EDUCAIDE SOFTWARE Algebra I Database Module an add-on to Acces “The Teacher’s Database” Copyright (c) 1989, 1994 by EAS EducAide Software, Inc. All rights reserved. About this Module Title: Algebra I Publisher : EducAide Software Database code : ALG Last updated : 22 Jan. 2001 Catalog version: 2.6 License, Copyright Notice This database module, or item bank, is an add-on to Acces, “The Teacher’s Database.” Both are produced and copyrighted by EducAide Software [Acces (c) 1992–2001, items (c) 1989–1994]. All rights are reserved. Users of Acces and this database module are subject to the terms and conditions set forth by EducAide Software. For your convenience, the contents of this module are shown in a problem catalog. The catalog may be available to you in printed or electronic form, as a PDF or Adobe Acrobattm file. Regardless of its form, you must treat the catalog as a part of Acces, not as a separate product. For licensing purposes, it is considered software documentation, and its use is governed by the same license as Acces. Here are the main points: You are not allowed to transfer the PDF file by any electronic or other means, not even to other licensed end-users of Acces. The only legitimate way to put the file on a computer is through Acces’ Setup program. You are not allowed to put the PDF file on a Web site or otherwise make it available for download through a computer network. The only exception to this rule is if the file is placed on a network filer server in accordance with your software license (which means that only licensed end-users have access to it). You may view or print the PDF file using Adobe Acrobattm or Acrobat Readertm , in accordance with Adobe’s software license. Very important: If you produce a printed catalog, or hard copy, it must be for your own personal use. You must treat a printed catalog like a book. This is true even if you print it from the PDF file. The catalog is copyrighted by EducAide Software and it may not be reproduced in printed or electronic form without permission. You may use the items in the catalog only in accordance with your software license, regardless of whether you use Acces to reproduce the items. In particular, you may not convert, transfer, or enter the items into any other data base or text retrieval system, nor use them for any commercial purpose. Features and Specifications 18,628 problems 171 categories (topics) 105 pictures Requires 3.1 MB of disk space Covers real numbers, simplifying and evaluating expressions, ratio and proportion, polynomials, factoring, first and second degree equations, rational and radical equations, inequalities, coordinate geometry and graphing, and systems of equations. All problems are free response; they are intended for regular classroom instruction and testing in grades 8–11; they may also be useful for review or remediation at other levels. Credits Project manager : Dan Levin Contributors : Stuart Kumaishi, Gale Bach, Michelle Openshaw, Arne Lim, Natalie Docktor, Kathi Dominguez, Steve Apfelberg Hints for Use Selecting Problems in Acces The code for this database module is ALG. To select problems from the catalog in Acces: 1. Type the three-character database code in the first column. 2. Type the two-letter category code (shown at the top of each catalog page) in the second column. ALG AB 7 3. Type the desired problem number in the third column. 4. You do not need to fill in the other columns. They are for customizing your document. To learn more about them, consult your Reference Manual. 5. To see how the problem will appear in your document, choose Utilities > Preview. Directions Every problem in the database module has been assigned a default direction, which is shown at the beginning of the category in the printed problem catalog. These can be overridden by typing a new number in Acces’ Directions column. You can learn the meaning of each number by placing the cursor in the Directions column and choosing Utilities > List Choices. If more than one direction is shown at the beginning of a category, the first is the default, and the others are suggested alternatives. See the Reference Manual for information about how to write your own directions. Database Organization Problems in this module are organized in groups of two or four “clones”. In other words, every two or four problems in a row are similar—they cover the same topic and are of the same level of difficulty. This makes it very easy to produce multiple versions of a test or quiz, review worksheets, benchmarks, etc. Generally speaking, level of difficulty increases slowly from the beginning of a category to the end. Difficulty is subjective, however, so you should always review the problems you select and make sure they meet your own criteria. One way to take advantage of both the grouping and gradual increase in difficulty is to use Acces’ “Auto Advance” and “Select by” features. These allow you to choose a regular series of problems, such as “every other odd”. Refer to your Reference Manual for more information about these features. Other Database Modules Here is a list of modules that are available from EducAide Software, as of April, 2002. Newer modules and updates may be available at the time you are reading this. Please visit www.educaide.com for a current list. Also, note that textbook-aligned modules are available from CORD Communications (CCI) and Pearson Education Canada. For information about them, please contact the publisher. Code Title PRE ALG GEO TRI MMA APC SAT CA1 CM1 CM2 CM3 NC1 NC2 NC3 NC4 NC5 NY1 NY2 NY5 NY6 NY7 NYM OH1 TX2 TX3 TX4 TX5 TX6 MMF T2S T3S TX6 MCC MCH NSM BCC NCC WCC UNC IEC ISC Pre-Algebra Algebra I Geometry Algebra II/Trigonometry Mid-level Math Assessment AP Calculus SAT Math Prep. Calif. Math Stds. 6–7, Alg Canadian Math 11–12 Canadian Math 8–10 Canadian Math 4–7 NC Math Stds. 6–12, calculus NC Math Testlets 3–5 NC Algebra I NC Reading 3–8 NC Math Testlets 6–8, Alg NY Regents Math (Course I–III) NY Regents English NY Regents Biology NY Regents Chemistry NY Regents Physics NY Math 7–8, Math A Ohio Math Proficiency Texas Elem. Math (TAAS) Texas Sec. Math/Algebra EOC Texas Elem. Reading Texas Sec. Reading Texas Elem. Math (TEKS) French Translation of MMA Spanish Translation of TX2 Spanish Translation of TX3 Spanish Translation of TX6 MATHCOUNTS Competitions MATHCOUNTS Handbooks North Suburban Math League British Columbia Math Contests NC State Math Contests West. Carolina Math Contests UNC Charlotte Math Contests Illinois Math Contests 3–8 Illinois Math Contests 9–12 Problems Categories Pictures 15018 18628 5104 15955 5000 1767 2144 3154 6382 5824 3150 1749 1316 2126 929 1713 5797 3589 4086 3257 2054 3242 2184 1945 4012 1475 1513 3004 5000 1945 4012 3004 6654 5139 2401 1571 2910 3047 1156 1928 4759 164 171 139 161 112 68 60 51 107 66 36 103 24 52 104 33 56 22 56 130 25 79 19 52 53 54 34 52 112 52 53 52 51 51 42 94 50 38 50 26 84 334 105 860 325 545 118 388 585 547 820 873 260 925 600 85 635 968 — 1112 291 1218 610 180 860 610 32 15 1273 545 860 610 1273 705 548 413 357 481 544 139 438 576 Type free-response free-response free-response free-response multiple-choice multiple-choice multiple-choice multiple-choice various various various various various multiple-choice various various various various multiple-choice multiple-choice multiple-choice various multiple-choice multiple-choice multiple-choice multiple-choice multiple-choice multiple-choice multiple-choice multiple-choice multiple-choice multiple-choice free-response free-response free-response multiple-choice multiple-choice multiple-choice multiple-choice free-response free-response How to Contact EducAide For information about Acces and its various database modules, please call or write: EducAide Software PO Box 1048 Vallejo, CA 94590 800-669-9405, 707-554-9600 fax email: support@educaide.com Internet: www.educaide.com Note: If you discover an error in any database module (typo, wrong answer, etc.), you may be entitled to a “finder’s fee”. Normally, EducAide pays $3–5 to the person who first reports an error. For more details, please visit the “error report” section of EducAide’s web site. Algebra I Table of Contents A. Rational Numbers Adding integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AA Subtracting integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AB Expressions which emphasize grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Combined methods, including parantheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AD Multiplying integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AE Dividing integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AF Adding and subtracting fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AG Adding and subtracting decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AH Multiplying and dividing fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A I Multiplying and dividing decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A J Converting fractions to decimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AK Understanding rational numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AL B. Exponents Using exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BA Laws of exponents: multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BB Laws of exponents: power to a power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BC Laws of exponents: division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BD Laws of exponents: combined methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BE Variable exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BF Negative and zero exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BG Using scientific notation I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BH Using scientific notation II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B I Simplifing expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B J Mixed practice and review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BK Word problems with scientific notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BL C. Basic Concepts Order of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CA Absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CB Order on number line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC Properties of Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CD Using distributive property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CE Translating algebraic expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CF Statements about real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CG Understanding the roots of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CH D. Evaluating and Simplifying Expressions Evaluate for given value(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DA Evaluate for given replacement set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DB Evaluate for w = 6, x = 3, y = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Evaluate for a = 5, b = 7, c = −2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DD Evaluate for n = −3, p = 4, r = −1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DE Evaluate for x = −2, y = −3, z = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DF Evaluate for a = −4, b = 8, c = 2, d = −3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DG Evaluate for negative and zero exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DH Adding variable terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D I Combining like terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D J Multiplying monomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DK Dividing monomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DL Combined methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DM Applications of monomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DN E. Polynomials Adding polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EA Subtracting polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EB Multiplying monomials and polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EC Multiplying binomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ED Binomial Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EE Difference of squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EF Multiplying polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EG Dividing monomials and polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EH Dividing polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E I Combined methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E J Applications of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EK Mixed practice with polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EL 3 Dimensional figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EM F. Averages, Percents, Simple Formulas Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FA Percents I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FB Percents II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FC Percents III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FD Applications of averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FE Applications of percent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FF Explicit formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FG Area, perimeter, volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FH Time, distance, rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F I Interest and investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F J G. First Degree Equations Addition and subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GA Multiplication and division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GB Equations of the form: ax + b = c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GC Mixed practice and review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GD Combining terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GE Variables on both sides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GF Advanced equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GG Solving for other variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GH H. Word Problems For First Degree Equations Number problems (simple) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HA Number problems (advanced) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HB Consecutive integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HC Coins and stamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HD Age problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HE Time, distance, rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HF Mixture problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HG