisakite,meaningthatitisa quadrilateralforwhich!" = !"and!" = !". Answerthefollowingquestionsontheattached workingsheet. a. ProvethatACisthebisectoroftheangle∠!"#, andofangle∠!"#. b. Provethat∠!"# = ∠!"# = 90°. Nowthebisectorsof∠!"#and∠!"#are constructed. Thebisectorof∠!"#intersectsthecircleatpoint!, andatanadditionalpoint!.Thebisectorof∠!"# Figure5 intersectsthecircleatpoint!,inadditiontopoint!. SeeFigure5. !isthecenterofthecircle. c. Showthat∠!"# = ∠!"# = 90°. d. ProvethatthecyclicquadrilateralPAQCisa square. → Exercise4.Alogarithmicfunction. Figure6 Let! ! = 2! ! ln !,whereln !denotesthe naturallogarithmof!. Thegraphof!isplottedinFigure6. Point!isattheintersectionofthegraphof! withthe!-axis. 4p a. Analyticallycalculatethecoordinatesof theminimumoff. 4p b. Inanexactmanner,deriveanequation forthetangentlinetothegraphof!at point!. 4p c. Calculatethecoordinatesofthe inflectionpointof!.Giveanexact calculation. ! ! ! ! Thefunction! ! = ! ! ln ! − isanantiderivative(i.e.primitivefunction)ofthe function!(!). 4p d. Showthisanalytically. Visthepartoftheplaneenclosedbythegraphof!,theverticalline! = !and the!-axis. 2p e. Calculateanalyticallythesurfaceareaof!. → Exercise5.Pincurve LettheparametriccurveKbegivenby: ! ! = cos(2!) − 3 sin ! − 1 !: ! ! = sin 2! − 2 cos ! WeconsidercurveKontheinterval[0, 2!].See alsoFigure7. CurveKsharestwopoints!and!withthe ! !-axis.Attime! = !,curveKisatpoint!. Figure7 ! 4p a. Calculateanalyticallythecoordinatesofpoints!and!. 4p b. Calculateanalyticallythecoordinatesofthetwopointsatwhichcurve!intercepts the!-axis. 4p c. Usinganexactcomputation,showthattheparametriccurve!hasvelocity! = 0atpoint!. ! Let!(!! , !! )bethepointonthecurveKattime! = ! + !.Point!(!! , !! )isthepointon ! ! curveKattime! = ! − !. ! Thefollowingrelationsholdbetweenthecoordinatesofthepoints!and!: !! = !! = − cos 2! − 3 cos ! − 1and!! = −!! = − sin 2! + 2 sin ! . 4p d. Usetheanglesumanddifferenceidentitiestoshowanalyticallythat !! = −!! = − sin 2! + 2 sin ! . Together,theidentities!! = !! = − cos 2! − 3 cos ! − 1and!! = −!! = − sin 2! + 2 sin ! expressageometricpropertyofthecurve!. 2p e. Whichgeometricpropertyofthecurveisexpressedbytheserelations? Explainyouranswer. END Workingsheetforexercise3–Name:________________________________________ Exercise3a. Proof: Exercise3b. Proof: Exercise3c. Proof: Exercise3d. Proof:
© Copyright 2025 Paperzz