Interest and investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HH Area, perimeter, volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H I Triangles, supplements, complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H J I. Factoring Prime factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finding the missing factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factoring out monomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factoring trinomials of the form: x2 + bx + c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factoring trinomials of the form: x2 − bx + c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factoring trinomials of the form: x2 + bx − c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factoring trinomials of the form: x2 − bx − c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factoring trinomials of the form: ax2 + bx + c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mixed practice and review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factoring difference of squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factoring perfect square trinomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Combined methods of factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factoring by grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factoring sums and differences of cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Problems with variable exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. IA IB IC ID IE IF IG IH II IJ IK IL IM IN IO Solving Equations By Factoring Using zero-product rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quadratic equations (simple) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quadratic equations (advanced) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Higher order equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Solving for other variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Word problems involving factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JA JB JC JD JE JF K. Ratio and Proportion Solving proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KA Writing ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KB Ratios of x to y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KC Word problems involving ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KD Word problems involving proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KE L. Rational Expressions and Equations Reciprocals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LA Least common multiples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LB Greatest common factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LC Values for which an expression is undefined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LD Simplifying rational expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LE Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L F Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LG Addition and subtraction (common demoninators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LH Addition and subtraction (different denominators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L I Simplifying complex fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L J Rational equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LK Advanced rational equations (quadratic solutions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L L Solving for other variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LM Word problems involving rational equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LN M. Square Roots Rational roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MA Simplifying square roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MB Multiplying square roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC Dividing square roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MD Adding and subtracting square roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ME Combined methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MF Multiplying binomials with square roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MG Simplifying complex fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MH Solving equations with square roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M I Using Pythagorean theorem I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MJ Using Pythagorean theorem II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MK Word problems involving square roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ML N. Completing The Square and Quadratic Formula Perfect square trinomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NA Solving equations with perfect squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NB Solving equations by completing square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NC Solving equations using quadratic formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ND Solving for other variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NE Finding a quadratic equation from roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NF Understanding the roots of an equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NG Word problems involving the quadratic formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NH O. Inequalities and Absolute Value Simple inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Advanced inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compound Inequalties (“and”, “or”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Solving equations with absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inequalities and absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. OA OB OC OD OE Graphs, Equations of Lines Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PA Midpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PB Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PC Points on a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Graphing lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PE Writing equations of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PF Mixed practice and review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG Parallel and perpendicular lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PH Graphing inequalities in two variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P I Graphing the intersection of inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P J Other equations and graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PK Ordered pairs and equations of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PL Writing systems of inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PM Word problems involving graphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PN Q. Systems of Equations Graphing and substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QA Addition, elimination, determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QB Advanced methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QC Systems of 3 variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QD Word problems involving two variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QE AA Topic: Adding integers. Directions: 6—Simplify. 1. 7 + (−2) 5. −4 + 8 9. 4 + (−9) 5 4 34. −25 + 8 −13 42. −48 + 0 −75 0 −30 57. (−13) + (−28) 61. −45 + 17 −41 65. (−45) + (−24) 69. −36 + 144 −69 73. 57 + (−96) 77. (−63) + (−42) 81. −42 + 19 89. −33 + 93 −110 93. 66 + (−87) 97. (−105) + 59 101. 57 + (−57) 105. 321 + (−105) 109. −286 + 145 216 −141 117. (−147) + (−83) −230 9 20. (−5) + (−6) −9 24. −11 + 1 −14 −30 2 −11 −10 28. (−7) + (−7) −14 32. 15 + (−9) 6 17 39. −16 + 42 26 40. −15 + 51 36 −48 43. 0 + (−36) −8 48. 18 + (−48) −30 0 52. 26 + (−26) 0 51. 15 + (−15) 54. −67 + 17 −50 55. −37 + 30 −52 66. (−61) + (−34) −95 78. (−72) + (−24) −96 86. 34 + (−106) 91. −45 + 86 30 −24 −58 106. 476 + (−97) 379 110. −197 + 104 −93 92. −57 + 99 118. (−325) + (−85) −108 −18 −20 42 −15 96. 48 + (−71) −23 99. (−92) + 58 −34 100. (−80) + 33 −47 115. 0 + (−125) 108. −372 + 504 −126 −566 0 132 112. 238 + (−454) 116. 0 + (−94) −125 119. (−445) + (−121) ALG catalog ver. 2.6 – page 1 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 104. 165 + (−165) 0 142 111. 329 + (−455) −410 −45 95. 57 + (−72) 107. −287 + 429 −43 88 88. 88 + (−108) 41 −74 80. (−92) + (−16) 84. −34 + 16 −114 103. (−228) + 228 0 −96 −19 87. 51 + (−165) −72 68. (−53) + (−21) 76. 28 + (−73) −35 −56 −59 72. −70 + 158 55 79. (−54) + (−42) 83. −71 + 52 −15 −59 −5 60. (−42) + (−14) 64. −74 + 15 67. (−26) + (−33) 75. 49 + (−84) −28 −37 −43 71. −55 + 110 59 56. −20 + 15 −7 59. (−25) + (−12) 63. −55 + 12 −14 −20 −20 0 58. (−16) + (−36) 44. 0 + (−20) −36 47. 17 + (−37) 50. −21 + 21 114. −43 + 0 −72 −10 −17 102. 84 + (−84) 0 16. −6 + 15 16 31. 19 + (−17) 98. (−121) + 63 −46 1 36. −34 + 17 94. 72 + (−96) −21 −6 + 7 −6 90. −42 + 72 60 8. 6 12. 3 + (−13) −4 27. (−15) + (−15) −10 9 + (−3) 35. −32 + 26 82. −64 + 49 −23 85. 32 + (−142) 113. −72 + 0 −105 7 4. −17 74. 37 + (−65) −39 −3 + 10 23. −15 + 1 9 70. −38 + 97 108 7. 1 19. (−4) + (−5) −10 −8 62. −32 + 18 −28 6 + (−5) 15. −3 + 19 8 46. 27 + (−35) −4 3. 11. 7 + (−11) −2 38. −19 + 36 29 53. −54 + 24 4 30. 17 + (−8) 4 45. 29 + (−33) 49. −8 + 8 −5 + 9 26. (−5) + (−5) −16 29. 15 + (−11) 41. −75 + 0 6. 2 22. −10 + 2 25. (−8) + (−8) 37. −15 + 44 8 + (−6) 18. (−8) + (−2) −13 −6 33. −22 + 9 2. 14. −8 + 16 7 17. (−7) + (−6) 21. −8 + 2 98—Perform the indicated operation(s). 10. 8 + (−10) −5 13. −7 + 14 1—Add. −216 −94 120. (−176) + (−322) −498 AA More than two terms 121. −4 + (−8) + 15 3 125. 6 + (−2) + (−14) 129. (−32) + 67 + 25 −10 122. −8 + 24 + (−7) 9 126. 14 + (−26) + 9 −3 130. 36 + 12 + (−14) 60 133. (−27) + 52 + (−13) 138. −33 + 51 + 16 4 146. (−5) + 19 + (−13) 140. 32 + 28 + (−43) 9 −60 148. (−18) + 20 + (−3) 1 149. (−10) + (−8) + 12 + 22 16 150. 23 + 14 + (−16) + (−18) 151. (−9) + 25 + (−17) + 14 13 152. −21 + 6 + (−8) + 35 153. −8 + 15 + (−24) + 17 155. −21 + 15 + 27 + (−21) 3 12 154. 13 + (−11) + (−16) + 14 0 156. (−36) + 25 + (−8) + 19 0 0 0 157. (−26) + (−44) + 14 + 36 −20 158. 47 + 15 + (−27) + (−45) −10 159. 41 + (−39) + 18 + (−34) −14 160. (−56) + 24 + 43 + (−17) −6 ALG catalog ver. 2.6 – page 2 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 17 144. (−26) + (−56) + 22 −26 147. −17 + 6 + 12 45 136. 18 + (−26) + (−16) 143. (−38) + 40 + (−28) 1 −7 −24 139. 25 + 46 + (−62) −87 −1 132. (−22) + 43 + 24 38 −14 34 6 128. 16 + (−8) + (−15) −8 135. 15 + (−12) + (−17) 142. 15 + (−67) + (−35) −44 124. −5 + (−12) + 23 2 131. 13 + (−33) + 58 34 11 141. (−15) + (−49) + 22 145. −15 + 3 + 11 127. 8 + (−19) + 3 134. (−33) + 61 + (−17) 12 137. −56 + 42 + 18 123. −3 + 12 + (−7) −1 AB Topic: Subtracting integers. Directions: 6—Simplify. 1. 20 − 13 5. 103 − 87 9. 3−8 7 16 21. −4 − 3 37 − 14 6. 238 − 159 23 79 22. −2 − 7 −7 45 − 27 7. 141 − 25 18 116 −14 15. 25 − 58 −9 18. 92 − 185 −52 3. 11. 5 − 19 −3 14. 27 − 36 −12 17. 112 − 164 98—Perform the indicated operation(s). 2. 10. 7 − 10 −5 13. 19 − 31 2—Subtract. −33 19. 147 − 202 −93 23. −5 − 8 −9 4. 62 − 35 8. 157 − 94 27 63 12. 12 − 18 −6 16. 48 − 75 −27 20. 45 − 162 −55 24. −4 − 6 −13 −117 −10 25. −13 − 18 −31 26. −12 − 17 −29 27. −18 − 7 29. −17 − 19 −36 30. −18 − 16 −34 31. −46 − 21 −67 32. −21 − 58 −79 33. −66 − 96 −162 34. −35 − 78 −113 35. −43 − 77 −120 36. −84 − 86 −170 37. −124 − 99 38. −76 − 154 −223 41. −12 − 0 −12 42. −15 − 0 −15 45. 0 − (−7) 7 46. 0 − (−9) 9 49. 0 − 32 50. 0 − 27 −32 39. −217 − 48 −230 43. −24 − 0 47. 0 − 12 −27 28. −5 − 18 −25 −23 40. −139 − 102 −265 44. −19 − 0 −24 48. 0 − 16 −12 −241 −19 −16 51. 0 − (−48) 48 52. 0 − (−35) 23 56. 14 − (−17) 31 60. 78 − (−33) 111 35 53. 21 − (−11) 32 54. 14 − (−10) 24 55. 17 − (−6) 57. 34 − (−34) 68 58. 25 − (−25) 50 59. 46 − (−58) 61. −3 − (−2) −1 62. −6 − (−3) −3 63. (−5) − (−3) −2 64. (−8) − (−7) −1 67. −22 − (−8) −14 68. −29 − (−11) −18 3 72. (−2) − (−9) 7 76. −3 − (−15) 12 65. (−19) − (−4) 69. −4 − (−9) −15 66. (−13) − (−7) 70. −3 − (−6) 5 73. (−12) − (−18) 6 −6 104 71. (−7) − (−10) 3 74. (−8) − (−15) 7 75. −2 − (−16) 14 0 77. 31 − 31 0 78. 17 − 17 0 79. (−5) − (−5) 81. 24 − 38 −14 82. 33 − 45 −12 83. 21 − 65 85. (−55) − 46 89. −32 − 33 −101 90. −42 − 56 −65 93. 54 − (−36) −11 101. (−37) − (−81) 105. −76 − (−76) 109. 732 − 448 113. −142 − 226 44 0 −368 117. −92 − (−128) 36 −21 88. −47 − 39 −62 0 −86 −98 91. (−24) − 72 −96 92. (−31) − 24 −55 80 95. 82 − (−24) 106 96. 74 − (−31) 105 98. −82 − (−73) 99. (−51) − (−33) −9 −18 100. (−57) − (−43) 20 103. −29 − (−54) 106. (−42) − (−42) 0 107. 496 − 496 0 108. 127 − 127 0 111. 275 − 346 −71 112. 385 − 627 −242 114. −251 − 132 62 −383 118. −175 − (−305) 130 115. 65 − (−335) 25 31 116. 392 − (−108) 400 119. −814 − (−492) ALG catalog ver. 2.6 – page 3 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 104. −31 − (−62) −14 102. (−42) − (−62) 110. 519 − 457 284 84. 56 − 77 −44 87. −36 − 26 −121 94. 64 − (−16) 90 97. −88 − (−77) 86. (−69) − 52 80. −8 − (−8) −322 120. −663 − (−571) 500 −92 AC Topic: Expressions which emphasize grouping (commutative and associative properties of addition). Directions: 6—Simplify. 98—Perform the indicated operation(s). 1. 98 + 27 + 2 127 2. 5 + 49 + 95 149 3. 190 + 86 + 10 5. 4 + 28 + 56 88 6. 78 + 15 + 2 95 7. 26 + 37 + 24 9. 2 + 135 + 148 + 15 10. 4 + 199 + 66 + 1 270 286 87 11. 298 + 74 + 2 + 6 380 4. 25 + 37 + 75 8. 19 + 37 + 1 137 57 12. 395 + 8 + 5 + 82 490 300 14. 950 + 57 + 50 + 3 13. 990 + 25 + 10 + 75 1100 15. 47 + 15 + 13 + 785 1060 17. (−50) + (−28) + (−50) 18. −75 − 48 − 25 22. 6 + (−5) + 4 25 29. −23 + 6 + 23 6 33. 16 − 25 + 24 15 4 30. −38 + 14 + 38 34. 12 − 14 + 38 10 38. −21 + 45 − 9 41. −17 + 14 + 3 0 42. −40 + 25 + 15 45. (−23) + (−6) + (−17) −46 12 14 31. 14 − 7 − 14 39. −38 + 45 − 2 15 −267 10 46. (−5) + (−12) + (−25) −51 50. (−16) + 29 + (−4) + 11 −20 57. 4 + (−5) + (−1) + 2 0 −40 58. 3 + (−7) + 6 + (−2) 51. 8 + (−13) + 12 + (−17) 237 47 69. (26 + 1) + (99 + 24) 150 73. 10 + (67 + 190) + 3 270 77. (15 − 32) + (25 − 18) −10 81. −4 + [−6 + (−8)] 30 59. (−5) + 3 + (−8) + 10 0 85 63. 8 + (12 + 19) 66. (32 + 19) + 8 59 67. 150 + (18 + 50) 39 218 71. (7 + 24) + (13 + 6) 50 70 74. 990 + (150 + 10) + 50 75. 50 + (86 + 950) + 4 1090 79. (12 − 29) + (48 − 11) 0 82. −11 + [−19 + (−15)] 0 48. (−18) + (−8) + (−12) 52. 13 + (−24) + 7 + (−26) 56. −5 + 22 − 5 + 28 40 60. 7 + (−11) + 10 + (−6) 64. 7 + (13 + 48) 68 68. 1 + (36 + 99) 136 72. (23 + 18) + (7 + 12) 60 1200 78. (−36 + 17) + (−4 + 23) 20 0 62. (45 + 36) + 4 70. (15 + 18) + (2 + 35) 40. −13 + 60 − 27 −30 55. −7 + 31 − 13 + 19 0 45 −38 −10 54. 8 − 56 + 12 − 4 21 −5 36. −17 + 35 + 27 44. −31 + 38 − 7 0 47. (−34) + (−11) + (−6) 20 53. 14 − 21 + 16 − 29 5 4 28. (−6) + 31 + (−4) 32. 19 − 5 − 19 67 43. −13 + 35 − 22 0 3 −7 35. −25 + 17 + 75 36 24. 3 + (−6) + 7 12 27. (−1) + 23 + (−19) −42 49. (−7) + 5 + (−13) + 25 61. (37 + 199) + 1 23. −8 + 3 + 17 5 26. (−17) + 32 + (−3) 37. −14 + 30 − 6 −18 20. −150 − 67 − 50 −177 25. (−3) + 14 + (−7) 65. (16 + 27) + 4 1250 19. (−99) + (−77) + (−1) −148 −128 21. −5 + 11 + 9 16. 43 + 60 + 7 + 1140 860 20 83. [−29 + (−18)] − 12 −45 ALG catalog ver. 2.6 – page 4 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −59 76. 97 + (16 + 3) + 24 140 80. (−14 + 28) + (−16 + 12) 10 84. [−16 + (−35)] − 5 −56 AD Topic: Combined methods (adding and subtracting integers, parantheses). Directions: 6—Simplify. 1. −(−4) 5. − [−(−12)] 9. −(11 − 4) 4 −12 21. −(65 − 28) −(−0) 6. − [−(−7)] 0 −7 14. −(−8 + 17) 17 17. −(−26 − 12) 2. 10. −(15 − 28) −7 13. −(−20 + 3) 98—Perform the indicated operation(s). 22. −(43 − 29) −37 −(−16) 7. − [−(−0)] 16 0 11. −(45 − 25) 13 −9 18. −(−14 − 29) 38 3. 43 −(−8) 8. − [−(−25)] 8 12. −(6 − 21) −20 −25 15 15. −(−32 + 16) 16 16. −(−19 + 33) −14 19. −(−18 − 12) 30 20. −(−21 − 14) 35 23. −(72 − 54) −14 4. 24. −(61 − 32) −18 −29 25. − [−(−8 + 5)] −3 26. − [−(−9 + 16)] 7 27. − [−(−7 + 12)] 5 28. − [−(−17 + 6)] 29. − [−(86 − 46)] 40 30. − [−(33 − 58)] −25 31. − [−(40 − 90)] −50 32. − [−(76 − 21)] 33. − [(−7) − (−11)] 37. − [12 − (−37)] −4 −49 41. − [(−105) + (−65)] 170 34. − [(−33) − (−18)] 38. − [24 − (−26)] 15 −50 42. − [(−48) + (−56)] 35. − [(−17) − (−9)] 39. − [28 − (−34)] −36 −62 43. − [(−35) + (−85)] 104 45. − [17 − (−19)] 8 −11 55 36. − [(−9) − (−12)] 40. − [25 − (−42)] −3 −67 44. − [(−14) + (−87)] 120 101 46. − [15 − (−17)] −32 47. − [(−9) − (−12)] 50. −12 + 15 − 16 −13 51. −7 + 24 − 5 −3 48. − [(−11) − (−12)] −1 More than two terms 49. 17 − 23 + 4 −2 53. −19 + 12 − (−7) 0 57. 8 + (−10) − (−7) 5 54. 5 − (−8) − 6 55. 11 − 18 − (−6) 7 58. −32 + (−5) − (−28) 1 65. 4 − (−8) − 19 + (−6) −13 62. 9 − 15 + 8 − 7 0 −5 4 56. −23 − (−7) + 5 −11 60. 24 + (−19) − (−16) 21 63. 13 − 18 + 10 − 9 −4 64. −4 + 23 − 8 + 5 16 66. −16 + (−9) + 23 − (−4) 67. −5 + 27 − (−14) + (−8) 68. 13 + (−38) − (−42) − 17 2 28 69. −32 + (−7) − (−40) + 6 70. 11 − 26 − (−19) + (−4) 7 −1 59. −11 − (−23) + (−12) −9 61. −8 + 17 − 12 + 4 52. 7 − 21 + 18 12 0 71. 4 + (−20) − 18 − (−13) −21 0 72. 10 − 14 + (−24) − (−26) −2 Grouping symbols 73. 12 − (25 − 21) 74. 25 − (−28 + 30) 8 77. −11 − (−13 + 35) 78. −7 − (43 − 38) 23 75. 8 − (36 − 18) −10 76. 20 − (46 − 9) −17 −12 79. −13 − (14 + 9) −36 80. −24 − (7 + 22) 36 83. 6 − (−43 + 35) 14 84. 43 − (9 − 29) 87. −15 − (7 − 22) 0 88. −22 − (−4 − 18) −53 −33 81. 24 − (33 − 54) 45 85. 14 − (−9 + 23) 0 89. −11 − (18 − 25) 82. 19 − (−31 + 14) 86. 29 − (39 − 10) −4 0 90. −34 − (−45 + 31) 91. −5 − (7 − 21) 9 63 92. −19 − (−36 + 15) −20 93. −57 + [(−61) − 39] −157 94. 61 + [(−58) − 41] 95. [(−72) − 31] + 33 −38 ALG catalog ver. 2.6 – page 5 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −70 96. [(−49) − 29] + 21 −57 0 2 AD 97. (27 − 42) + (46 − 34) 98. (47 − 54) + (19 − 17) −3 99. (52 − 42) + (36 − 47) −5 101. −36 − (58 − 22) + 72 102. −38 − (23 + 45) − 42 105. 43 − (−31 + 42) − 21 106. 25 − (−51 + 36) + 17 11 −2 103. 18 − (54 + 15) + 24 −148 0 100. (21 − 15) + (23 − 31) −1 104. 45 − (21 − 62) − 22 −27 64 107. −7 − (−36 + 14) − 19 108. −42 − (−79 + 24) + 13 −4 57 26 109. −50 − (−6 − 24) − (−15) −5 110. −34 − (−42) − (24 − 38) 111. −113 − (32 − 77) − (−68) 0 112. 57 − (26 − 31) + (−27) 25 114. −18 − (−12 − 21 + 57) −42 116. −21 − (−12 + 16 − 25) 0 113. 26 − (125 − 74 − 81) 115. 15 − (13 − 21 + 17) 56 6 22 117. 15 − [12 − (−18 + 7)] −8 118. 25 − [−8 − (13 − 46)] 119. −23 − [14 − (9 − 16)] −44 120. −50 − [−29 − (−13 + 35)] 121. − [−5 − (−8)] − [−9 + (−2)] 123. [17 + (−9)] − [6 − (−11)] −9 8 0 1 122. − [8 − (−3)] − [−4 − (−15)] 124. [−12 + (−4)] − [3 − (−8)] ALG catalog ver. 2.6 – page 6 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −22 −27 AE Topic: Multiplying integers. Directions: 6—Simplify. 1. 13(5) 5. (23)(7) 9. 6 · 55 65 161 13. (−5)(10) 6. (8)(26) −84 25. 12(−15) −180 45. −9(−18) 162 7. (11)(15) 64 165 19. −7(13) −126 4(18) 8. (24)(11) 72 264 360 16. (−7)(14) −108 20. −15(5) −91 23. (12)(−9) −132 4. 12. 8 · 45 300 15. (−18)(6) −80 −98 −75 24. (16)(−8) −108 −128 −144 27. 14(−20) −280 28. 11(−17) −187 30. −9 · 21 −189 31. −10 · 24 −240 32. −15 · 20 −300 35. −16(21) −336 36. 42(−12) −504 39. (−1)(24) −24 −405 −18 42. (−5)(−11) 84 16(4) 26. 18(−8) 38. −1 · 18 −26 3. 11. 75 · 4 297 34. (27)(−15) −432 41. (−14)(−6) 208 22. (11)(−12) −198 33. (−36)(12) 80 18. −9(14) 21. (6)(−14) 37. 26(−1) 5(16) 98—Perform the indicated operation(s). 14. (−10)(8) −50 −84 29. −33 · 6 2. 10. 33 · 9 330 17. −12(7) 3—Multiply. 43. (−12)(−6) 55 46. −24(−9) 216 47. −9(−21) 40. −1(35) −35 44. (−4)(−17) 72 189 68 48. −15(−9) 135 49. −13(−16) 208 50. −14(−8) 112 51. −15(−11) 165 52. −8(−27) 216 53. (−1)(−32) 32 54. −15(−1) 15 55. (−17)(−1) 17 56. −1(−48) 48 57. (−13)(0) 61. 8(−8) 58. −15 · 0 0 −64 65. (−11)(−11) 121 59. (0)(−25) 0 62. (−15)(15) −225 63. −12(12) 66. (−9)(−9) 81 67. −14(−14) 60. 0(−35) 0 0 64. 16(−16) −144 −256 196 68. −13(−13) 169 −2214 69. −31(48) −1488 70. 57(−23) −1311 71. −39 · 61 −2379 72. (−41)(54) 73. 321(−5) −1605 74. −2(721) −1442 75. −472(4) −1888 76. 3(−375) −1125 More than two factors 77. (3)(−5)(2) 81. (−10)(−8)(2) 85. −9 · 8 · 4 78. (−6)(4)(3) −30 160 89. (−6)(−3)(−4) 82. (−2)(4)(−8) 86. −5 · 7 · 8 −288 −72 93. (2)(−9)(−5)(−3) 79. (5)(−4)(8) −72 83. (5)(−3)(−8) 64 87. −3 · 6 · 7 −280 90. (−11)(−5)(−3) 94. (7)(2)(−7)(5) −165 −490 80. (4)(9)(−3) −160 84. (−11)(−2)(5) 120 88. −3 · 4 · 11 −126 91. (−4)(−7)(−3) 95. (−4)(6)(3)(−5) −108 −84 360 110 −132 92. (−9)(−4)(−5) 96. (3)(−2)(6)(−4) −180 144 −270 97. (−4)(6)(−5)(−6) 98. (11)(−1)(7)(4) −308 99. (−8)(−1)(−12)(−9) −720 ALG catalog ver. 2.6 – page 7 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 864 100. (−7)(−2)(−5)(−3) 210 AF Topic: Dividing integers. Directions: 6—Simplify. 1. 294 ÷ 7 5. 9. 4—Divide. 98—Perform the indicated operation(s). 42 2. 315 ÷ 7 108 ÷ 12 9 6. 128 ÷ 16 567 ÷ 27 21 10. 483 ÷ 21 13. 63 ÷ (−9) 17. −84 ÷ 3 45 3. 222 ÷ 6 8 7. 192 ÷ 16 23 11. 396 ÷ 18 14. 54 ÷ (−6) −7 18. −91 ÷ 7 −28 4. 432 ÷ 8 12 8. 182 ÷ 13 14 22 12. 512 ÷ 16 32 37 15. 72 ÷ (−4) −9 −18 19. −144 ÷ 9 −13 −16 21. 51 ÷ (−17) −3 22. 78 ÷ (−13) −6 23. 153 ÷ (−9) 25. −352 ÷ 16 −22 26. −546 ÷ 21 −26 27. −288 ÷ 12 29. −48 ÷ (−6) 30. −42 ÷ (−6) 8 33. −165 ÷ (−5) 34. −144 ÷ (−8) 33 37. −81 ÷ (−9) 38. −169 ÷ (−13) 9 39. −64 ÷ 8 13 41. −36 4 −9 42. −96 16 −6 43. −84 6 −14 44. −108 6 47. 434 −14 −31 48. 416 −16 −26 49. −60 −15 4 50. −90 −18 53. −216 −9 24 54. −256 −8 32 55. −324 −36 9 56. −336 −42 59. −100 −10 10 60. −144 −12 12 61. −725 −25 29 62. 930 −30 65. −16 0 67. 0 22 69. 0 ÷ 5 66. 0 70. 0 ÷ (−17) 73. −15 ÷ (−15) 77. 26 −1 27 0 undef. 1 −12 −1 79. 12 −39 −39 41 −14 −19 −23 6 36. −306 ÷ (−9) 34 40. 121 ÷ (−11) −11 45. 247 −13 −19 46. 204 −12 −17 51. −56 −4 14 52. −75 −5 15 8 57. 49 −7 58. −210 14 −31 63. −1175 −25 64. −1080 40 −18 5 −7 47 68. 0 0 −15 72. 8 ÷ 0 undef. 75. 25 ÷ (−1) −1 20. −168 ÷ 12 32. −48 ÷ (−8) 5 −8 71. −18 ÷ 0 0 74. 27 ÷ (−27) 78. −26 undef. −12 28. −345 ÷ 15 −24 35. −287 ÷ (−7) 18 16. 96 ÷ (−8) 24. 152 ÷ (−8) −17 31. −40 ÷ (−8) 7 54 0 undef. 76. −32 ÷ (−1) −25 80. 1 18 −18 32 −1 Rational answers 81. 4 ÷ 12 82. 4 ÷ 16 1 3 85. −24 ÷ 64 89. 18 ÷ (−42) − 37 93. −40 ÷ (−75) 97. 24 −120 101. −63 −81 86. −40 ÷ 72 − 38 8 15 − 15 7 9 83. 15 ÷ 20 1 4 18 −108 102. −40 −88 6 17 − 16 5 11 105. 45 ÷ (−20) − 94 106. 64 ÷ (−12) 109. −96 ÷ −14 48 7 110. −105 ÷ (−56) − 17 91. 40 ÷ (−96) − 34 94. −18 ÷ (−51) 98. 87. −15 ÷ 105 − 59 90. 27 ÷ (−36) 3 4 15 8 88. −5 ÷ 70 1 − 14 96. −12 ÷ (−64) 2 9 99. −33 121 3 − 11 100. −42 140 6 − 20 103. −34 −85 2 5 104. −39 −78 1 2 107. −54 ÷ 15 − 16 3 2 3 92. 42 ÷ (−54) 5 − 12 95. −18 ÷ (−81) 84. 18 ÷ 27 111. −102 ÷ (−68) ALG catalog ver. 2.6 – page 8 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 108. −78 ÷ 4 − 18 5 3 2 − 79 3 16 − 39 2 112. −60 ÷ (−54) 10 9 −15 −27 AG Topic: Adding and subtracting fractions. Directions: 6—Simplify. 1. 2 − +3 5 5. 2− 9. 2. 13 5 10 − 43 3 1 2 + − 3 3 13. − 6. 3 9 + 10 10 1 11 25. − + 6 14 37. 1 2 − 3 3 41. 2 7 − 10 5 45. 9 1 − 10 5 49. 1 7 − 5 6 2 7 53. − − 9 9 2 15 − 11 8 1 + (−4) − 318 8 1 4 + − − 35 5 5 3 7 + − 2 6 14 2 − 15 3 7 10 46. − 29 30 50. 5 3 69. − − − 8 8 −1 11 3 − 13 6 8 13 − 7 12 5 84 47. 7 17 − 12 18 5 15 − 3 8 5 − 24 51. 1 3 − 10 6 11 7 − 6 6 55. − −3 5 2 − − 18 9 67. 1 2 − 35 − 13 36 2 15 3 5 − − 8 12 17 8 11 1 75. − − − 10 6 ALG catalog ver. 2.6 – page 9 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 2 − 27 1 4 −4 4 3 28. 3 1 + − 4 6 7 12 32. 1 5 + − 3 8 7 − 24 8 7 36. − + − 5 10 40. 9 1 − 2 2 44. 11 5 − 24 6 48. 5 7 − 6 8 52. 19 2 − 20 3 68. 19 24 2 7 − − 10 10 7 4 1 + − 5 5 5 − 52 − 23 10 4 − 38 1 − 24 17 60 12 5 − 13 13 − 17 13 8 23 60. − − − 11 4 5 20 5 1 64. − − 1 6 6 2 71. − 79. 5 2 5 7 3 5 + − 8 8 56. − − 13 11 2 − 15 − 12 − 17 4 1 7 7 59. − − − 72 6 3 10 4 63. − − 7 7 13 11 − − 15 15 7 9 3 − − 10 10 10 1 − 21 4 9 − 11 11 −5 + 7 5 24. − + 6 2 7 3 − 16 3 7 35. − + − 4 2 1 17 − 4 20 8. 5 3 20. − + − 2 2 −2 11 5 + − 4 12 43. 4. 2 1+ − 7 16. 2 3 3 7 19. − + − 5 5 3 2 + 10 15 3 1 12. − + 7 7 5 1 + − 6 6 4 15 − 27 14 5 − 39 1 2 31. − + 3 7 1 3 17 17 74. − − − 8 4 78. − 14 9 7 2 − 5 5 70. − − 14 11 11 73. − − − 6 2 4 2 1 77. − + − 3 3 3 66. 3 4 4 −2 9 27. − 5 − 24 1 7 58. − − − 56 4 12 7 5 4 62. − − 3 9 9 3 9 − − 10 20 7. 39. 54. − −1 23. 4 5 34. − + − 3 6 42. − 32 − 19 30. 3 10 6 4+ − 5 15. 5 5 + − 12 8 3 5 − 7 7 3. 8 5 11. − + 9 9 1 2 26. 38. − 13 98—Perform the indicated operation(s). 1 3 7 2 22. − + 9 3 − 13 5 5 1 57. − − − 78 6 24 3 7 5 61. − − 4 8 8 65. 5 − +2 3 11 7 18. − + − 12 12 − 53 13 21 5 3 33. − + − 8 4 2—Subtract. 1 3 14. − + 4 4 3 5 9 7 + − 10 2 2 4 29. − + 3 5 10. − 13 5 5 17. − + − 6 6 21. 1—Add. 1 2 − 14 15 11 1 − − 15 6 72. − 9 10 9 12 − − 13 13 3 13 5 3 76. − − − 6 4 1 − 12 1 11 5 80. − + + 6 6 6 5 2 AG 81. 1 1 1 + + 2 4 8 82. 7 8 3 7 2 85. − − + 5 10 15 Mixed numbers 1 1 89. 2 + −7 2 2 97. −3 3 3 +6 10 5 −5 2 1 105. 5 − 7 3 3 109. 6 3 2 −5 10 5 −9 12 4 3 95. 4 + −3 5 5 5 1 −4 6 6 2 2 121. −7 − −5 7 3 3 5 107. 8 − 2 8 8 −3 13 2 3 125. −11 − −9 5 5 10 56 −1 45 3 14 15 1 2 126. −13 − −7 3 3 −5 23 −4 23 3 3 20 9 7 10 3 3 130. −8 − −13 4 8 2 3 96. −4 + −2 5 10 7 −6 10 5 3 100. 7 + −8 7 14 1 5 104. −5 + 11 2 9 − 12 1 6 18 2 37 −8 18 3 2 5 115. −5 − 7 −13 12 4 3 11 1 119. − −3 4 16 12 4 5 3 7 116. −4 − 8 −13 12 6 4 3 11 120. 7 − − 8 13 5 15 1 2 123. 5 − −2 2 3 3 5 124. 1 − −3 4 6 127. −9 8 16 8 3 − −17 11 11 131. −11 4 58 − 17 20 −20 3 3 112. −4 − 3 4 8 −11 12 6 7 11 2 3 129. −7 − −15 5 10 1 4 5 1 92. −7 + −12 6 6 1 5 108. 3 − 7 7 5 34 2 5 111. −6 − 4 3 6 −2 16 2 3 122. − − −4 3 5 −1 13 21 2 1 103. 9 + −6 5 4 3 −2 14 −17 1 15 3 5 99. 7 + −12 4 12 −3 85 7 1 2 + + 12 6 3 3 4 9 88. − + − 4 5 10 7 9 2 13 2 1 114. 5 − 8 −2 56 3 2 1 2 118. 10 − − 6 3 2 1 1 113. 9 − 11 −2 10 5 2 3 1 117. − −5 5 78 4 8 3 1 5 − − 2 6 9 1 2 94. −1 + 3 3 3 3 11 110. 7 − 9 4 12 9 10 87. 84. − 7 5 2 5 91. −11 + −5 7 7 106. −1 23 4 3 9 + − 5 2 10 −1 5 1 102. −7 + 5 7 2 2 −3 15 1 6 83. 1 1 90. −4 + 3 6 6 1 7 98. −11 + 7 2 8 3 3 10 2 4 101. 3 + −6 3 5 0 1 2 5 86. − + − 7 3 14 − 76 2 3 93. −5 + −4 7 14 1 5 1 − + 3 6 2 128. −13 7 5 12 7 5 − −18 12 12 4 56 5 3 − −9 16 4 5 2 132. −13 − −7 9 3 −5 89 9 −1 16 1 3 2 133. 5 − 4 − −3 5 5 5 4 5 2 7 134. 7 − −2 −1 9 9 9 8 1 3 1 135. 11 − −5 − 12 2 4 4 5 1 4 137. −4 + −8 5 5 −5 25 +7 3 5 3 5 1 138. −13 + 4 + −5 4 8 4 0 2 1 139. 2 + −5 9 3 −14 38 ALG catalog ver. 2.6 – page 10 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 4 16 5 3 1 136. 4 − 11 − −7 8 4 8 +7 5 18 4 2 7 140. 1 + −6 +8 5 3 15 3 35 AH Topic: Adding and subtracting decimals. Directions: 6—Simplify. 1. 0.8 + 0.7 5. 4.95 + 1.08 9. 25.18 + 36.04 13. 4 − 1.6 1.5 6.03 2. 0.5 + 0.9 6. 2.76 + 5.39 0.7 2.05 25. 34.2 − 28.4 1.4 + 0.8 7. 0.42 + 6.74 2.2 7.16 11. 0.327 + 0.064 39.2 15. 3 − 0.2 2.2 4. 0.7 + 2.6 8. 9.18 + 2.02 3.3 11.2 12. 0.608 + 0.512 0.391 16. 7 − 5.1 2.8 1.12 1.9 0.3 19. −1.1 + 2.6 1.5 20. 1.7 − 0.6 22. 6.7 − 0.82 5.88 23. 3.12 − 0.45 2.67 24. −5.6 + 10.3 4.7 28. 4.35 − 3.57 0.78 27. −0.622 + 0.819 12.06 31. 1.9 − 5 −3.5 34. 0.22 − 0.9 −0.14 3. 18. −0.5 + 0.8 30. 0.5 − 4 −5.8 33. −0.74 + 0.6 8.15 26. −8.04 + 20.1 5.8 98—Perform the indicated operation(s). 1.4 14. 10 − 7.8 21. −2.05 + 4.1 29. 6.2 − 12 2—Subtract. 10. 18.52 + 20.68 61.22 2.4 17. 0.9 − 0.2 1—Add. 32. 3.7 − 15 −3.1 35. 2.1 − 4.5 −0.68 0.197 −2.4 1.1 −11.3 36. −8.2 + 3.6 −4.6 37. 1.6 + (−2) −0.4 38. 0.25 + (−3) −2.75 39. 0.03 + (−1) −0.97 40. 2.4 + (−4) −1.6 41. 1.28 − 6.08 −4.8 42. −7.16 + 2.9 −4.26 43. −4.2 + 0.05 −4.15 44. 4.82 − 8.3 −3.48 46. 17.02 − 20.7 −3.68 47. 0.27 − 3.06 50. 0.2 − (−1.8) 2 51. 3.5 − (−2.5) 6 52. −1.6 − 0.4 54. −4.13 − 4.87 −9 55. −2.02 − 0.74 −2.76 56. 7.1 − (−0.46) 7.56 60. −0.29 − 1.26 −1.55 45. −42.9 + 25.4 49. −0.3 − 0.9 −17.5 −1.2 53. 1.49 − (−2.51) 57. −18.03 − 6.04 61. −4 + 3.2 4 −24.07 62. −1 + 0.4 −0.8 65. (−1.4) − (−0.7) 58. 7.25 − (−12.43) −0.7 69. (−2.75) + (−3.25) −6 19.68 66. (−0.6) + (−2.8) 59. 1.91 − (−3.08) 63. −3 + 0.85 −0.6 −3.4 70. (−2.01) − (−8.01) 6 48. −0.228 + 0.028 −2.79 4.99 64. −2 + 0.01 −2.15 67. (−2.5) + (−3.5) −2 −1.99 68. (−5.1) − (−1.1) −6 71. (−10.4) − (−18.6) −0.2 8.2 −4 72. (−17.9) + (−3.9) −21.8 73. (−50.2) − (−26.7) −23.5 74. (−21.55) + (−10.65) 75. (−2.94) + (−0.07) −32.2 ALG catalog ver. 2.6 – page 11 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −3.01 76. (−0.624) − (−0.283) −0.341 AI Topic: Multiplying and dividing fractions. Directions: 6—Simplify. 3—Multiply. 4—Divide. 1. 3 · 32 4 24 2. 7 · 30 6 5. 5 1 · 7 2 5 14 6. 1 3 · 10 2 9. 3 1 · 10 9 10. 4 7 · 5 4 14. 20 3 · 27 16 1 30 5 9 3 · 21 25 35 5 17. 36 − −20 9 13. 21. 7 · 28 4 26. − 25 3 3 3 29. − 4 4 33. 2 5 · 5 2 34. 1 1 2 2 · 7 3 21 4 2 41. − − 9 5 45. 7 3 − 9 5 49. 3 1 7 3 8 45 7 − 15 1 7 8 11 22 · 9 12 27 10 7 57. 21 16 11 16 65. 7 − 11 − 6 5 · 7 12 5 36 15. 15 4 · 32 9 −25 19. 9 (−80) 10 4 7 3 − 4 8 27 − 7 4 5 23. 56 · 8 18 31. − 25 36 − 4 7 1 7 7 · 2 10 20 5 1 42. − 9 2 46. − 5 6 50. − 3 4 4 9 − 7 10 − 11 28 21 44 62. − 4 5 7 12 5 9 66. − 8 11 4 4 4 · · 5 5 5 4. 24 · 14 15 8. 3 3 · 8 4 5 14 12. 4 3 · 9 16 5 24 16. 7 12 · 10 35 64 125 15 2 4 25 −1 4 1 4 · 5 5 25 3 3 43. 7 4 5 − 18 7 12 − 13 9 28 − 2 7 5 8 51. − 5 8 9 13 8 9 − 45 88 4 5 67. 7 9 ALG catalog ver. 2.6 – page 12 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 5 3 16 · · 6 4 15 1 1 · 3 3 36. 3 10 1 9 − 10 3 11 15 3 4 5 9 52. 10 11 −1 − 38 20 63 2 3 − 9 − 20 11 20 9 10 9 − 11 9 4 9 · 16 7 28 4 3 60. − 15 16 56. 6 13 11 9 33 · 12 10 40 9 7 75. − 10 9 79. 32. 48 − 45 4 71. 11 17 5 (−18) 8 48. 2 3 63. 28. 5 − 28 3 4 3 · 8 5 10 9 5 59. − 20 6 7 − 15 −36 1 1 1 · 8 5 40 3 3 44. − 4 5 55. 2 15 6 25 40. 47. − 1 12 4 24. −36 − 3 2 − 5 11 4 · 4 11 9 32 35 33 4 20. − · 63 7 −72 39. 7 8 14 · 12 9 27 11 12 74. − − 12 17 78. 2 − 5 35. − 1 70. − 11 15 11 8 18 3 27. −25 − 10 21 2 1 5 1 · 10 9 18 8 5 58. − − 25 12 5 24 9 5 15 · 11 12 44 13 11 73. − 15 13 2 2 2 · · 3 3 3 11. 54. 69. 77. 2 7 · 5 3 38. 53. 3 · 14 4 5 5 30. − · 6 6 9 − 16 37. 61. 7. 2 22. − (−81) 9 49 5 25. − · 10 6 45 · 3 20 5 8 2 5 3. 35 7 5 18. −40 · 98—Perform the indicated operation(s). 64. − 68. 2 − 9 13 25 − 5 9 7 6 13 15 39 · 20 16 64 7 15 76. 15 16 1 − 20 7 − 27 72. 7 − 10 80. 3 15 2 · · 8 18 5 1 8 7 16 13 45 AI 4 21 3 1 · · 9 16 7 4 3 3 5 85. − 4 10 6 81. 30 12 2 · · 6 8 5 3 4 1 14 86. − 7 8 15 82. 3 − 16 89. 14 ÷ 1 − 15 4 7 2 3 8 ÷ 5 4 15 2 97. 10 ÷ − 5 3 4 94. 5 105. −15 ÷ − 6 15 2 45 ÷ 17 3 34 4 1 129. ÷ − 5 20 1 1 130. − ÷ 3 6 Mixed numbers 1 3 1 133. −3 − 28 5 2 5 1 3 44 137. −5 −1 5 2 5 4 1 141. 1 −2 − 21 5 5 3 3 1 4 145. − ÷ −2 15 5 4 7 3 149. −2 ÷ 8 4 −42 107. 24 ÷ −20 146. 61 30 −2 2 7 ÷4 8 3 3 16 3 3 ÷ − 10 5 3 8 45 4 ÷ (−10) − 252 5 2 1 115. − ÷ − 11 4 11 2 2 1 154. −6 ÷ 1 − 16 3 3 4 7 2 158. 5 ÷ −4 − 26 21 9 3 119. − 8 1 ÷ 15 6 3 2 ÷ 4 5 123. 8 11 1 78 4 5 −25 5 ÷ 15 12 1 36 16 4 ÷ 27 9 − 39 32 4 3 3 5 21 ÷ − 50 10 7 7 7 128. ÷ − − 23 12 8 124. − 14 4 ÷ − 76 15 5 3 3 131. − ÷ − 8 16 127. − 2 132. 3 6 25 135. −4 −2 2 8 7 1 5 139. 9 −4 −44 3 7 2 1 143. 8 4 39 3 2 140. 5 7 147. − ÷ 1 6 8 148. − 49 1 4 39 ÷ 12 9 16 5 1 155. 8 ÷ −4 8 2 151. 1 ALG catalog ver. 2.6 – page 13 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 5 1 ÷ 8 3 3 8 116. − ÷ 4 13 120. − 16 5 27 1 100. −11 ÷ − 22 2 5 104. 15 ÷ − −18 6 112. 15 8 6 2 159. −3 ÷ 4 7 3 8 9 108. −20 ÷ 64 111. 2 27 3 134. − − 15 4 5 3 4 138. 1 2 4 7 5 1 4 16 142. − −4 21 6 7 1 6 4 150. −3 − 23 6 1 3 7 153. 5 ÷ 3 4 4 5 5 3 157. −7 ÷ −3 8 4 2 7 6 1 36 ÷ 7 6 7 5 2 5 ÷ − 118. − 12 18 3 2 5 122. ÷ − − 16 15 3 8 11 3 44 126. − ÷ − 39 13 4 −16 96. 1 2 10 3 −15 5 1 103. −15 ÷ − 3 114. 125. 92. 24 ÷ 30 99. −9 ÷ 9 8 110. − ÷ (−12) 9 − 14 27 3 5 3 2 ÷ 5 7 95. 9 16 3 106. 30 ÷ − 2 18 2 7 91. 18 ÷ 25 3 2 109. − ÷ 14 − 491 7 4 5 113. ÷ − − 28 25 5 7 25 5 5 117. − ÷ − 7 42 6 2 3 121. − ÷ 9 7 2 3 102. −12 ÷ 16 6 5 3 2 ÷ 8 3 98. 6 ÷ −25 3 5 7 7 · · 20 9 12 144 16 1 15 88. − − 5 6 28 84. 3 5 90. 10 ÷ 49 2 93. 101. 12 ÷ 7 9 35 49 · · 12 10 6 16 8 27 5 87. − − 15 20 6 83. − 81 98 136. 144. 152. − 23 12 156. 9 1 ÷ 2 4 18 5 1 2 5 14 8 3 7 1 1 − − 78 10 4 7 2 4 −2 − 65 6 8 9 1 3 5 ÷ −2 − 14 4 10 2 5 10 ÷ − − 64 5 3 6 1 2 30 −7 ÷ −1 7 7 3 4 1 160. 2 ÷ 5 5 2 28 55 AJ Topic: Multiplying and dividing decimals. Directions: 6—Simplify. 1. 14(0.2) 2.8 5. (0.8)(0.5) 9. (3.4)(0.8) 7(0.9) 0.4 6. (0.5)(0.6) 2.72 10. (2.6)(0.7) −0.32 21. −33(−0.3) 9.9 25. (−0.6)(0.4) 0.3 7. (0.4)(0.9) 1.82 11. (0.5)(4.7) 4(0.3) 0.36 8. (0.7)(0.8) 0.56 2.35 12. (0.9)(3.6) 3.24 15. (0.3)(−84) −1.88 19. −14(0.03) −0.42 22. −28(−0.2) 5.6 23. −16(−0.6) 9.6 27. (0.9)(−0.8) −2.8 31. (−3.2)(8) −13.2 20. −9(0.06) −43.4 −0.56 24. −22(−0.4) 8.8 28. (0.5)(−0.9) −7.2 32. (−5.7)(3) −25.6 35. (−0.3)(−7.3) 1.68 1.2 16. (0.7)(−62) −2.52 −0.6 34. (−0.4)(−4.2) 1.89 4. 4.8 18. 12(−0.05) 30. (3.3)(−4) −7.2 33. (−0.9)(−2.1) 8(0.6) 26. (−0.4)(0.7) −2.4 98—Perform the indicated operation(s). 3. 6.3 14. (−0.4)(47) −1.92 29. (2.4)(−3) 4—Divide. 2. 13. (−0.6)(32) 17. 8(−0.04) 3—Multiply. −4.5 −17.1 36. (−0.8)(−5.1) 2.19 4.08 37. (−3.7)(0.8) −2.96 38. (−6.9)(0.7) −4.83 39. (7.3)(−0.5) −3.65 40. (8.2)(−0.6) −4.92 41. (9.1)(−4.6) −41.86 42. (8.3)(−6.3) −52.29 43. (−5.4)(3.2) −17.28 44. (−6.9)(4.1) −28.29 45. (−1.4)(−3.8) 46. (−1.7)(−4.3) 5.32 49. (0.453)(−10000) 47. (−2.6)(−3.2) 7.31 50. (−100)(−0.204) 20.4 48. (−3.4)(−2.8) 8.32 51. (0.005)(−100) −0.5 9.52 52. (−1000)(−0.27) 270 −4530 53. (−0.08)(−0.01) 57. (0.0002)(−8) 61. 24 ÷ 0.6 65. 5.6 ÷ 8 0.0008 −0.0016 40 0.7 69. −3.28 ÷ (−100) 0.0328 54. (−0.1)(96) 55. (−0.001)(−2.5) −9.6 58. (0.0007)(−7) −0.0049 59. (−6)(0.0006) 62. 36 ÷ 0.6 60 63. 45 ÷ 0.9 66. 7.2 ÷ 12 0.6 67. 4.8 ÷ 3 70. 450 ÷ (−10000) 0.0025 −0.0036 56. (−33)(0.001) −0.033 60. (−9)(0.0003) −0.0027 64. 42 ÷ 0.7 50 68. 7.2 ÷ 4 1.6 71. −0.1 ÷ (−1000) 0.0001 60 1.8 72. 650 ÷ (−100) −6.5 −0.045 73. −5.1 ÷ (0.01) 77. 32 ÷ (−0.8) −510 85. −1.2 ÷ 0.4 78. 27 ÷ (−0.3) −40 81. −25 ÷ (−0.25) 100 93. (−21) ÷ (−0.07) 97. −0.56 ÷ (7) 300 −0.08 101. 0.12 ÷ (−0.4) −0.3 105. −0.32 ÷ (−0.8) 0.4 200 94. (−28) ÷ (−0.04) 700 −0.05 102. 0.16 ÷ (−0.8) 83. −33 ÷ (−0.3) 91. −7.8 ÷ 13 −0.4 −0.2 106. −0.24 ÷ (−0.8) 109. −0.18 ÷ 0.3 −0.6 110. −0.16 ÷ 0.4 −0.4 113. 4.2 ÷ (−0.6) −7 114. 3.5 ÷ (−0.7) −5 0.3 −63000 76. −0.42 ÷ (−0.01) 80. (−32) ÷ 0.4 −60 87. 5.4 ÷ (−0.6) −7 98. −0.45 ÷ (9) 75. 63 ÷ (−0.001) 79. (−42) ÷ 0.7 −90 90. 7.2 ÷ (−18) −0.2 0.8 82. −50 ÷ (−0.25) 86. −6.3 ÷ 0.9 −3 89. 4.8 ÷ (−24) 74. −0.08 ÷ (−0.1) −80 84. −44 ÷ (−0.2) 110 88. 2.5 ÷ (−0.5) −9 92. −4.2 ÷ 14 −0.6 95. (−72) ÷ (−0.09) 800 42 220 −5 −0.3 96. (−81) ÷ (−0.09) 900 99. 0.36 ÷ (−4) −0.09 100. 0.64 ÷ (−8) −0.08 103. −0.15 ÷ 0.3 −0.5 104. −0.24 ÷ 0.4 −0.6 107. −0.36 ÷ (−0.9) 111. 0.21 ÷ (−0.7) 115. −4.8 ÷ (0.6) ALG catalog ver. 2.6 – page 14 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 0.4 −0.3 −8 108. −0.40 ÷ (−0.8) 112. 0.28 ÷ (−0.4) 116. −8.1 ÷ (0.9) 0.5 −0.7 −9 AJ 117. −0.48 ÷ 0.12 121. (−0.09) ÷ (−0.3) 125. 0.04 ) 2.66 66.5 129. −0.3 ) −0.57 133. −0.8 ) 33.2 137. 0.05 ) −2.91 118. −0.64 ÷ 0.16 −4 1.9 −41.5 −58.2 0.3 119. 0.55 ÷ (−0.11) −4 122. (−0.16) ÷ (−0.4) 126. 0.8 ) 40.4 50.5 130. 0.6 ) −2.4 −4 134. −0.05 ) 4.17 0.4 123. (−1.44) ÷ (−1.2) 127. 0.005 ) 0.037 131. −0.5 ) 37 −83.4 138. −0.006 ) −0.255 42.5 120. 0.44 ÷ (−0.11) −5 7.4 −74 1.2 −4 124. (−1.21) ÷ (−1.1) 128. 0.02 ) 5.29 264.5 132. 0.7 ) −0.84 −1.2 1.1 135. −0.2 ) −0.63 3.15 136. −0.04 ) 0.162 −4.05 139. 0.07 ) −0.266 −3.8 140. −0.3 ) −4.05 13.5 ALG catalog ver. 2.6 – page 15 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. AK Topic: Converting fractions to decimals. Directions: 42—Write as a decimal. 1. − 5. 3 4 9. − 13. − 17. 3 10 −0.3 0.75 1 8 −0.125 49 50 1 25 −0.98 0.04 21. − 7 1000 25. − 5 2 29. − 27 20 33. 1 44 25 45. 1 3 1.3125 1.76 5 6 11 15 57. − 2 9 61. − 1 11 10 11 69. − 73. −0.93 0.3 49. −2 65. −1.35 93 100 41. 53. −2.5 5 16 37. − −0.007 5 7 55 27 −2.83 0.73 −0.2 −0.09 0.90 −0.714285 2.037 1 2 2. − 6. 4 5 10. 1 16 −0.5 0.8 0.0625 14. − 1 100 18. − 11 20 22. 30. 7 4 34. −2 38. 101 25 46. − 2 3 50. 1 1.16 29 30 58. 5 9 62. 5 11 66. − −0.96 6 11 14 27 23. − 27. 35. 3 43. 0.45 59 10000 6 1000 1 6 55. − 8 9 63. − −0.006 −0.16 5.6 2 15 −0.13 8. − 12. 5 8 16. 1 50 −0.63 0.1 1 5 −0.2 0.625 0.02 7 25 −0.28 24. 27 1000 0.027 28. 21 2 10.5 32. 13 5 2.6 40. 44. − 48. 3 20 64. 0.85 203 50 5 6 −4.06 0.83 52. −10 56. −5.15 850 1000 7 30 60. − 0.8 7 11 1 10 36. −5 1.44 2 3 51. 5 −1.1 3.875 36 50 47. − −0.0059 3.25 11 10 4. 20. − 0.05 7 8 39. − −0.4375 0.31 13 4 31. − 59. 0.5 22 7 74. − −0.32 −0.6 1 6 54. − 70. 1 20 0.0133 −0.25 7 16 19. 12.13 42. − 11. − 1 4 −0.55 −2.34 1213 100 − 31 100 1.375 17 50 7. 0.4 15. −1.75 11 8 2 5 0.01 133 10000 26. − 3. 4 9 8 11 1 3 −10.3 0.23 −0.4 0.72 −0.54 67. 4 11 0.36 68. − 3 11 −0.27 3.142857 71. 4 13 0.307692 72. − 25 13 −1.923076 −0.518 75. − ALG catalog ver. 2.6 – page 16 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 79 37 −2.135 76. 9 37 0.243 AL Topic: Understanding rational numbers. Directions: 50—Write as a rational number, if possible. 126—Which are rational numbers? 44—Write as a fraction. 1. 0.02 1 50 2. −0.05 1 − 20 3. 0.15 5. 0.66 33 50 6. −3.32 − 83 25 7. −0.54 9. −2.08 13. −0.0023 17. 0.875 29. 26. 4 − π irrational √ 2 √ √ √ 30. − 5 √ 34. 9 31 irrational − 21 20 13 200 irrational − 13 50. 0.6 53. 0.27 3 11 54. −0.45 2 9 61. −0.016 1 − 60 65. 0.36363636 . . . 4 11 − 411 200 √ 48 56. −0.09 60. 0.8 62. 0.083 1 12 63. 0.06 1 15 64. −0.03 67. −0.54545454 . . . 68. 0.72727272 . . . 1 12 75. −4.93 − 74 15 76. −3.56 − 107 30 80. 0.227 5 22 79. −0.681 82. 0.162 6 37 83. 1.185 25 99 1 − 30 72. 0.083 − 41 33 − 10 13 8 9 5 12 78. −1.24 86. −0.769230 6 − 11 1 − 11 71. 0.416 86 33 89. 0.25 1 6 9 11 77. 2.60 3 7 52. 0.16 55. 0.81 74. 0.13 85. 0.428571 irrational − 19 2 15 irrational 48. −0.010110111 . . . 59. −0.1 − 13 6 11 1 irrational − 59 − 10 11 irrational 44. 0.515515551 . . . 58. −0.5 66. −0.90909090 . . . irrational √ 40. − 50 − 56 11 30 − 35 37 √ 32. − 3 √ 36. 121 irrational 73. 0.36 81. −0.945 28. π + 5 irrational 51. −0.83 70. −2.16 − 11 6 101 10000 24. −2.055 47. 2.303303330 . . . 5 − 11 16. 0.0101 17 16 irrational 2 3 − 41 50 23. 1.0625 irrational 49. −0.3 17 4 4 − 125 43. −0.090090009 . . . 46. 7.505005000 . . . 4.25 20. −0.032 39. irrational 8. 6 − 25 1 − 250 irrational 45. −0.292292229 . . . 69. −1.83 irrational −0.24 19. −0.004 π irrational 3 √ 31. 10 irrational √ 35. − 169 − 131 42. −0.121221222 . . . irrational 49 1000 27. irrational √ 38. − 24 irrational 41. 0.101001000 . . . 57. 0.2 − 67 8 4. 12. −0.82 39 20 15. 0.049 317 − 1000 22. −8.375 157 50 33. − 4 37. 18. 0.065 − 27 50 11. 1.95 9 20 14. −0.317 23 − 10000 7 8 21. 3.14 25. π 10. 0.45 − 52 25 3 20 − 15 22 84. −3.259 32 27 87. −0.142857 − 17 − 88 27 88. 0.461538 90. 0.47 47 99 91. 3.31 328 99 92. 1.76 80 33 95. 0.57 19 33 96. 0.723 241 333 100. 4.713 4709 999 93. 0.402 134 333 94. 2.42 97. 3.027 333 110 98. 0.054 6 110 99. 1.049 ALG catalog ver. 2.6 – page 17 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1048 999 175 99 6 13 8 11 BA Topic: Using exponents. See also category IA (prime factorization). Directions: 6—Simplify. 1. x(x) 5. 4·x·x·x 53—Rewrite using exponents. x2 4x3 54—Rewrite without any exponents. 2. 3a(−a) −3a2 3. −2r(−r) 6. y·y·y y3 7. a·a·a·a 2r2 4. (p)(p)(p) a4 8. −7 · y · y · y · y · y p3 −7y 5 9. 2·y·y·3·y 6y 3 10. 5 · m · m · 2 · m · m 11. −3 · k · k · k · 4 · k 10m4 13. a · a · a · b · b · a · a · b · a · b 21. 122 27 22. 152 144 16. c · d · k · c · c · d · k · k · k · c 84m3 p5 18. 33 125 30r4 14. 2 · 3 · w · w · 2 · x · x · 3 · w · w · x a6 b4 15. 6 · m · p · p · p · 7 · p · 2 · m · m · p 17. 53 12. 2 · r · 5 · r · r · 3 · r −12k 4 225 36w4 x3 c4 d2 k 4 19. 92 81 20. 132 23. 27 128 24. 35 169 243 25. (−8)2 64 26. (−2)6 64 27. (−3)4 81 28. (−9)2 81 29. (−2)5 −32 30. (−5)3 −125 31. (−4)3 −64 32. (−2)7 −128 33. (−1)7 −1 34. (−1)10 35. (−1)19 −1 36. (−1)14 37. −(−11)2 −121 41. −(−3)3 27 1 38. −(−5)4 −625 39. −(−9)2 42. −(−2)5 32 43. −(−10)3 45. −162 −256 46. −142 −196 49. (−a)4 a4 50. (−x)6 x6 53. −(−c)9 54. −(−m)15 c9 47. −26 1000 −64 51. (−y)7 m15 −81 −y 7 55. −(−p)10 −p10 1 40. −(−10)4 −10000 44. −(−2)7 128 48. −202 −400 52. (−k)5 −k 5 56. −(−w)8 −w8 57. 1 5 2 1 32 58. 1 4 3 1 81 59. 1 3 4 1 64 60. 1 3 5 1 125 61. 7 2 8 49 64 62. 3 3 5 27 125 63. 2 4 3 16 81 64. 6 2 7 36 49 65. 1 − 12 1 144 66. − 10 11 100 121 67. − 17 2 1 49 68. − 95 69. − 25 8 − 125 70. − 32 − 27 8 71. − 43 3 − 64 27 72. 1 − 10 2 3 2 3 73. − − 37 2 9 − 49 5 74. − − 12 77. − − 25 3 8 125 78. − − 14 81. −1 12 2 85. (0.2)3 2 41 0.008 82. −1 14 2 3 3 86. (0.1)6 25 − 144 1 64 −1 61 64 9 75. − − 11 79. − − 12 83. 2 21 3 2 81 − 121 5 1 32 2 81 25 3 1 − 1000 76. − − 23 4 − 16 81 80. − − 43 3 64 27 15 58 84. 3 31 2 0.000001 87. (0.5)3 0.125 88. (0.3)3 11 19 0.027 89. (0.03)2 0.0009 90. (0.08)2 0.0064 91. (0.1)5 0.00001 92. (0.02)4 93. (0.13)2 0.0169 94. (0.15)2 0.0225 95. (1.1)2 1.21 96. (1.4)2 97. (−1.7)2 2.89 98. (−0.2)6 0.000064 99. (−0.07)2 0.0049 100. (−0.3)4 0.0081 101. (−0.2)5 −0.00032 102. (−0.5)3 −0.125 103. (−0.04)3 −0.000064 104. (−0.1)7 −0.0000001 ALG catalog ver. 2.6 – page 18 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 0.00000016 1.96 BB Topic: Laws of exponents: multiplication. See also categories DK and DM (multiplying monomials). Directions: 6—Simplify. 3—Multiply. 1. (a · a · a · a)(a · a) a6 2. (r · r · r)(r · r · r · r) 3. (y · y)(y · y · y)(y) y6 4. (x · x · x)(x · x)(x · x · x · x) 5. (3 · y · y)(5 · y · y · y) 6. (−8 · m · m · m · m)(2 · m · m · m) 7. (4 · p · p · p)(−6 · p · p · p) −24p6 8. (7 · w · w)(−2 · w · w · w)(−3 · w · w) 9. x2 x x3 10. a · a2 13. r3 r5 r8 14. y 4 y 5 15y 5 11. c2 c2 a3 y9 m10 20. k 3 k 9 z8 19. m5 m5 21. w10 w5 w15 22. x8 x8 x16 23. y 25 y 5 29. 87 (86 ) 30. 75 (75 ) 813 33. (−10)8 (−10)3 −1011 31. 98 · 97 37. y 3 y 2 y y6 38. m2 m2 m3 41. r4 · r2 r6 42. c3 · c7 1012 915 35. −74 (−7)5 −59 39. p · p5 · p3 m7 46. (d4 )(d2 )(d6 ) d12 47. z 7 · z · z 5 · z 49. x · x2 · y 2 x3 y 2 50. a2 · a3 · b · b2 a5 b3 51. m4 · p3 · p2 · p 57. −x(x3 ) −x4 61. (−c)(−c)3 65. −x2 · x5 54. g 5 · h · h6 · g 3 c4 −x7 g 8 h7 58. (−y)3 (y 2 ) −y 5 62. (m)(−m)4 m5 66. −y 4 (−y)6 −y 10 67. (−x)3 (−x)3 59. (−a)2 (−a) m4 p6 w6 x5 28. 10 · 105 106 32. 610 · 610 620 811 70. −x2 (−x)2 −x4 71. (−w)5 (−w)3 73. (−y 3 )(−y 2 ) y5 74. (x2 )(−x5 ) −x7 75. (−a)(−a3 )(a4 ) w8 a8 r6 w6 a4 b8 −r3 −k 8 68. (y)(−y)5 (−y) x6 −a5 b15 56. a · a · b3 · a2 · b5 64. −k 4 (−k)4 r4 w11 m20 52. r · r5 · w3 · w3 60. −r(−r)2 −a3 69. (−a)2 (−a)3 ALG catalog ver. 2.6 – page 19 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. a31 48. b · b4 · b9 · b z 14 55. w2 · x2 · w4 · x3 63. −r2 (−r2 ) k 12 44. m8 · m3 · m9 k 13 p12 c3 d3 h7 40. w4 · w2 · w2 · w3 p9 45. p(p8 )(p3 ) 53. c · d3 · c2 p5 36. −(−8)7 (−8)4 79 43. k 2 · k 6 · k 5 c10 42w7 24. a17 a14 y 30 27. 104 · 108 1010 710 34. −56 · 53 12. p3 p2 c4 16. h4 · h3 18. z 7 · z 26. 102 (108 ) −16m7 d6 q8 107 x9 15. d2 · d4 17. q 4 · q 4 25. 103 (104 ) r7 y7 72. (−p)4 (−p)3 (−p)2 −p9 76. (−c3 )(−c3 )(−c4 ) −c10 BC Topic: Laws of exponents: power to a power. See also categories DK and DM (multiplying monomials). Directions: 6—Simplify. 3—Multiply. 1. (x · x)(x · x)(x · x) 3. (a · a · a)(a · a · a)(a · a · a) 5. (−4 · c · c · c)(−4 · c · c · c) 7. (7 · y · y · y · y · y)(7 · y · y · y · y) 9. (23 )2 64 10. (22 )3 64 11. (32 )3 729 12. (33 )2 729 13. (x2 )4 x8 14. (y 3 )2 y6 15. (a2 )5 a10 16. (c4 )3 c12 17. (x5 )7 x35 18. (r8 )4 r32 19. (y 7 )10 21. (103 )3 (y · y · y · y)(y · y · y · y) a9 4. (m · m)(m · m)(m · m)(m · m)(m · m) 16c6 6. (3 · p · p)(3 · p · p)(3 · p · p) 8. (−5 · x · x · x)(−5 · x · x · x)(−5 · x · x · x) 49y 9 22. (104 )5 109 25. (y 3 )(y 2 )3 2. x6 y9 29. (a3 )2 (a4 )2 a14 m10 27p6 20. (r12 )5 y 70 23. (86 )4 1020 y8 r60 24. (75 )6 824 26. (k 2 )3 (k 4 ) k 10 27. p7 (p4 )2 30. (c5 )2 (c2 )3 c16 31. x3 (x4 )2 (x5 ) −125x9 730 28. (r)(r3 )2 p15 r7 32. (y 2 )4 (y 3 )4 (y 6 ) x16 33. (−k 2 )2 k4 34. (−a3 )4 a12 35. −(−x5 )2 −x10 36. −(−p6 )4 −p24 37. (−c3 )5 −c15 38. (−y 2 )3 −y 6 39. −(−r4 )7 r28 40. −(−w3 )5 w15 41. (−a)3 (−a2 )3 a9 42. (−c)2 (−c3 )2 43. −(x2 )4 (−x3 )2 c8 −x14 y 26 44. (−y 4 )(−y 3 )(−y 2 )5 −y 17 45. −(−m)3 6 m18 46. −(−r)4 49. (2a3 )3 8a9 50. (5x3 )2 53. (7p8 )2 49p16 54. (12r7 )2 58. (4a5 b)2 57. (6w2 y 4 )2 36w4 y 8 3 −r12 47. −(−p)2 6 48. p12 −(−k)5 51. (9y 4 )2 81y 8 52. (4m5 )3 144r14 55. (5k 5 )3 125k15 56. (3x2 )4 16a10 b2 59. (5m3 p6 )4 625m12 p24 60. (6cd3 )3 25x6 4 k 20 64m15 81x8 216c3 d9 61. (p4 r2 q)3 p12 r6 q 3 62. (km3 n5 )2 k 2 m6 n10 63. (w2 x2 y)4 w8 x8 y 4 64. (a2 bc3 )5 a10 b5 c15 65. (−3r4 )3 −27r12 66. (−10p2 )3 −1000p6 67. (−m2 n)5 −m10 n5 68. (−rq 2 )7 −r7 q 14 71. (−r3 s2 )4 r12 s8 72. (−xy 3 )6 x6 y 18 69. (−10m3 )2 100m6 70. (−8y 9 )2 73. (−a2 b4 c)3 −a6 b12 c3 74. (−w6 xy 4 )5 77. 2 3 2 3x 81. 1 3 2 4 2a b 85. (0.4x)2 89. (0.1cd2 )3 4 6 9x 1 12 8 16 a b 78. 1 4 3 3y 82. 4 5 2 5 wx 64y 18 1 12 27 y 86. (0.1y 3 )2 0.16x2 0.001c3 d6 −w30 x5 y 20 90. (0.2r5 p4 )3 16 2 10 25 w x 75. (−m2 p2 r3 )6 3 79. − 15 m2 83. − 57 m2 b 0.008r15 p12 1 − 125 m6 2 87. (0.7w7 p)2 0.01y 6 m12 p12 r18 25 4 2 49 m b 0.49w14 p2 91. (−1.1k 4 m)2 1.21k 8 m2 76. (−cdk 2 )4 c4 d4 k 8 2 80. − 34 p5 84. 1 3 5 − 10 c d 9 10 16 p 3 88. (0.5a8 b4 )2 1 − 1000 c9 d15 0.25a16 b8 92. (−0.3x4 yz 7 )3 −0.027x12 y 3 z 21 93. (x3 )2 6 94. x36 5 97. − −(−p)3 −p15 (y 5 )5 5 95. y 125 3 98. − −(−m)4 m12 (n4 )3 2 2 99. − −(−r2 )3 ALG catalog ver. 2.6 – page 20 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 96. n24 −r12 (a3 )3 3 a27 3 100. − −(−a4 )2 a24 BD Topic: Laws of exponents: division. See also categories DL and DM (dividing monomials). Directions: 6—Simplify. 4—Divide. 1. x·x x 5. c·c·c c·c·c·c·c 9. 26 2 32 10. 53 5 25 11. 34 33 15. 6 63 1 36 16. 3 34 1 27 17. 107 102 21. x4 x x3 22. y8 y y7 23. 27. d12 −d3 28. −y 15 y 11 33. y4 y4 34. k9 k9 39. −b16 −b7 b9 40. −w21 −w19 45. −q 14 q8 −q 6 46. m17 −m9 51. c c6 52. a a8 57. x6 y x2 y 3 58. k8 m k 5 m2 63. w2 x4 −w2 x5 64. g 2 h6 −g 8 h6 x 1 c2 −d9 1 1 c5 x4 y2 − 69. 107 ÷ 1010 73. a6 ÷ a2 1 1000 y2 3. a·a·a·a a·a·a 6. m·m m·m·m 1 m 7. k k·k·k·k·k 1 k4 12. 25 23 13. 52 54 105 18. 104 103 19. 106 10 m7 m m6 24. p5 p 25. −r9 r5 29. w2 w6 1 w4 30. m4 m5 31. a3 a8 35. −r6 r6 36. c13 −c13 37. x14 −x3 w2 41. d11 d13 42. x16 x19 43. p5 −p12 − −m8 47. −y 25 y9 48. x20 −x12 −x8 49. b5 −b 53. w3 w3 y 1 y 54. k 5 m2 k m2 55. a2 b6 b6 59. p4 r 3 p3 r 5 p r2 60. a10 b2 a 4 b9 a6 b7 61. −c7 d5 cd5 65. mp2 r4 mp5 r 66. a6 bc2 a7 bc5 1 ac3 67. xy 8 z 2 x2 y 9 z −y 4 1 1 a7 k3 m − 1 g6 74. y 12 ÷ y 3 82. c7 ÷ c 89. cd3 h3 ÷ c4 dh2 d2 h c3 93. −a4 x3 y 2 ÷ a6 x3 y −1 1 d2 y a2 1 y 16 r3 p3 10 p4 1 m −1 1 x3 k6 75. x5 ÷ x11 83. p ÷ p5 c6 1 x 94. −kr9 q 2 ÷ k 3 rq 5 r8 k2 q3 w·w·w·w w·w·w·w 20. 103 105 1 100 26. c5 −c2 −c3 32. b5 b9 −x11 38. a10 −a2 −a8 1 p7 44. −r11 r17 − −b4 50. −d11 d −d10 a2 56. wz 9 z8 −c6 62. −x3 y 2 x3 y −y z xy 68. k 7 n3 r 3 k 2 n2 r 3 k5 n 105 −r4 1 a5 1 m5 1 p4 80. −k 9 ÷ (−k 9 ) 84. a ÷ a6 − 1 w 88. −c7 ÷ c6 wy x5 1 22 26 76. m4 ÷ m9 1 p3 14. 1 25 1 x6 95. c2 d3 f ÷ (−c2 d3 f 7 ) ALG catalog ver. 2.6 – page 21 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 8. 10 91. w3 xy 2 ÷ w2 x6 y 1 − 6 f p·p·p·p·p p·p 72. 109 ÷ 108 87. −w14 ÷ w15 1 a2 c7 4. 1 79. −w14 ÷ (−w14 ) −1 − a 4 71. 108 ÷ 108 90. a2 b7 c ÷ a4 b7 c8 − − y9 86. x6 ÷ (−x7 ) −y 3 1 10 78. −q 16 ÷ q 16 −1 x8 85. y 5 ÷ (−y 4 ) y·y·y·y y·y 70. 107 ÷ 108 a4 77. −r7 ÷ r7 81. x9 ÷ x 1 x 2. 1 16 1 b4 1 r6 wz 1 1 a5 −c 92. k 5 r2 p9 ÷ k 5 r6 p3 p6 r4 96. m5 pr9 ÷ (−m6 p2 r10 ) − 1 mpr BE Topic: Combined methods (laws of exponents). See also categories DK–DM. Directions: 6—Simplify. 6 2. − 6. 5 4d 3 10. xy 2 14. mr4 − 2 p 18. 7d3 12a4 22. y8 (y 2 )(y 3 ) 26. (k 2 )(k 8 ) k 11 1. a 3 3b 5. − 3m 2 4 81m4 16 9. − 1 km 5 − 13. w2 xy 3 17. − 21. (a5 )(a6 ) a9 25. m7 (m4 )(m3 ) 29. (x2 y 6 )(x2 y) x5 y 6 33. p5 w (−pw2 )(p3 w3 ) 37. (km)2 km km 38. (xy)3 xy 41. (p2 )6 p2 · p 6 p4 42. r3 · r4 (r3 )4 45. (−x4 )2 −x4 46. −a3 (−a3 )2 − 49. r 3 p6 (rp2 )4 50. c4 d5 (c3 d)3 d2 c5 53. (a2 b5 )2 (−a2 b)5 − 54. (−g 3 h)3 (g 2 h2 )4 − 57. 10x3 z (5xz 2 )2 2x 5z 3 58. (6cd2 )2 24c5 d4 3 2c3 61. −r3 p(−rp)5 (r4 p2 )2 62. (−km2 )4 (km)3 (km5 ) a3 27b3 6 11a5 6c3 1 k 5 m5 w12 x6 y 18 2 121a10 36c6 a2 1 y x 30. − −x4 1 rp2 b5 a6 p2 p w4 34. 2c d 64c6 d6 3x y 8. − 1 2d 12. − 7 rw 2 49 r2 w2 16. c5 k2 m 3 c15 k 6 m3 20. 2r2 3p 24. x3 (x6 )(x) 1 x4 28. (c9 ) (c3 )(c5 ) c 32. (ab3 c2 )(abc3 ) (a6 b2 c) b2 c4 a4 36. (a2 x5 )(−ax4 ) (a3 x7 ) −x2 40. (rw)4 (rw)6 44. (c3 )2 (c3 )(c2 ) c 1 48. (−k 2 )3 (−k 3 )2 −1 −y 52. (−a3 b4 )3 a8 b9 −ab3 y9 x2 56. (−wy 2 )4 (wy 3 )3 w y 2b a 60. (9p2 w)2 (6p2 w3 )2 9 4w4 64. (w2 z 4 )3 (−wz 5 )2 (w4 z 2 ) r5 32w5 125 64d3 7. 10y 3 x2 y 2 81 11. ab 10 15. a3 b − 2 c 4 a12 b4 c8 19. − 3w 4z 4 3 − y3 23. r(r4 ) r10 1 k 27. (a6 )(a4 ) a10 31. (g 3 k)(gh5 k 2 ) g 2 hk 3 35. (y 3 z 2 )(−y 5 z 3 ) (y 4 z 5 ) x2 y 2 39. (ab)2 (ab)5 1 r5 43. (a5 )(a2 ) (a5 )2 47. (m3 )2 (m2 )3 51. −x4 y 3 (x2 y)2 55. (x2 y 3 )5 (−x2 y)6 59. (4a3 b2 )3 2a2 b)5 63. ab4 (−a3 b)2 (−ab2 )3 9 5 m5 r20 − 10 p 2 49d6 144a8 r 4 m7 m3 r2 (r2 m)(r4 m3 ) r 9 p3 (rp6 )(−r3 p4 ) − 1 a3 g h5 1 r5 p7 ALG catalog ver. 2.6 – page 22 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. − 4 4. r 5 2w 3. − 2 100y 2 9 3 a3 b3 1000 27w3 64z 12 1 r5 1 g 2 h4 1 a3 b3 1 a3 −a4 −y 4 81x4 y4 5 4 − 1 32d5 16r8 81p4 1 r2 w2 1 BF Topic: Variable exponents. Directions: 6—Simplify. 1. ax ay 5. 10x · 10x · 10x 9. 5(5x ) ax+y (2a )b c 21. (y a )b xa · xb 6. y a y 3a xa+b y 4a 10. 10y · 10 5x+1 13. y 3n · y 1−n 17. 103x 2. y 2n+1 18. 2abc (x4 )a 22. (ax )y y ab 25. (x4 y)a (xy 2 )a x5a y 3a 29. (m2k+1 )2 (mk+2 )3 2 x2 · xc 7. m2k · mk · m4k x2+c 11. (3c+1 )(3) 10y+1 14. x2a−b · x2a+b 3. 19. x8a (y m )3 23. (y 6 )a axy 26. (a2 b2 )x (ax b3x )2 a4x b8x 30. (x2 y n−4 )3 (x3 y n+6 )2 r 8. −x2n (−xn ) y r+4 20. (k x )5 24. (x5 )b y 6a 2 10n a4n a5n−2 k 10x x5b 28. (x2a−1 )3 y 2n+2 31. (an+1 )3 · an−3 x3n 16. an−3 · a4n+1 n4 y 3mr 27. (y n+1 )2 yr y4 12. 10 · 10n−1 3c+2 15. n2−a · n2+a x4a m7k 4. x6a−3 32. (y 2 )x+1 · y 1−2x y3 x12 y 5n m7k+8 33. ax a 37. x3n xn 41. k x+2 k 2−x 45. (cx )(cy ) cz 49. x(x2a ) xa+1 53. (3x+y )2 32x−y 57. 34. mx ÷ my ax−1 x2n y 2n y n+2 k2x cx+y−z xa 3 33y y 3n−6 38. m4a m 42. x4n−2 x2n−5 46. a ax ay mx−y 36. y5 ya y k+4 40. a6x ax+1 a5x−1 m 44. y 3−2a y 1−2a y2 48. 5x 5(5y ) 5x−y−1 52. (y a+1 )(y) ya 56. (x2a )3 (xa+3 ) (xa+1 )2 60. 35. 3n ÷ 3 3n−1 39. y k+5 y x2n+3 43. m3a−1 m3a−2 a1−x−y 47. nx ny n 51. m2x (mx )(m) a5 55. 23n+1 (2n−1 )3 x2a+4 59. m4a−1 50. an+2 a(a1+n ) 54. (ax+1 )3 (ax )2 (ax−2 ) 58. x2a−1 xa−3 2 1 ALG catalog ver. 2.6 – page 23 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. nx+y−1 mx−1 16 (a4x )(ax ) (ax−2 )3 2 a4x+12 y 5−a y2 (an )2 (an+1 ) (a2 ) x5a+1 3 a9n−3 BG Topic: Negative and zero exponents. Directions: 6—Simplify. 1 16 1. 4−2 5. 120 1 9. 0 4 − 5 13. 12(4−3 ) 55—Rewrite using only positive exponents. 1 27 2. 3−3 6. (2.6)0 1 1 10. −90 3 16 14. 35 · 21−1 5 3 3 4 1 64 23. (−3)−4 1 81 24. (−6)−1 − 1 1000 27. −12−1 26. −10−3 37. (12−1 )0 1 38. − 1 32 (−10)0 42. (30 · 12)−2 45. (6−3 )(63 ) 1 46. 37 · 3−8 2−2 −8 − 1 32 −1 3 53. 4 50. 7 2−3 1 1 144 1 3 39. (30 )−4 51. 23 2−2 32 58. 3−5 3−3 1 9 59. 2−2 52 61. 5−1 100 1 5 62. 140 7−2 49 63. 60 −3 65. (2−2 )−2 66. (3−3 )−1 69. 70. 73. 77. (−3)3 32 −2 1 9 2−2 23 1 + 3−1 6 5 74. 4−1 1 + 2−1 2−1 + 3−1 2−1 − 3−1 5 78. 4−1 + 2−2 4−2 + 2−4 2−1 81. −a−2 − 1 a2 82. 3x0 3 40. 1 64 32 1 6 71. 75. 4 79. ALG catalog ver. 2.6 – page 24 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −3 5−1 −3 3 56. 2 8 27 1 3 64. 2−5 20 1 32 " #−2 2 −2 68. 3 1 49 − 1 8 12 −3 100 −15 1 1 r5 1 1 9 8−1 2−3 1 − 4−1 15 4 48. (10−3 )(105 ) 16 −3 1 125 0 44. 3−2 · 90 52. 2−1 + 2−1 3−1 83. r−5 (−5)3 60. 24 (−2)3 3−1 1 100 − 1 243 36. 22 − 2−2 " #−2 1 −1 67. 7 27 −1 17 4 1 50 −4 1 55. 2 81 25 − 1 6 32. (10 − 5)−3 8 10−1 5 57. 16 1 121 43. (4 · 20 )−3 1 9 28. −3−5 1 47. 82 · 8−1 56 −2 5 54. 9 4 3 1 12 35. 2−2 + 22 −1 1 25 − 31. (4 + 7)−2 3 4 41. 100 · 5−2 49. 1 8 30. (1 + 1)−5 34. 1 − 2−2 −1 20. 33 · 6−2 1 625 10 3 12. −(0.7)0 −1 1 22. (−4)−3 33. 3 + 3−1 1 19. 34 (9−2 ) 1 49 − 8. 0 2 3 16. 4(6−2 ) 21. (−7)−2 1 81 1 5−2 1 200 18. (10−3 )(53 ) 29. (5 − 2)−4 7. 1500 1 25 4. 15. 5 · 10−3 8 − 2−4 11. −(−12)0 −1 17. 2−1 · 42 25. −5−4 1 16 3. 1 8 −43 (−4)2 72. 76. 2−1 1 − 2−1 80. −2 1 16 1 2−2 + 4−1 5−1 84. 10y −1 16 81 10 y −2 4 25 BG 6y 2 x3 85. 6x−3 y 2 86. −cd−4 e−1 1 m10 89. (m−3 )(m−7 ) 94. (z −2 )(z 9 ) 97. (−2r−5 )(−3r7 ) 101. −6a−5 b6 · 5a4 b−2 − z7 98. (3n−1 )(−5n−3 ) 6r2 2 r8 87. 2p0 r−8 1 c8 90. c−4 · c−4 1 y 93. y −1 · y 0 c d4 e − − 102. 9x−1 y −4 · 4x4 y 4 15 n4 91. k −6 · k −1 1 k7 92. (w0 )(w−9 ) 95. (a8 )(a−4 ) a4 96. x−7 · x 99. −x−3 · 7x0 36x3 7 x3 − 42x y6 106. (nr−6 )(−2n0 r−2 ) − 2n r8 1 x6 − 107. −7ay 3 · 5a−1 y −2 10c 104. (−3u−5 w0 )(5u5 w−6 ) 8 c5 d a 1 w9 100. 5c−4 · 2c5 103. (−4c−7 d4 )(−2c2 d−5 ) 30b4 105. 14x−4 y −3 · 3x5 y −3 u3 w z3 88. u3 wz −3 −35y 15 w6 108. (13k 5 m−3 )(2k −3 m−1 ) 26k 2 m4 109. (3u−3 )−3 u9 27 110. (6t−5 )−1 t5 6 111. (2x−4 )0 113. (pr−1 )−1 r p 114. (x2 y 0 )−5 1 x10 115. (m2 r)−3 y 12 16 117. (2x0 y −3 )−4 121. (6p−4 )(3p2 )2 122. (5t−2 )2 (10t)−1 54 125. (−3r−2 )−2 (r−3 ) a4 b2 49 118. (7a−2 b−1 )−2 r 9 129. (x2 y 3 )0 (5x2 y)−3 126. (−k 3 )(2k 3 )−4 130. (a0 b5 )−3 (a2 b8 )2 1 m6 r3 s4 10t3 119. (10s−4 t3 )−1 120. (−6w4 z −3 )0 123. (3z −2 )−3 (9z −3 ) z3 3 1 16k9 127. (2d−2 )−2 (−d2 )3 − a4 b 131. (3w2 y −3 )−1 (6w2 y)−2 133. (20kn−3 )−1 (4k −1 n2 )−2 134. (4r2 t−2 )3 (6r−2 t3 )0 d10 4 128. (2s−2 )−3 (2s3 )−2 w−3 w−4 135. (x−3 z 4 )4 (2x−6 z 8 )−2 1 4 136. (3a3 c−2 )−2 (a−4 c0 )−3 c4 a6 9 138. r−2 r4 141. 9c0 12c−2 3c2 4 142. −4y 2 8y −1 145. 5x−6 −y −1 5y x6 146. 12b−5 3a0 149. 27s0 t−2 6s−2 t4 150. x3 y −4 x−1 y −4 153. w−5 x−1 y 3 w−5 xy −2 y5 x2 154. 10ab−7 c−2 15a−2 b0 c−3 157. 2−4 a3 b−3 8−2 ab−4 4a2 b 158. 3−1 s−2 t 3−4 s3 t5 27 s5 t 4 161. (−2n3 )−2 4n−5 1 16n 162. (3k −4 )−1 −12k 2 − 165. (2t−3 )−3 (2−2 t0 )2 166. (3x2 y 0 )4 (3−2 x−2 y)−2 w − 9s2 2t6 2t9 1 r6 − y3 2 4 b5 x4 2a3 c 3b7 k2 36 x4 y 2 140. k −8 k −5 2 x8 144. 9d−3 3d−3 m3 9k 2 148. −15r0 30p−2 152. w−1 z −3 w−2 z 2 156. 21x2 y 0 z −1 3x−3 y 6 z −2 160. 7c−2 d−3 2−3 c−5 d2 164. 5a5 (2a2 )−3 168. (5−1 y −4 )0 (10y −2 )−2 139. s6 s−1 143. 10x−4 −5x4 147. 2k −2 18m−3 151. 4c−2 d−2 2c0 d 155. m−3 n−2 p2 m−4 n−2 p−1 159. 5−3 x2 y −4 10−2 xy −3 163. 6y −6 (3y 2 )0 167. (c2 d)−2 (2−1 cd−3 )4 ALG catalog ver. 2.6 – page 25 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 32 p 72 t6 137. 1 a14 132. (3p−2 r3 )−2 (2pr−2 )−3 64r6 k 320n 1 124. (2a3 )−2 (2a−4 )2 y 108w6 1 125x6 y 3 a3 b2 116. (a−3 b2 )−1 5 2t5 − 1 25y 12 112. (5y 6 )−2 1 s7 − 2 c2 d3 mp3 4x 5y 6 y6 16d10 c8 1 k3 3 − p2 2 w y5 7x5 z y6 56c3 d5 40a11 100 y4 BG 169. (23 )−1 x2 y −3 −4−2 x0 y −2 − 2x2 y 170. 3−4 b−5 c−1 (9bc2 )−2 c3 b3 171. (−4m3 )2 (n−2 )2 (2−1 )2 m4 n−8 172. (5−2 )−1 p3 r−5 (10−1 pr3 )−2 176. 2−5 (k −3 m2 )−1 n−7 (2−2 )3 k 4 (mn−1 )−2 p5 r 4 64m2 n4 173. (3a−3 )−2 b2 c−4 (−6)−1 (a2 b−3 )2 c−6 − 177. 174. (6x2 y −5 )−2 (2x2 y)4 (−5x−4 )−2 (3x−6 y 3 )2 175. −3−2 c−4 (d0 e−2 )2 (6−1 )2 (cd)−2 e−4 4d2 c2 9 x5 z 2a2 b8 c2 3 178. 100x8 y 8 81 181. (5−1 )2 x−5 (y −2 z)−3 15−2 (x0 y 3 z −1 )2 2 kn9 (m2 r2 )−4 (mr−6 )−3 (−m−5 r4 )3 (m4 r6 )−2 179. −m12 r10 2−2 r2 s−1 2rs−3 −2 64 r 2 s4 182. (u4 w3 )3 (2u−3 w−5 )4 (−2u−3 w)3 (uw−1 )−2 − 3−1 a−3 b2 6−2 a−3 b−2 −1 1 12b4 183. 180. 2u11 w16 (c6 d−3 )−3 (−3cd4 )−2 (c4 d0 )−5 (c−2 d)−4 d5 9c8 5−3 c−4 d−2 5−1 cd−4 −2 625c10 d4 184. 12−1 x3 y −3 2−3 x−1 y −6 −3 27 8x12 y 9 185. 4x2 + 3 x−2 189. (c + d)−1 193. 7 − 2s0 r2 186. − 7x2 1 c+d −2 r4 25 2 − 6ab0 a−1 −1 190. 1 x+y 194. 2x0 y + 3y x 187. −8a x 5y 195. ALG catalog ver. 2.6 – page 26 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 6t0 − 4 2u 188. y5 191. (1 + a−1 )−1 x+y −1 2y 3 − y5 y −2 −3 a a+1 u3 5 w−1 + 2w 2 3 w 192. (w−1 + z −1 )−1 196. 7m − 4mn0 12m wz w+z −2 16 BH Topic: Using scientific notation I. Directions: 56—Rewrite without scientific notation. 1. 5 × 104 5. 2.6 × 105 9. 6.1 × 101 2. 1 × 106 260000 6. 8.3 × 102 61 10. 1.55 × 104 0.008 14. 4 × 10−1 50000 13. 8 × 10−3 1000000 3. 3 × 103 830 7. 9.9 × 107 15500 0.00000019 18. 2.08 × 10−3 21. 0.02 × 108 2000000 22. 0.0052 × 104 0.00208 99000000 11. 7.02 × 105 15. 5 × 10−6 0.4 17. 1.9 × 10−7 3000 8. 4.5 × 101 16. 1 × 10−5 0.000005 0.0000000044 23. 0.000001 × 1011 52 9 × 107 90000000 45 12. 2.33 × 106 702000 19. 4.4 × 10−9 4. 2330000 0.00001 20. 3.07 × 10−2 0.0307 24. 0.00088 × 106 880 100000 25. 0.003 × 10−2 0.00003 26. 0.9 × 10−5 0.000009 27. 0.202 × 10−1 0.0202 28. 0.00056 × 10−3 0.00000056 29. 0.0805 × 103 80.5 33. 70000 × 10−3 70 37. 490 × 10−8 0.0000049 30. 0.0007 × 103 0.7 34. 650000 × 10−5 38. 1310000 × 10−10 6.5 31. 0.000099 × 105 9.9 32. 0.000004 × 104 0.04 35. 1000000 × 10−6 1 36. 902000 × 10−4 90.2 39. 500 × 10−4 0.000131 ALG catalog ver. 2.6 – page 27 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 0.05 40. 16.8 × 10−1 1.68 BI Topic: Using scientific notation II. Directions: 57—Rewrite using scientific notation. 1. 50000 5. 420 9. 31500000 13. 90.6 5 × 104 4.2 × 102 3.15 × 107 9.06 × 101 17. 0.007 7 × 10−3 21. 0.000064 25. 0.0805 6.4 × 10−5 8.05 × 10−2 29. 2700 × 103 33. 133.8 × 102 37. 0.02 × 109 2.7 × 106 1.338 × 104 2 × 107 2. 600000 6. 93000 6 × 105 3. 3000 9.3 × 104 7. 15000000 10. 4710000000 14. 710.2 18. 0.05 4.71 × 109 7.102 × 102 5 × 10−2 22. 0.00011 1.1 × 10−4 2.28 × 101 23. 0.063 5 × 10−5 6.3 × 10−2 26. 0.00000334 3.34 × 10−6 27. 0.000127 30. 1050 × 102 1.05 × 105 31. 89000 × 104 35. 100.4 × 102 34. 92.02 × 105 9.202 × 106 38. 0.00084 × 107 42. 0.00035 × 103 1.4 × 10−3 3.5 × 10−1 3.9 × 10−2 15. 22.8 1.5 × 107 8.26 × 102 19. 0.00005 41. 0.00014 × 101 45. 390 × 10−4 11. 826 3 × 103 46. 5000 × 10−6 8.4 × 103 1.27 × 10−4 4. 9000000 8. 720000 9 × 106 7.2 × 105 12. 50400 5.04 × 104 16. 300.1 3.001 × 102 20. 0.0002 2 × 10−4 1.4 × 10−7 24. 0.00000014 28. 0.0000905 9.05 × 10−5 8.9 × 108 32. 688 × 103 6.88 × 105 1.004 × 104 36. 93.9 × 107 9.39 × 108 39. 0.0008 × 105 8 × 101 40. 0.0057 × 107 43. 0.0007 × 102 7 × 10−2 44. 0.000003 × 104 5.7 × 104 3 × 10−2 5 × 10−3 47. 92000 × 10−8 48. 61 × 10−2 6.1 × 10−1 9.2 × 10−4 49. 0.55 × 10−3 5.5 × 10−4 53. 0.000844 × 103 50. 0.092 × 10−1 54. 61.2 × 10−5 9.2 × 10−3 6.12 × 10−4 51. 0.001 × 10−2 55. 3.01 × 10−4 8.44 × 10−1 ALG catalog ver. 2.6 – page 28 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 × 10−5 52. 0.28 × 10−6 3.01 × 10−4 56. 0.0566 × 101 5.66 × 10−1 2.8 × 10−7 BJ Topic: Simplifing expressions with scientific notation. Directions: 8—Simplify, using scientific notation. 58—Rewrite with scientific notation, and simplify. 1. 610 × 20,000 3. 1800 × 430 5. 1,000,000 × 8,250,000 7. 1,000,000,000 × 390,000 3.9 × 1014 9. 75,000 × 5300 × 40,000 1.59 × 1013 10. 90,000 × 10,000 × 710,000 6.5 × 1011 12. 8400 × 1,300,000 × 500 1.22 × 107 7.74 × 105 8.25 × 1012 11. 325 × 100,000 × 20,000 13. (0.00055)(800,000) 4.4 × 102 15. (170,000)(0.000009) 1.53 × 101 17. 300 × 3,000,000 × 0.003 19. 0.0001 × 80,000 × 500 4 × 103 4 × 1026 23. (7 × 1017 )(4 × 107 ) 2.8 × 1025 25. (5 × 104 )(41.2 × 10−2 ) 27. (340 × 102 )(0.25 × 104 ) 452,000 × 1000 4. 10,000 × 100,000 6. 45,000 × 126,000,000 8. 800,000 × 2,500,000 4.52 × 108 1 × 109 5.67 × 1012 2 × 1012 2.06 × 104 6.39 × 1014 5.46 × 1012 14. (23,000,000)(0.004) 9.2 × 104 16. (0.0006)(3,500,000) 2.1 × 103 18. 2500 × 0.00004 × 0.8 2.7 × 106 21. (8 × 1012 )(5 × 1013 ) 2. 8 × 10−2 20. 0.01 × 0.0006 × 160 9.6 × 10−4 22. (4 × 109 )(1.5 × 106 ) 6 × 1015 24. (3.5 × 10−5 )(2 × 1015 ) 7 × 1010 26. (78 × 106 )(0.01 × 103 ) 7.8 × 108 28. (0.03 × 10−4 )(120 × 105 ) 8.5 × 107 3.6 × 101 29. (8 × 101 )(3 × 102 )(7 × 10−3 ) 1.68 × 102 30. (5 × 103 )(5 × 106 )(5 × 109 ) 31. (1.5 × 102 )(4 × 104 )(8 × 106 ) 4.8 × 1013 32. (7 × 10−5 )(3.2 × 102 )(1 × 103 ) 33. (2 × 10−4 )(3.7 × 10−7 ) 7.4 × 10−11 34. (6 × 10−6 )(4 × 104 ) 35. (1.1 × 1010 )(6 × 10−15 ) 6.6 × 10−5 36. (2 × 10−8 )(8.5 × 10−1 ) 37. 1,000,000,000 ÷ 250,000 4 × 103 38. 485,000,000 ÷ 5,000 39. 840,000,000 ÷ 2,400,000 3.5 × 102 40. 44,100,000 ÷ 9000 4.9 × 103 42. 42,000 ÷ 0.000014 3 × 109 41. 0.0256 ÷ 1600 43. 810,000 ÷ 0.36 45. 0.078 60,000 49. 2.4(0.0015) 360,000 1.6 × 10−5 1.3 × 10−6 1 × 10−8 46. 6 100,000 50. 0.18 22,500(0.004) 6 × 10−5 2 × 10−3 47. 360 0.00072 51. 28,600,000(0.003) 0.000033 1.7 × 10−8 9.7 × 104 5 × 105 4 × 10−11 48. 55 11,000,000 52. 0.0034 0.000017(0.00625) 2.6 × 109 53. (1,800,000)(0.00035) 0.000014 54. 4.5 × 107 57. (0.00121)(0.07) (0.055)(35,000) 4.4 × 10−8 (40,000,000)(0.018) 12,000 55. 6 × 101 58. (3000)(0.000024) (0.0048)(0.0012) 2.24 × 101 2.4 × 10−1 44. 0.00026 ÷ 6,500,000 2.25 × 106 1.25 × 1020 0.024 (1,000,000)(160,000) 5 × 10−6 3.2 × 104 56. 135,000,000 (0.009)(6000) 60. (5100)(0.00023) (0.17)(460,000) 1.5 × 10−13 59. 1.25 × 104 ALG catalog ver. 2.6 – page 29 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (14000)(0.00065) (0.0035)(260,000) 1 × 10−2 1.5 × 10−5 2.5 × 106 BJ 61. 4.8 × 103 1.5 × 101 65. 2.065 × 1015 5.9 × 107 69. 8.05 × 103 2.3 × 108 73. 8.1 × 104 2.7 × 10−4 77. 1.84 × 10−2 5.75 × 10−1 81. (15,000)2 62. 5.1 × 105 6.8 × 102 66. 3.36 × 1011 2.8 × 109 3.5 × 10−5 70. 4.807 × 1010 1.9 × 105 3 × 108 74. 9.8 × 10−1 7 × 10−6 78. 2.32 × 10−4 9.28 × 1010 3.2 × 102 3.5 × 107 3.2 × 10−2 2.25 × 108 85. (3 × 105 )4 8.1 × 1021 82. (3000)3 7.5 × 102 1.2 × 102 2.53 × 105 1.4 × 105 2.5 × 10−15 2.7 × 106 86. (1.4 × 1010 )2 63. 4.8 × 108 6 × 103 67. 2.21 × 109 1.7 × 108 71. 5.751 × 102 8.1 × 1010 75. 7.8 × 10−5 1.3 × 10−8 79. 4.86 × 105 4.05 × 10−5 83. (20,000)3 8 × 104 1.3 × 101 7.1 × 10−9 6 × 103 1.2 × 1010 8 × 1012 87. (2.5 × 104 )2 6.25 × 108 64. 7.6 × 1010 3.8 × 104 68. 3.198 × 109 2.6 × 102 72. 2.07 × 105 9.2 × 1013 2.25 × 10−9 76. 5.6 × 10−8 8 × 103 7 × 10−6 80. 5.52 × 10−7 1.84 × 10−6 2 × 106 1.23 × 107 3 × 10−1 84. (110,000)2 1.21 × 1010 88. (1 × 104 )6 1 × 1024 1.96 × 1020 89. (0.002)5 3.2 × 10−14 93. (1.3 × 10−9 )2 90. (0.000012)2 1.44 × 10−10 91. (0.0003)4 94. (4 × 10−2 )3 6.4 × 10−5 95. (8 × 10−3 )2 8.1 × 10−15 6.4 × 10−5 92. (0.000005)3 96. (2.5 × 10−6 )2 1.69 × 10−18 6.25 × 10−12 97. (3 × 102 )2 (5 × 10−4 ) 98. (5 × 1010 )(2 × 10−2 )4 4.5 × 101 101. 2.4 × 107 (2 × 10−3 )3 1.25 × 10−16 99. (6 × 103 )(4 × 104 )2 8 × 103 3 × 1015 102. (6 × 103 )2 9 × 10−2 100. (5 × 10−4 )3 (2 × 10−7 ) 2.5 × 10−17 9.6 × 1012 4 × 108 103. 5.4 × 10−11 (3 × 104 )3 2 × 10−24 104. (1.5 × 10−3 )2 5 × 10−4 4.5 × 10−3 ALG catalog ver. 2.6 – page 30 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. BK Topic: Mixed practice and review (scientific notation). Directions: 0—(No explicit directions.) 1. Write 73,500,000 in scientific notation. 2. Write 100,000 in scientific notation. 3. Write 5040 in scientific notation. 5.04 × 103 4. Write 96.1 in scientific notation. 5. Write 0.54 in scientific notation. 5.4 × 10−1 6. Write 0.00319 in scientific notation. 7. Write 0.0208 in scientific notation. 8. Write 0.000001 in scientific notation. 9. What is 9 thousandths in scientific notation? 7.35 × 107 2.08 × 10−2 1 × 105 9.61 × 101 3.19 × 10−3 1 × 10−6 10. What is one hundreth in scientific notation? 1 × 10−2 9 × 10−3 11. What is 27 billion in scientific notation? 2.7 × 1010 13. Write 6.2 × 104 in standard decimal notation. 62,000 12. What is 320 million in scientific notation? 3.2 × 108 14. Write 3.03 × 10−2 in standard decimal notation. 0.0303 15. Write 8 × 10−5 in standard decimal notation. 0.00008 16. Write 4.7 × 107 in standard decimal notation. 47,000,000 17. Write 1.55 × 10−3 in standard decimal notation. 18. Write 9.2 × 108 in standard decimal notation. 0.00155 920,000,000 19. Write 6.05 × 102 in standard decimal notation. 605 20. Write 3 × 10−6 in standard decimal notation. 0.000003 21. Rewrite in scientific notation, and simplify: 1,500, 000 × 4,400 0.00068 × 25,000,000 6.6 × 109 23. Rewrite in scientific notation, and simplify: 700,000 × 4,100,000,000 22. Rewrite in scientific notation, and simplify: 24. Rewrite in scientific notation, and simplify: 0.00021 × 0.00000008 2.87 × 1015 25. Simplify using scientific notation: (4 × 106 )(8 × 103 ) 1.68 × 10−11 26. Simplify using scientific notation: (6 × 10−5 )(6 × 108 ) 3.2 × 1010 3.6 × 104 28. Simplify using scientific notation: (3.2×104 )(7.5×103 ) 27. Simplify using scientific notation: (4.5 × 10−4 )(2.2 × 105 ) 1.7 × 104 2.4 × 108 9.9 × 101 29. Simplify using scientific notation: (5×10−3 )2 (2×10−4 ) 30. Simplify using scientific notation: (2 × 106 )3 (1.2 × 104 ) 5 × 10−9 9.6 × 1022 31. Simplify using scientific notation: (1×1012 )(3×10−4 )3 32. Simplify using scientific notation: (5.5 × 10−5 )(3 × 104 )2 2.7 × 101 4.95 × 104 33. Rewrite in scientific notation, and simplify: 140,000 10 0.0035 × 0.004 1 × 10 34. Rewrite in scientific notation, and simplify: 1000 × 40,000 8 × 100 5,000,000 35. Rewrite in scientific notation, and simplify: 900,000,000 2 600 × 5,000 3 × 10 36. Rewrite in scientific notation, and simplify: 420,000 × 0.0005 3 × 107 0.000007 37. Simplify using scientific notation: 7 × 10−6 5.6 × 10−9 38. Simplify using scientific notation: 1.25 × 103 39. Simplify using scientific notation: 4.2 × 104 1.4 × 10−7 3 × 1011 2.2 × 101 5.5 × 108 40. Simplify using scientific notation: 4 × 10−8 ALG catalog ver. 2.6 – page 31 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1.75 × 10−6 4.9 × 10−2 2.8 × 104 BL Topic: Word problems involving scientific notation Directions: 0—(No explicit directions.) 139—Use scientific notation. 141—Write each answer using scientific notation. 1. The diameter of a silver atom is about 0.000 000 000 25 m. Express that number using scientific notation. 2.5 × 10−10 2. 3. The average distance between the sun and Mars is about 228,000,000 km. Express that number in scientific notation. 2.28 × 108 4. The world’s energy use in 1987 was equivalent to 9,650,000,000 metric tons of coal. Express that number in scientific notation. 9.65 × 109 5. The mass of the earth is about 6 × 1021 metric tons. Express that number without scientific notation. 6. An astronomical unit (the average distance between the earth and sun) is 1.5 × 108 km. Express that number without scientific notation. 150,000,000 8. An Angstom, which is a unit of measure for light waves, is 1 × 10−10 m. Express that number without scientific notation. 0.000 000 000 1 7.5 × 10−4 6,000,000,000,000,000,000,000 7. The mass of a proton is about 1.6 × 10−24 g. Express that number without scientific notation. 0.000 000 000 000 000 000 000 0016 9. The metropolitan area of Dallas, Texas, has a population of about 1 million and covers 380 square miles. Calculate the number of people per square mile, and express your answer in scientific notation. ≈ 2.63 × 103 11. Japan has a population of about 124 million and an area of 3.7 × 105 sq km. What is the population density (number of people per square kilometer)? The diameter of a red blood cell is about 0.00075 cm. Express that number using scientific notation. 10. Bombay, India, has a population of about 11 million and an area of only 96 square miles. Calculate the number of people per square mile, and express your answer in scientific notation. ≈ 1.15 × 105 12. The U.S. has a population of about 240 million and an area of 9 × 106 sq km. What is the population density (number of people per square kilometer)? ≈ 3.4 × 102 13. Momentum is a product of mass and velocity. It is measured in units of kilogram-meters per second (kg-m/s). What is the momentum of a truck going 22 m/s, if its mass is 5 × 104 kg? ≈ 2.7 × 101 14. Momentum is a product of mass and velocity. It is measured in units of kilogram-meters per second (kg-m/s). What is the momentum of a bullet travelling at 440 m/s, if its mass is 5 × 10−3 kg? 2.2 kg − m/s 1.1 × 106 kg − m/s 15. In an electrical circuit, the current (Amps) is equal 16. In an electrical circuit, the current (Amps) is equal to voltage divided by resistance. Find the current in to voltage divided by resistance. Find the current a 1.5 volt flashlight, if the resistance is 6 × 103 Ohms. in a 9 volt smoke detector, if the resistance is 1.2 × 102 Ohms. 7.5 × 10−2 A 2.5 × 10−4 A 17. The length of a light wave is calculated with the formula λ = c/ν, where λ is the length (meters), c is the speed of light (3 × 108 meters per second), and ν is frequency (oscillations per second). What is the length of an ultraviolet wave whose frequency is 4.8 × 1016 ? 6.25 × 10−9 m 18. The length of a light wave is calculated with the formula λ = c/ν, where λ is the length (meters), c is the speed of light (3 × 108 meters per second), and ν is frequency (oscillations per second). What is the length of an infared wave whose frequency is 2.5 × 1012 ? 1.2 × 10−4 m 19. A photon is a single “parcel of light.” Its energy, measured in electron-Volts, is given by the formula E = hν, where h is Planck’s constant (4.1 × 10−15 ) and ν is frequency (hertz). Find the energy of a photon in a gamma ray, if the frequency is 5 × 1022 Hz. 2.05 × 108 eV 20. A photon is a single “parcel of light.” Its energy, measured in electron-Volts, is given by the formula E = hν, where h is Planck’s constant (4.1 × 10−15 ) and ν is frequency (hertz). Find the energy of a photon in an FM radio signal, if the frequency is 9 × 108 Hz. 3.69 × 10−6 eV 21. The closest star to the earth (besides the sun) is Alpha Centauri. It is about 4.3 light years away. Find out how many kilometers that is, if one light-year is 9.5 × 1012 km. 4.085 × 1013 22. The star Betelgeuse is in the constellation Orion. It is 600 light years from Earth. Find out how many kilometers that is, if one light-year is 9.5 × 1012 km. ALG catalog ver. 2.6 – page 32 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 5.7 × 1015 BL 23. Light from the star Aldebaran in the constellation Taurus takes 54 years to reach the earth. What is the distance in kilometers, if one light-year is about 9.5 × 1012 km? 5.13 × 1014 24. The distance across the Milky Way galaxy is estimated to be 80,000 light-years. What is that distance in kilometers, if one light-year is about 9.5 × 1012 km? 7.6 × 1017 25. How many seconds does it take sunlight to reach the earth, if the speed of light is 186,000 miles per second and the average distance from the sun to the earth is 9.3 × 107 miles? 5 × 102 26. How many seconds does it take sunlight to reach Neptune, if the speed of light is 186,000 miles per second and the average distance from the sun to Neptune is 2.8 × 109 miles? ≈ 1.5 × 104 27. The speed of light is approximately 3 × 105 km/sec. The average distance from the sun to Jupiter is about 778,000,000 km. How long does it take for sunlight to reach Jupiter? ≈ 2.6 × 103 sec 28. The speed of light is approximately 3 × 105 km/sec. The average distance from the sun to Mercury, is about 57,900,000 km. How long does it take for sunlight to reach Mercury? 1.93 × 102 sec 29. Approximately how many years does it take light from the star Bellatrix to reach the earth, if the distance is about 2 × 1015 km and one light-year is 9.5 × 1012 km? ≈ 2.11 × 102 30. Approximately how many years does it take light from the star Regulus to reach the earth, if the distance is about 6.7 × 1014 km and one light-year is 9.5 × 1012 km? ≈ 7.05 × 101 31. The star Antares in the constellation Scorpius is about 1.62 × 1015 km from the earth. How many light-years away is that, if one light-year is 9.5 × 1012 km? ≈ 1.71 × 102 32. The center of our galaxy, the Milky Way, is about 2.8 × 1017 km from the earth. How many light-years away is that, if one light-year is 9.5 × 1012 km? 33. The average distance between the sun and Pluto (the farthest planet) is 5.9 × 109 km, and the speed of light is 3 × 105 km/sec. Approximately how many hours does it take sunlight to reach Pluto? ≈ 5.5 34. The average distance between the sun and Venus (the second planet) is 1.1 × 108 km, and the speed of light is 3 × 105 km/sec. Approximately how many minutes does it take sunlight to reach Venus? ≈ 6.1 35. Radio waves travel at the speed of light (3 × 105 km/sec); they are extremely fast, but they are not instantaneous. This fact was apparent when Apollo 11 landed on the moon in 1969. Find out how long it took a radio signal to travel between the moon and earth, a distance of about 384,000 miles. 36. Radio waves travel at the speed of light (3 × 105 km/sec); they are extremely fast, but they are not instantaneous. This fact is important for space-age communications. For example, the spacecraft Voyager I sent its final pictures back to earth when it was 3.7 billion miles away. How many hours did it take for the signals to arrive? ≈ 3.4 ≈ 1.3 sec ≈ 2.95 × 104 37. The density of an object (measured in g/cm3 ) is its mass divided by volume. How dense is ice, if a 20 cm cube has a mass of 7.2 × 103 g? 9 × 10−1 g/cm3 38. The density of an object (measured in g/cm3 ) is its mass divided by volume. How dense is platinum, if a 5 cm cube has a mass of 2.8 × 103 g? 2.24 × 101 g/cm3 39. The density of an object is its mass per unit of volume. Find the density of the planet Saturn (in grams per cubic centimeter), if its mass is 5.7 × 1026 kg and volume about 8.5 × 1023 m3 . 40. The density of an object is its mass per unit of volume. Find the density of the earth (in grams per cubic centimeter), if its mass is 6 × 1024 kg and volume about 1.1 × 1021 m3 . ≈ 5.5 g/cm3 ≈ 6.7 × 10−1 g/cm3 ALG catalog ver. 2.6 – page 33 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. CA Topic: Order of operation. Directions: 6—Simplify. 98—Perform the indicated operation(s). 1. 3+2·5 13 2. 4+3·7 5. 7−3·5 −8 6. 12 − 4 · 3 9. −3 + 5 · (−2) 13. 6 · 5 + 3 −13 33 25 3. 6+2·4 14 4. 2+5·4 0 7. 9−2·4 1 8. 15 − 7 · 3 10. 4 − 5 · (−7) 39 14. −11 · 3 + 8 −25 17. 36 ÷ 4 + 2 11 18. 28 ÷ 4 + 3 21. 8 + 20 ÷ 4 13 22. −15 + 45 ÷ 5 25. −3 · 4 + 6 − 4 ÷ 2 11. −9 + 3 · (−2) 19. 40 ÷ 5 + 3 10 26. 7 · 8 − 5 + 6 ÷ 3 −8 53 20. 15 ÷ 3 + 2 11 30. 35 ÷ 7 − 2 + 4 · 3 15 27. 12 + 18 ÷ 6 − 3 · (−2) 7 9 28. 10 − 45 ÷ 5 + 4 · (−7) −27 31. 42 ÷ 6 + 2 · 4 − 7 32. 7 · 3 + 8 − 12 ÷ (−4) 8 27 32 33. (8 − 4)3 + 12 41. 10 − 3(5 − 2) 45. 5 + 3(7 − 4) 34. (7 + 2)(−3) + 9 24 37. (11 − 4)5 − 15 38. (5 − 8)6 − 4 20 46. 6 + 9(5 − 8) 14 −18 −22 42. 14 − 7(4 + 2) 1 49. (26 + 4) ÷ (30 ÷ 2) −28 28 36. (7 + 3)(−2) + 13 39. (7 + 2)3 − 5 22 40. (3 − 7)4 − 12 −28 43. 5 − 6(2 − 3) 11 44. 12 − 5(7 + 1) −28 47. 4 + 3(7 − 10) −21 50. (15 + 35) ÷ (80 ÷ 16) 2 35. (9 − 4)5 + 3 53. 25 ÷ 5 + (7 + 3)2 57. 4 · 5 + 2 · 3 − 21 ÷ 7 61. −2 · 7 + 9 · 5 − 16 ÷ 8 −5 29 −14 65. [2 + (3 − 5)6] ÷ (5 · 8 − 10) 67. [(5 − 7)3 + 8] · (5 − 3 · 4 ÷ 6) 56. 8(3 + 2) − 35 ÷ 5 −2 60. 4 · (−2) + 9 ÷ 3 − 6 ÷ (−3) −3 62. 9 · (−3) + 5 · 3 + 35 ÷ (−7) −17 64. −24 ÷ (−8) + 15 ÷ 3 − 8 · 2 −8 1 1 2 5 72. (5 + 6)2 + [12 ÷ (8 ÷ 4) − 3(7 − 9)] − 9 · 3 10 75. 23 + 52 −135 77. (32 − 4)3 125 78. (5 + 22 )2 81. 22 · 7 − 52 3 82. 25 + 4 · 52 79. 2(5 + 3)2 81 86. 47 − 5(2 − 4)3 −24 90. 4(24 ÷ 8 − 6)3 80. 7(8 − 3)2 128 83. 35 − 3(6 − 2)3 132 42 76. 42 − 24 33 −157 87 87. 2(3 − 4 · 2)2 −108 91. 5 (6 − 3)2 + 4 · 2 ALG catalog ver. 2.6 – page 34 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 50 85 33 −19 70. 21 ÷ (3 + 4) + [6(8 − 3) ÷ (1 + 9) − 1] 13 74. −5 · 33 89. 3(10 ÷ 5 − 4)3 19 68. [40 ÷ (10 − 2)] ÷ (3 · 4 − 2) 6 71. 4(3 + 2) − 5 [(7 − 4)2 + 8 ÷ (4 − 6)] 85. 45 + 3(7 − 8)5 55. (5 + 3)3 − 10 ÷ 2 66. [4 · (8 − 2 · 3) + 7] − (16 ÷ 2 + 6) − 13 69. 5 · 3 − [(4 + 18) ÷ 11 · (8 − 5)] + 4 −28 52. (16 − 46) ÷ (5 · 3) 58. 20 ÷ 4 − 12 ÷ 2 + 3(−6) 63. 25 ÷ 5 + 7 · (−3) + 4 ÷ 2 48 12 23 59. 12 ÷ 4 + 2 · (−7) − 18 ÷ (−3) −7 3 54. 3(8 − 6) + 42 ÷ 7 25 48. −8 + 5(2 − 6) −5 51. (49 − 10) ÷ (52 ÷ 4) 10 73. 3 · 42 22 24. 14 + (−35) ÷ 7 0 21 29. 40 ÷ 5 + 3 − 8 · (−2) 4 16. −5 · (−2) + 12 −43 23. 6 + 18 ÷ (−3) −6 −6 12. −8 + 4 · 3 −15 15. 9 · (−4) + (−7) 22 7 0 175 84. 22 + 2(5 − 7)4 54 88. 6(5 + 12 ÷ 6)2 294 92. −7 6 ÷ 2 + 3(5 − 3)2 −105 CA 93. −4 2(5 − 8)3 + 5 · 2 · 6 95. 32 · 5 + (2 − 4) 97. 2 − 15 94. 2 4 + 3(6 − 7)5 + 8 ÷ (−4) −24 96. 63 − [4 · (3 + 2) − 15]2 66 16 ÷ (1 + 3)2 − 8 ÷ (−4) + 12 2 99. 15 − 12 ÷ (22 + 3 − 1) + 4 101. 26 − 6 · 2 10 + 16 ÷ 4 105. 2·4−3 3·7−6 109. 9 ÷ (5 − 8) 7−2·3 113. 12 − 8 ÷ 4 (7 + 1)5 117. 98. 15 6·3+2 5−9 106. 2+5·4 2 · 3 − 17 −3 110. (7 − 4) ÷ 3 8−5·2 1 4 114. 4(5 − 7) (6 + 2) ÷ 4 118. [9 ÷ 3 + (−5)]4 (4 ÷ 2 · 3)2 ÷ 3 1 3 [18 ÷ 2 + 5] ÷ 7 1 18 [4 · 3 ÷ 2]2 24 ÷ (1 − 3)2 + 3 · (−2) 38 4 100. 12 + 25 ÷ (2 + 3) · (4 − 5)2 −21 102. 1 −2 0 17 103. 14 − 3 · 2 5 · 3 − 11 2 104. 5 · 2 − 10 4+6÷3 107. (5 − 3)4 6 · 4 − 12 2 3 108. (7 − 3)6 8+2·3 12 7 − 12 111. 6+5·2 4(3 + 5) 1 2 112. 8−7·2 3(4 − 2) −1 −4 115. 5(6 − 2) 2(4 + 3) 10 7 116. 12 ÷ (2 − 6) 15 ÷ 5 + 2 119. (3 − 5 · 23 + 1) ÷ 9 (5 − 6)3 + 6 ÷ 2 120. [15 ÷ 3 + 2 · (−7)]2 4 · 33 − 6(7 − 4) −5 −2 4 3 −2 121. 2 1 1 + · 3 3 2 122. 5 6 3 2 3 3 ÷ − 4 3 8 4 3 2 1 17 129. + · 4 3 2 24 1 3 2 1 + 133. + · 3 2 6 4 3 2 1 + · 5 3 5 2 1 1 13 ÷ + 3 3 6 6 2 1 2 13 130. + · 5 4 3 30 7 1 3 5 134. + · − 8 4 2 8 126. 125. 9 8 124. 7 16 5 1 13 7 ÷ − 6 4 6 6 5 3 1 2 131. − ÷ 6 4 8 3 4 1 3 1 135. − · + 5 3 10 2 127. 35 32 − 35 9 10 5 1 3 − · 8 4 4 123. 11 15 0 7 1 3 − · 10 5 4 11 20 5 2 3 19 ÷ + 9 3 4 12 9 1 2 13 132. − ÷ 10 4 5 8 7 4 2 2 136. − ÷ + 10 5 3 5 128. 8 15 1 − 20 137. 7 3 2 1 − ÷ · 8 4 3 3 138. 1 4 3 4 1 5 + · ÷ 7 21 5 2 139. 5 3 141. 2 2 1 + 6 3 145. 1 2 + 3 9 2 11 18 − 5 27 149. 2.3 + 0.5 · 4.6 10 81 4.6 3 4 5 1 + − · 10 5 3 8 140. 17 48 142. 3 1 3 + 2 2 146. 3 1 3 2 − + 4 2 8 13 8 150. 7.1 + 0.4 · 3.5 1 − 64 8.5 5 5 3 2 − · ÷ 9 6 5 3 − 25 36 143. 2 1 2 − 3 3 147. 11 1 − 24 3 − 59 5 2 + 6 3 3 − 23 151. −6.2 + 0.72 ÷ 0.9 144. 2 3 5 − 8 4 148. 5 1 + 32 4 1 16 1 5 − 3 6 3 152. 3.4 + 1.44 ÷ 0.12 1 8 15.4 −5.4 153. 2.4 + 1.12 157. 154. 0.55 − 0.52 3.61 3.2 + 1.6 4.3 + 0.7 · 11.0 0.4 158. 161. (6.1 + 2.3)0.5 + 0.35 ÷ 0.5 9.5 − 3.8 · 2.5 6.3 ÷ 0.07 0 159. 1.43 5.7 − 2.3 5.8 · 0.5 − 1.2 2 162. 0.3(1.5 − 2.6) + 4.2 ÷ 6 4.9 163. 0.54 ÷ 0.6 − (3.5 + 2.9)1.25 155. 0.62 + 0.92 0.3 −7.1 156. 2.84 − 1.22 160. 4.7 − 2.4 · 1.5 3.2 + 1.2 7.3 164. 0.084 ÷ 0.21 + 0.75(5.8 − 7.4) −0.8 165. (4.2 + 1.5 · 1.2) ÷ (2.1 − 0.6) 4 166. (2.8 − 1.8) · (4.3 + 2.1 ÷ 0.7) 7.3 167. (5.6 + 3.2 · 2.0) ÷ (4.8 ÷ 1.2) 3 168. (9.6 ÷ 3.2) · (4.1 + 3.9 ÷ 13) 13.2 ALG catalog ver. 2.6 – page 35 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 2.4 0.25 CB Topic: Absolute value. Directions: 6—Simplify. 1. |18| 5. − |−37| 9. 98—Perform the indicated operation(s). 18 |−2.6| 1 13. − 3 6 −37 2. |−11| 11 3. |−20| 20 4. |28| 6. − |22| −22 7. − |14| −14 8. − |−12| 10. |1.5| 2.6 1.5 7 14. − − 2 −3 16 −2 11. −3 17. |−(−45)| 45 18. − |−(−88)| 21. −5 |−12| −60 22. 8 |−6| 1 25. 2 − 10 26 29. − 65 23. −12 |8| −72 30. − 24 2 5 −3 33. 26 − |−16| 10 34. |−8| − 13 37. −3 |8| + 10 −14 38. −6 − 5 |12| 41. 2.4 + |−3.6| 6 1 3 45. − 7 − 4 4 49. |14 − 9| 2 5 46. 1 + −3 3 6 −8 50. |9 − 14| 62. − |−67 − 16| 60 69. − |9 − (11 + 7)| 20 0 70. − |−(64 − 26) + 12| −9 36. −5 − |21| 39. 23 − 4 |−7| −5 40. 7 |−6| + 36 48. 23 4 2 3 − − 10 5 52. |−8 + 6| 2 9 59. − |−2 + 8| −6 −26 44. 0.1 − 7 |0.3| −23 78 −2 1 − 10 2 56. − |16 − 5| −11 60. |−21 − (−20)| −30 67. − |−(−51 + 20)| 24 − 23 0 55. |1 + (−10)| 50 −26 35. − |11| + 11 63. − |−8 + (−22)| −83 66. |−(−38 + 14)| 22 −50 32. − −75 15 51. |−6 + 8| 5 63 2 28. − |−39| 3 48 1 1 47. −3 + 2 2 4 5 12 −1.08 24. 10 |−(−5)| −96 43. −2 |5.5| − 12 1.4 58. |−15 − (−15)| −20 61. |−30 + (−30)| 65. |−(45 − 67)| −66 54. |23 + (−43)| −6 57. − |−3 + 23| −5 42. |−0.35| + 1.05 5 53. − |6 − 12| 105 31. −7 1 56 20. |−(−63)| −12 27. 3.2 |−(−15)| −15 −12 16. − |1.08| −0.44 19. − |−(−12)| −88 48 26. −6 |−2.5| 1 5 5 12. −1 6 2 3 15. − |−0.44| − 72 28 −31 71. |−(28 − 48) − 75| 55 64. |−19 − 13| 1 32 68. − |−(94 − 49)| 72. |−23 − (4 − 15)| −45 12 −26 73. − |3(2 − 8)| 74. |−5(10 + 2)| −18 77. |(12 − 8) − (6 + 18)| 20 79. |(25 − 30) + (14 − 20)| 81. |(1 − 14)(5 − 7)| 26 75. − |−4(4 − 12)| 60 11 82. − |(3 + 6)(14 − 8)| −2 86. −14 + 2 |−(6 + 4)| 76. |7(−9 + 6)| 78. − |(−7 + 23) − (16 − 11)| −11 80. − |−(12 + 6) + (−4 + 21)| −1 83. − |(15 − 5)(2 + 7)| −54 85. 4 |−9 + 5| − 18 −32 21 84. |(2 − 16)(13 − 10)| −90 6 87. 25 − 6 |5 + (−25)| −95 ALG catalog ver. 2.6 – page 36 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 88. −10 |4 − 8| + 36 −4 42 CB 89. |−5| − |8| 90. − |15| − |−13| −3 93. − |14| + |−28| 94. |−7| + |−17| 14 3 1 97. − + −1 4 4 101. − |2.5| − |−4.6| −7.1 92. − |−20| + |−8| 20 95. − |16| − |−14| 24 7 1 98. − − 10 2 2 91. |−9| + |−11| −28 −30 1 5 99. − −2 + 2 6 1 5 102. − |−0.47| + |0.83| − 53 103. |10.2| − |−7.4| 2.8 96. |−42| − |−6| −12 36 7 2 100. − − 12 3 − 54 104. |−1.06| + |−0.94| 2 0.36 105. |−9| · |−6| 106. − |−4| · |18| 54 109. |5 − 18| + |−14| 113. −6 |1.5| − |8| 27 117. 2 |17 − 10| − 3 |5| 110. |24| − |10 + 21| 114. 2 |12| − 8 |−2| −17 −1 107. |12| · |−7| −72 108. − |5| · |−21| 84 111. |−7| + |6 − 7| −7 118. − |−33| + 4 |7 + 4| 11 112. − |4 + 21| + |−25| 8 115. −5 |0.6| + 2 |−2| 8 −105 1 119. −7 |8| + |24 − 18| 116. |−14| + 11 |−3| 0 47 120. 4 |13 + 3| − |−52| 12 −50 121. |4 − 9| + |6 − 11| 10 122. 9 |3 + 4| − |2 − 42| 23 123. |15 − 21| − 10 |3 − 6| 124. −7 |2 + 9| + 7 |2 − 9| −24 125. 3|−4| − 14 129. |−42| 3 133. |30| − |−3| 137. |−15| − |3| |−6| 141. |6| − |−11| |−8| + |−7| 2 14 −10 3 − 13 126. − 10 + 5 |−3| −25 28 127. 6 8 − 2|−7| −6 128. −3 8|−2| − 18 130. − |14| 35 − 25 131. |−30| −48 − 58 132. − |−84| 7 134. |−33| |−88| 3 8 135. − |36| |144| − 14 136. |108| |−18| 138. |−8| + |−10| − |3| −6 139. |−20| |14| + |−6| 140. − |−32| |−3| − |11| 4 142. |−13| − |−4| |2| − |−5| −3 143. |−7| + |−3| |−7| − |−3| 144. |8| + |−19| |−13| − |4| 3 ALG catalog ver. 2.6 – page 37 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 5 2 −12 6 36 CC Topic: Order on the number line. Directions: 104—Fill in each blank with the correct symbol (<, > or =). > 1. 5 5. −3 < 9. −6 < 13. 5 3 = > 21. 10 25. 0.75 1 3 > 33. −3.5 37. 3 4 10 2 6. 2 0 10. 0 = 10 2 17. −3 29. 2. 20 3. 4 > −5 7. −4 > −4 11. 0 = 14. − 63 > < > 15. − 20 5 −2 3 4. 7 < 11 8. 7 > −6 9 − 10 12. − 12 = 16. 3 −4 < 0 = 12 4 = 18. 1.00 = 1.0 19. 7.1 = 71 10 20. − 36 10 −10 22. −15 < 15 23. − 23 < 2 3 24. 7 6 > − 76 28. 4 3 = 1.3 = 3 4 26. 4 5 = 0.8 27. −0.6 0.3 30. 2 3 < 0.7 31. 0.16 > = −3.55 < 34. −7.22 38. 43 84 42. − |5| 8 = > − |−11| 46. |−12| > 49. 24 = 42 50. 23 < 32 54. −5 · 6 = = 53. (−2)(−8) 2·8 −7.2 > 1 2 45. 11 44. − |−10| −12 47. |−7| −7 48. − |8| 51. 34 3(−10) 65. 5 − 3 > 3−5 66. 12 − 15 < > 75. 6 − (−2) 77. 5 + 2 · 3 −2 − (−6) < 2+5·3 < 79. 9 + 6 ÷ (−2) 81. 2(3 + 5) > < 10 ÷ 5 > 6 − 9 ÷ (−3) 2(3) + 5 > 43 59. 3(−6) = < 3÷5 63. 2 ÷ (−8) < 67. −4 + 2 15 − 12 52. 52 55. 2 ÷ (−4) 70. 4 − 9 −2 − (−6) −2 + 4 −5 − (−1) 74. −2 + (−3) < (−3) + 2 76. −4 − (−4) > −4 − 4 > 3−4·2 = > −5(3) + 5(9) 84. −3(2 − 7) 85. 10 ÷ 2 + 3 > 10 ÷ (2 + 3) 86. −12 ÷ 4 − 2 89. 15 ÷ (3 + 2) 91. 8 + 2(−4) = = 18 ÷ 3 − 3 −15 ÷ (−3) − 2 −8 + 4(2) = 80. 12 − 3 ÷ (3) 82. 7(8 + 14) 88. 15 ÷ 3 + 8 92. −5 + 3(−3) 8 − 6 ÷ (−2) 7(8) + 7(14) 3(2) + 7 > > −12 ÷ (4 − 2) −20 ÷ 5 − 1 90. 18 + 10 ÷ (−2) ALG catalog ver. 2.6 – page 38 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. > 68. −1 + 6 = = < 56. −12 ÷ 4 −8 + 3 = = 7 − 12 ÷ (−2) 2(1 − 8) |−10| |−8| 25 64. −12 ÷ 3 −8 ÷ 2 = < > 72. −1 + (−3) 78. 4 − 3 · 2 < −3.30 − 17 30 60. 4 · 3 < = −2 ÷ 4 < 2·9 83. −5(3 − 9) 87. −18 ÷ (9 − 3) > |−16| 62. 5 ÷ 3 73. −5 − 3 36. −3.03 = 8÷6 −4 − (−6) −1.09 43. |16| < = < − |−5| 61. 6 ÷ 8 −5 + 7 35. −1.9 > 5 6 32. 0.84 40. − 35 58. 10 ÷ (−2) = < 1 6 − 23 6 ÷ (−2) 69. −3 + 5 − 23 < > > = −3.6 39. − 17 24 57. 6 ÷ 3 71. 8 − 6 1 −3.00 < 37 48 41. |−8| < = 15 ÷ (−5) −6 · 2 < > −3 ÷ 12 −6 + 1 CC 93. 4(9 − 5) 5+3 95. 3(2) 5(3 + 9) = 5(3 + 1) 19 − (4 + 5) 94. 3(6 + 2) 4+2·4 < 5(3) 6(2 + 8) 96. 2 + 12 ÷ 2 6(7 − 3) 97. 42 + 52 > 62 98. 82 − 32 = 72 99. 92 − 42 101. 22 + 42 < (8 − 2)2 102. 72 − 32 > (7 − 3)2 103. (2 − 5)2 = 30 + 6 ÷ 3 4(6 − 2) = > 8+2·4 3(7 + 9) 52 < = 100. 52 52 − 22 42 + 32 > 104. (4 + 6)2 42 + 62 Irrational numbers < 105. 3 √ 2 < 113. −2 = 109. 117. √ √ 123. 10 − √ 125. 9 4 < 2 110. 5 > √ − 4 114. −5 > 65 121. 4 + 106. π π 8 > 10 √ 50 > 16 − < 7− √ √ √ 5 √ 111. − 7 √ − 25 √ 50 115. 6 119. −6 122. 7 + 15 124. 9 − −π > √ = 85 √ 4 9 √ √ 127. − 4(− 16) 107. −3 = < 118. 7 > 4 < √ √ − 64 112. −3 < = √ 35 √ 120. − 77 2+ > 12 − < < √ < 101 √ 150 √ −4 16 √ √ − 4(− 9) 129. If x > 0, then −x < 0. 130. If y < 0, then −y > 0. 131. If −x < 0, then x > 0. 132. If −y > 0, then y < 0. 133. If a > 0 and b > 0, then ab > 0. 134. If a < 0 and b > 0, then ab < 0. 135. If a > 0 and b < 0, then ab < 0. 136. If a < 0 and b < 0, then ab > 0. 137. If c < 0, then 1 c < 138. If c > 0, then − 0. 139. If c < 0 and d < 0, then 141. If a − b < 0, then b − a 143. If x − y = 0, then y − x 1 c < 0. c d > > 0. 142. If x − y > 0, then y − x 0. 144. If |a − b| = 0, then b − a = 0. 140. If c < 0 and d > 0, then − ALG catalog ver. 2.6 – page 39 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. c d < = > 0. 0. 0. −4 √ − 3 √ 116. 3 60 √ 128. − 36 > 36 √ 24 √ 126. −16 4 > −7 108. −π 9 > −9 CD Topic: Properties of Algebra. Directions: 105—Name the property which justifies each statement. 1. r+7=7+r 3. m+n+8=n+m+8 5. a(−20) = −20a 7. a(x + y) = (x + y)a 9. (2a)(x) = 2(ax) assoc. mult. 10. 2(5x) = (2 · 5)x assoc. mult. 11. 9k(k) = 9(k · k) assoc. mult. 12. (3y)y = 3(y · y) assoc. mult. comm. add. comm. add. comm. mult. comm. mult. 2. k + 25 = 25 + k 4. 5 + (m + p) = 5 + (p + m) 6. ac(8) = 8ac 8. 5a = a(5) comm. add. comm. add. comm. mult. comm. mult. 13. 4 + (16 + 7) = (4 + 16) + 7 assoc. add. 14. (8 + 17) + 3 = 8 + (17 + 3) 15. (c + 10) + 8 = c + (10 + 8) assoc. add. 16. (3 + a) + a = 3 + (a + a) assoc. add. 18. a + (b + c) = (b + c) + a comm. add. 17. a + (b + c) = a + (c + b) 19. a(bc) = (bc)a 1 21. x =1 x 1 =1 3 23. 3 20. a(bc) = a(cb) comm. mult. mult. inverse mult. inverse mult. inverse 24. 1 5=1 5 mult. inverse 26. 3.5 + (−3.5) = 0 add. inverse 27. y 2 + (−y 2 ) = 0 28. −x + x = 0 add. inverse mult. identity mult. identity add. identity add. identity 34. ab + 0 = ab 35. 5 + 0 = 5 add. identity 36. −8 + 0 = −8 37. a(0) = 0 mult. prop. zero 38. 0 · 9 = 0 40. 0 · 3c = 0 mult. prop. zero 41. If ab = 0, then a = 0 or b = 0 45. If add. identity mult. prop. zero mult. prop. zero 42. If xy = 0, then x = 0 or y = 0 zero product 43. If x(x + 1) = 0, then x = 0 or x + 1 = 0 mult. identity 32. 3d(1) = 3d 33. y + 0 = y 39. (−5)(0) = 0 add. inverse add. inverse 30. (1)(−3x) = −3x mult. identity 31. (1)(45) = 45 comm. mult. 1 22. a=1 a 25. 4 + (−4) = 0 29. b(1) = b comm. add. assoc. add. zero product m m = −10(3) = 3, then −10 −10 −10 zero product 44. If (a − 1)b = 0, then a − 1 = 0 or b = 0 46. If 4 4 = −6, then (x) = −6(x) x x 48. If 2 3 2 3 x = 4, then x = (4) 3 2 3 2 zero product mult. prop. equality mult. prop. equality 47. If a a = b, then (c) = b(c) c c 49. If 10y = 50, then 10y 50 = 10 10 mult. prop. equality div. prop. equality 51. If 3x = −27, then 3x ÷ 3 = −27 ÷ 3 div. prop. equality 50. If ac = b, then ac ÷ c = b ÷ c 52. If −7p = 14, then ALG catalog ver. 2.6 – page 40 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −7p 14 = −7 −7 mult. prop. equality div. prop. equality div. prop. equality CD 53. If x + 18 = 33, then x + 18 − 18 = 33 − 18 54. If a + y = x, then a + y − y = x − y subtr. prop. equality subtr. prop. equality 55. If y − 2 = −8, then y − 2 + 2 = −8 + 2 56. If pq − r = 0, then pq − r + r = 0 + r add. prop. equality add. prop. equality 57. If x − a = y, then x = y + a 59. If x = 4, then x = 4y y 61. If a = −5, then a = −15 3 add. prop. equality mult. prop. equality mult. prop. equality (and subst.) 63. If y − 3 = 18, then y = 21 add. prop. equality (and subst.) 58. If y − k = 15, then y = 15 + k 60. If 2 = 9, then 2 = 9d d 62. If y = 2, then y = 8 4 reflexive 66. 4m − 7 = 4m − 7 67. a − 12 = a − 12 reflexive 68. d + 18 = d + 18 69. If 0 = x + 15, then x + 15 = 0 71. If 25 = a2 , then a2 = 25 mult. prop. equality mult. prop. equality (and subst.) 64. If y − 1 = 10, then y = 11 65. 2y + 5 = 2y + 5 add. prop. equality (and subst.) reflexive reflexive 70. If x − 9 = 24, then 24 = x − 9 symmetric add. prop. equality symmetric 72. If 4(w + 1) = 0, then 0 = 4(w + 1) symmetric symmetric 73. If a = 6 + 9, and 6 + 9 = 15, then a = 15 trans. 74. If p = 30 − 8, and 30 − 8 = 22, then p = 22 75. If 2(10) = 20, and x = 2(10), then x = 20 trans. 76. If y 2 = 9, and 9 = 3 · 3, then y 2 = 3 · 3 77. 2(3 + d) = 6 + 2d 78. 8(w + 2) = 8w + 16 distr. 79. 3(−a + b) = −3a + 3b 81. 2w + 10 = 2(w + 5) 83. 4r − 12 = 4(r − 3) 87. −3(a − 2) = −3a + 6 86. −1(−x + y) = x − y distr. distr. 1 (2k + 6m) = k + 3m 2 distr. 91. a(c + 3) + b(c + 3) = (a + b)(c + 3) 93. If x = 24 − 16, then x = 8 subst. 95. If a = 15 ÷ (−3), then a = −5 97. 9 + (3 + 7) = 9 + 10 99. (2 + 6)a = 8a subst. subst. distr. subst. distr. distr. 84. 5x − 20y = 5(x − 4y) distr. 85. 10(k − m) = 10k − 10m 89. 82. 3c + 3d = 3(c + d) distr. trans. distr. 80. (−7)(r + p) = −7r − 7p distr. distr. distr. 88. 6 [y + (−5)] = 6y + (−30) distr. 90. 0.1m + 5 = (0.1)(m + 50) distr. 92. (w − 5)(x + y) = (w − 5)(x) + (w − 5)(y) 94. If y = 7 · 9, then y = 63 subst. 96. If n = 12 + 13, then n = 25 98. (12 − 7)(3) = (5)(3) subst. 100. 3b + (15 − 10) = 3b + 5 ALG catalog ver. 2.6 – page 41 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. trans. subst. subst. distr. CE Topic: Using distributive property. Directions: 59—Rewrite each expression using the distributive property. 1. 4(a + b) 4a + 4b 2. (c + d)9 9c + 9d 3. (m + n)p 5. 7j + 7h 7(j + h) 6. 2r + pr r(2 + p) 7. wx + xy 9. (1 + r)(10) 13. 4(c − 6) 4c − 24 17. ab − bc b(a − c) 21. 4k + 4 · 2 25. 14 − 7x 29. 8d + 8 10 + 10r 4(k + 2) 7(2 − x) 8(d + 1) 33. −12(a + b) −12a − 12b 37. −5(y − 1) −5y + 5 41. −10f − 10g −10(f + g) 45. 2(x + y + z) 10. 25(a + 1) 25a + 25 4. k(x + y) x(w + y) 8. bc + 3b 11. a(b + 1) ab + a 12. (x + 1)y ax − ay 16. (c − d)(x) cx − dx 18. 4g − gh g(4 − h) 19. wx − wy w(x − y) 20. km − 7m m(k − 7) 23. 2 · 6 − 2r 2(6 − r) 24. 8 · 10 + 8d 22. 5a − 5 · 3 5(a − 3) 26. 20 + 10s 10(2 + s) 27. 9y + 27 30. 10 + 10c 10(1 + c) 31. 5 − 5x 34. (m + 4)(−9) 38. (−1)(a − b) 42. −ax − ay −9m − 36 −a + b −a(x + y) −3 + d 40. (r − 5)(−6) −6r + 30 −7(a − 1) 44. −5p + 25 wz + yz + 3z 52. k(m − n + p) km − kn + kp 55. ax − ay + az 56. 2b + 2c − 2d a(x − y + z) 20w + 40 −5(p − 5) 48. (w + y + 3)(z) 3p − 3r + 9 58. (4w + 8)(5) 2(y − 1) −p − r 51. (−p + r − 3)(−3) 15(c + d − 2) 5(w − 6) 36. (p + r)(−1) 39. (3 − d)(−1) 43. −7a + 7 8(10 + d) −4 − 4w ab + ac + ad 54. 15c + 15d − 30 6r + 3p 32. 2y − 2 5(1 − x) 47. a(b + c + d) 50. (−1)(x + y − z) 8(k + m + 1) 28. 5w − 30 9(y + 3) 35. −4(1 + w) −x − y + z 57. 3(2r + p) xy + y 15. a(x − y) 4m + 4n + 4 53. 8k + 8m + 8 b(c + 3) 7y − 14 46. (m + n + 1)(4) 7a − 7b − 7 kx + ky 14. (y − 2)7 2x + 2y + 2z 49. 7(a − b − 1) mp + np 2(b + c − d) 59. 6(2k − 3m) 12k − 18m 60. (−2)(10 − 7c) −20 + 14c 61. 32y − 16 65. 6 m + 69. 3 4 1 2 16(2y − 1) (12 − 4k) 66. 8 6m + 3 9 − 3k 73. (0.1)(50x − 10) 62. 9a − 18b 5x − 1 70. 2 5 5 4 −a 9(a − 2b) 10 − 8a (10a + 20b) 4a + 8b 74. (6a − 10)(−0.5) 63. 2m + 4r 67. 15 71. a + 2b 78. 10(1.3m + 0.6p) 2 3x − 1 (8y + 2) 10x − 15 12y + 3 75. (−0.1)(100c + 10d) −3a + 5 77. (0.2a + 0.4b)(5) 3 2 2(m + 2r) 64. 10x + 5 68. 12 72. 5(2x + 1) 1 6c + 3 2c + 36 4 7 (21m − 35p) 12m − 20p 76. (0.5)(2k + 2) k+1 −10c − d 79. (1.5 − 2.5y)(4) 13m + 6p ALG catalog ver. 2.6 – page 42 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 6 − 10y 80. −100(0.02w − 0.1z) −2w + 10z CF Topic: Translating algebraic expressions. Directions: 47—Write as an algebraic expression. 1. m plus 24 5. k minus 18 m + 24 k − 18 2. r plus thirty 6. w minus sixteen r + 30 3. p plus q 7. 20 minus a p+q 20 − a 4. Twelve plus y 8. a minus b 12 + y a−b w − 16 9. A number plus 15 n + 15 13. 12 minus a number 12 − n 17. The sum of n and 3 n+3 10. A number plus twenty-seven n + 27 11. 23 plus a number 14. Twenty-four minus a number 24 − n 15. A number minus 21 18. The sum of 15 and y 19. The sum of 3a and 2x x+5 25. a increased by 6 a+6 16. A number minus fourteen n − 14 n − 21 15 + y 21. Five more than x 12. Seventeen plus a number 17 + n 23 + n 20. The sum of w and 4y w + 4y 3a + 2x 22. Seventeen more than w w + 17 23. Eight more than twice k 2k + 8 24. Eleven more than half of m m + 11 26. p increased by 14 27. Twelve increased by a third of k 12 + k 28. Nineteen increased by a fourth of r 19 + r p + 14 3 2 4 29. A number decreased by 15 n − 15 30. A number decreased by nine n − 9 31. 12 decreased by a number 12 − n 32. 23 decreased by a number 23 − n 33. A number reduced by 7 n − 7 34. A number reduced by eighteen n − 18 35. 55 reduced by some number 55 − n 36. 27 reduced by some number 27 − n 37. A number increased by thirteen n + 13 38. A number increased by thirty-five n + 35 39. A number increased by 0.12 n + 0.12 40. A number increased by 6.25 n + 6.25 41. y diminished by 5 42. x diminished by 8 43. 14 diminished by the quantity r 14 − r 44. 16 diminished by the quantity 2m 16 − 2m y−5 x−8 45. A number exceeded by 21 n + 21 46. A number exceeded by 18 n + 18 47. A number diminished by 7 n − 7 48. A number diminished by 11 n − 11 49. Twenty added to a number n + 20 50. Sixteen added to a number n + 16 51. A number added to −2 −2 + n 52. A number added to −6 −6 + n 53. 29 subtracted from y 54. Fifteen subtracted from v v − 15 55. w subtracted from 26 56. r subtracted from m 57. A number subtracted from 32 32 − n 58. A number subtracted from 28 28 − m 59. Thirteen subtracted from a number n − 13 61. 8 less than m 62. 12 less then a a − 12 63. 3 12 less than q q−3 1 2 64. 0.5 less than y y − 0.5 66. r less than 22 22 − r 67. x less than 2y 2y − x 68. m less than 5p 5p − m y − 29 65. w less than 17 m−8 17 − w m−r 26 − w 60. 17 subtracted from a number n − 17 69. The difference between x and 9 x − 9 70. The difference between a and 3b a − 3b 71. The difference between 24 and y 24 − y 72. The difference between 17 and p 17 − p 73. The difference between a number and 32 74. The difference between a number and 21 75. The difference between 15 and a number 15 − n 76. The difference between 27 and a number 27 − n n − 32 n − 21 ALG catalog ver. 2.6 – page 43 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. CF 77. Seven times a number 7n 78. Four times a number 4n 79. A number multiplied by 13 13n 80. A number multiplied by −25 −25n 81. The product of 32 and w 32w 82. The product of 26 and c 26c 83. The product of p and −8 −8p 84. The product of k and −4 −4k 85. The product of 3, r, and s 3rs 86. The product of 9, x and y 9xy 87. The product of a, c and −5 −5ac 88. The product of b, −7 and h2 −7bh2 89. Three–fifths of a number 3 n 90. One–third of a number 91. Sixty percent of a number 0.6n 92. Forty percent of a number 0.4n 95. Three–fourths of the quantity x 3 x 96. Two–thirds of the product mn 2 mn 99. 32 divided by a number 32 100. 27 divided by a number 27 1 n 3 5 93. One–fourth of w w 4 5 a 6 94. Five–sixths of a 4 97. A number divided by 10 n 98. A number divided by 16 n 10 n 16 101. The quotient of y divided by 3 y 102. The quotient of z divided by 11 z 3 106. 45 divided by the product of m and n 22 cd n 103. The quotient of 14 divided by k 14 14 + 3n 110. The sum of 12 and five times a number 5z 107. Fifteen divided by the sum of a and b 15 a+b 45 mn 109. The sum of 14 and three times a number 104. The quotient of w divided by 5z w k 11 105. 22 divided by the product of c and d 3 108. Nineteen divided by the sum of x and y 19 x+y 111. The sum of a and four times b a + 4b 112. The sum of d and one–half of c d + c 2 12 + 5n 113. Twice the sum of a and 3 2(a + 3) 114. Ten times the sum x plus y 10(x + y) 115. Two–thirds of the sum 7 plus c 2 (7 + c) 116. One–fifth of the sum of r and 2p 1 (r + 2p) 117. One–half of the difference of x and y 118. Twice the difference of a and b 2(a − b) 119. Three–fourths of the difference between a number and 16 120. Six times the difference between a number and 24 1 (x − y) 2 3 3 (n − 16) 4 121. 8 less than five times a number 5n − 8 125. −2 subtracted from a number n − (−2) 122. 12 less than twice a number 2n − 12 126. The difference between w and −4 w − (−4) 5 6(n − 24) 123. 25 more than half of a number n + 25 2 124. 9 more than four times a number 4n + 9 127. The opposite of the sum of 27 and b 128. The sum of 32 and the opposite of c 32 + (−c) −(27 + b) 129. A number squared 130. The square of a number n2 131. A number cubed 133. A number to the fifth power n5 134. A number to the eighth power n8 135. a to the sixth power 137. Twice the cube of a number 2n3 138. Three times the square of a number 3n2 139. Two times x to the fourth power 2x4 140. Five times y cubed 141. The sum of a number and its square n + n2 142. The sum of a number and its cube n + n3 143. The difference between y cubed and y y3 − y 144. The difference between x squared and x n2 n3 132. The cube of a number n3 a6 ALG catalog ver. 2.6 – page 44 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 136. m raised to the tenth power m10 5y 3 x2 − x CF 145. Nineteen plus a squared 19 + a2 146. Fifteen plus b cubed 147. The quantity x plus twelve (x + 12) 148. The quantity y minus four (y − 4) 149. The quantity 3a plus five (3a + 5) 150. The quantity c minus 2d (c − 2d) 151. Six times the quantity m plus seven 6(m + 7) 152. Twice the quantity p minus five 2(p − 5) 153. Four times the quantity a plus b 154. One-half the quantity x plus four 1 (x + 4) 155. The quantity y plus three squared (y + 3)2 156. The quantity a minus six cubed (a − 6)3 158. The square of the quantity x minus eight 159. Three times x plus y squared 3x + y2 160. p squared plus four times p p2 + 4p 163. The opposite of a number increased by 7 164. The opposite of a number decreased by 15 15 + b3 2 4(a + b) 157. The quantity m plus n to the fourth power (m + n)4 (x − 8)2 Ambiguous problems 161. The opposite of p decreased by 10 −p − 10 or −(p − 10) 162. The opposite of m increased by 4 −m + 4 or −(m + 4) −n + 7 or −(n + 7) −n − 15 or −(n − 15) 165. Three times a number increased by 13 3n + 13 or 3(n + 13) 166. Twice a number increased by 28 170. Six times a number decreased by the number 4n + 2n or 4(n + n) 6n − n or 6(n − n) n n−5 − 5 or 2 2 1 1 n − 8 or (n − 8) 4 4 2n + 28 or 2(n + 28) 169. Four times a number increased by the number 173. 5 less than a number divided by 2 167. One–fourth of a number decreased by 8 174. 8 less than a number divided by 3 171. Two times a number decreased by half the number 2n − 1 1 n or 2(n − n) 2 2 175. 2 more than a number divided by 5 n n−8 − 8 or 3 3 n n+2 + 2 or 5 5 168. Five times a number decreased by 20 5n − 20 or 5(n − 20) 172. One–half of a number increased by twice the number 1 1 n + 2n or (n + 2n) 2 2 176. 10 more than a number divided by 4 n n + 10 + 10 or 4 4 Common units 177. The number of inches in f feet. 12f 178. The number of feet in k yards. 3k 179. The number of centimeters in x meters. 100x 180. The number of millimeters in y centimeters. 10y 181. The number of inches in f feet and y yards. 182. The number of millimeters in x meters and y centimeters. 183. The number of cents in q quarters and d dimes. 25q + 10d 184. The number of cents in n nickels and p pennies. 5n + p 187. Five times the number of cents in x dollars. 188. Six times the number of cents in y nickels. 12f + 36y 1000x + 10y 185. The value (in cents) of d dimes and n nickels. 10d + 5n 186. The value (in cents) of p pennies and q quarters. 25q + p ALG catalog ver. 2.6 – page 45 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 500x 30y CG Topic: Statements about real numbers. Directions: 15—Solve. 111—Tell whether each statement is sometimes, always, or never true. 112—For what value(s) of x is the statement true? 113—Which of the following statements are true? 114—Which statements are true for all real numbers? 1. x = |x| 0 2. x = − |x| 0 3. x − |x| = 0 5. x = −x 0 6. x−x=0 0 7. x − (−x) = 0 9. x(0) = 0 10. x(1) = x IR 13. −[−(−x)] = −x 17. 0 ÷ x = 0 21. x 1 ÷ =1 x 1 25. |x| = −1 x 29. −x3 = x3 33. 37. 41. 45. √ x=x 0 30. x2 = (−x)2 x2 = |x| 49. x > −x |x| =1 −x 42. IR 46. IR 39. √ −x2 = |−x| IR 43. √ x2 = |−x| 47. √ √ x5 = x2 x (−x)2 = |−x| √ √ −x3 = −x x 50. −x < x x>0 x≤0 0 51. x < x<0 |x| − x = 0 8. −x − (−x) = 0 57. x ≤ x2 54. −x < |x| IR 20. x ÷ (−1) = −x 24. −1 1 = x −x 28. − |x| = −1 |x| 44. IR 48. x≥0 58. x > −x2 IR 61. x + 1 < x 62. x − 2 < x Ø 65. |x + 3| = |x| + 3 x= 6 0, x 6= 1 73. (x − a) = −(a − x) 70. (x − 1)2 = x2 − 1 0 IR x−a = −1 a−x x 6= a IR 1 x 64. |4 − x| > x x=1 IR x<0 Ø x≤2 68. |x − 4| = |x| − 4 x≥4 1 71. √ x2 + 1 = x + 1 74. (x + a)2 = x2 + 2ax + a2 75. |x − a| = |a − x| 78. (x − a)2 = x2 − a2 0 x≥0 60. −x2 > (−x)2 x≥0 0 IR 72. √ x2 − 4 = x − 2 IR 79. √ x2 − a2 = x − a x=a ALG catalog ver. 2.6 – page 46 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. x=a 2 76. (x − a)(x + a) = x2 − a2 IR 77. x≥0 56. −x > − |x| x≤0 69. (x + 3)2 = x2 + 9 0 −1 < x < 0 or x > 1 IR 67. |x − 1| = |1 − x| IR (−x)2 = |x| 52. x > 63. |x − 2| < x IR 66. |x − 2| = |x| + 2 x≥0 59. x2 ≤ x3 x= 6 0 p √ x6 = x3 IR IR √ 40. ( −x )2 = − |x| 0 1 x 55. − |x| ≤ |x| x>0 x 6= 0 √ 36. ( x )2 = x x≥0 0 16. x − (−x) − x = x 0 < x < 1 or x < −1 53. x ≥ − |x| 0 32. −x2 = (−x)2 IR √ x2 = x p x 6= 0 x>0 35. 0 0 x 6= 0 31. −x3 = (−x)3 IR √ 38. ( −x )2 = −x x≤0 1 =x x − |x| = −1 x 27. x<0 √ √ 34. − x = −x IR 15. −x − [−(−x)] = 0 23. 1 ÷ 4. 1 12. x =1 x 19. x ÷ (−x) = −1 x 6= 0 26. 0, 1 x4 = x2 1 1 x IR x 6= 0 x<0 (−x)2 = −x √ 22. x = x 6= 0 p √ 18. x ÷ x = 1 x 6= 0 0 11. x(−1) = −x IR 14. x − [−(−x)] = 0 IR 0 80. |x − a| =1 |a − x| x 6= a CH Topic: Understanding the roots of equations. Directions: 150—Tell whether the given number is a solution to the equation. Is it the only solution? 1. 2x + 12 = 0; −6 2. 3y − 5 = 19; 8 yes 3. a+5 = −3; −11 2 4. x−9 = 3; 21 4 yes 5. 5y + 3 = 3y + 2y; 0 Ø 6. 7a − 14 = 7(a + 2); 16 7. −4(c + 3) = −4c; 4 Ø 8. 20 − 3n = 25 − 3n; 5 9. 3(p − 5) = 3p − 15; −8 yes yes 11. 10(y + 2) − 10y = 20; 2 13. −7c + 4 = 2c − 5; 8 x = +10 23. −u2 = −36; 6 14. 10 − 3d = d + 12; 2 25. y 2 − 6y + 9 = 0; 3 27. r2 + 2r = −1; −1 Ø 29. y 2 − 12y + 20 = 0; 10 31. c2 + c − 20 = 0; 4 y = 2, 10 c = −5, 4 r = −2, 5 32. w2 + 8w + 15 = 0; −5 35. |a| = −a; −7 a≤0 36. |u| = u; 15 41. √ √ n + 3 = 2; 1 u≥4 yes Ø u≥0 38. y − 8 ≤ −2; 7 y≤6 40. 3c − 1 < 20; 3 c<7 √ 42. c − 10 = −3; 1 x2 = x; −5 x≥0 44. √ 8 − y = 4; −8 45. 2 = 0; −2 p+2 Ø 46. 1 1 = ;5 u−3 2 47. 2 6 = ;1 x x+2 yes 48. 1 2 = ;3 y−3 y−3 43. Ø 30. r2 − 3r − 10 = 0; −2 34. − |n| = 12; 12 39. 2u + 7 ≥ 15; −4 p = ±1 yes Ø x > −2 a = ±9 28. n2 + 25 = −10n; −5 33. |x| = −3; −3 37. x + 5 > 3; −1 3 2 yes 26. x2 − 4x + 5 = 0; 1 yes a= yes 24. 1 − p2 = 0; −1 u = ±6 IR d = − 12 16. 10a + 6 = 2(a + 9); 23 22. a2 − 18 = 0; −9 c = ±5 IR 12. 1 − 6w = 4w − 10w + 1; 5 k 20. = 2; −6 3 yes Ø 10. 5x + 2 + 3x = 8x + 2; −1 18. |y − 6| − 10; −4 yes 19. − |2m| = −20; 10 21. c2 = 25; 5 IR c=1 15. 2(x + 1) = 3x − 8; −10 17. − |x + 3| = −5; 2 IR Ø ALG catalog ver. 2.6 – page 47 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. Ø yes yes Ø w = −5, −3 DA Topic: Evaluating expressions (one and two variables). Directions: 60—Evaluate for the given value(s). 1. x + 7 for x = −10 2. 4 + y for y = 14 18 3. −3 5. 4. 15 − c for c = 41 6. −r + 12 for r = −9 7. 21 34 64 8. 12. −11 + 4r for r = −5 −1 14. −k 4 for k = 3 −81 −(z + 7) for z = 17 −24 11. 21 − 2p for p = 11 13 13. −y 3 for y = −4 −(w − 6) for w = −3 9 10. −3n − 5 for n = −6 15x + 4 for x = 2 n − 10 for n = −6 −16 17 −26 9. −8 + a for a = 25 −31 15. (−c)5 for c = −2 16. (−x)2 for x = 9 81 32 17. 10a2 for a = 7 490 18. 4w3 for w = −5 19. −2n4 for n = 3 −500 21. (−2h)4 for h = −1 1 3 23. −(−10y)2 for y = −4 −32 25. 5(n − 12) for n = −4 3 10 27 8 27. −3(3 − a) for a = 11 −52 29. 9 − (y + 4) for y = 16 24. −(−5r)3 for r = −1600 26. −4(p + 7) for p = 6 −80 96 −162 22. (−6x)5 for x = 16 20. −3k 5 for k = −2 28. 8(6 − w) for w = −5 24 88 30. −7 − (1 − 2z) for z = −8 −24 31. 4x + (8 − x) for x = −5 −7 32. a − (a + 15) for a = 26 −15 33. − [−(3x − 5) + x] for x = −9 −23 34. − [4y − (y + 18)] for y = 12 −18 35. (u − 1)(u + 1) for u = 8 63 36. (c + 2)(c − 2) for c = 3 5 37. a2 − 4a + 8 for a = 5 38. w3 + w2 + w for w = −3 39. 10(t2 + t) for t = −4 40. y(y 2 − 1) for y = 11 −11 13 41. 2 u for u = 99 3 3 42. − a for a = 48 4 66 120 −21 43. − −36 45. 3d + 4 for d = 2 d 5 46. 4c for c = −1 10 − 2c 1320 5r for r = −36 6 44. 7t for t = −18 2 48. x−4 for x = −8 x+4 52. a3 − 9a for a = 3 a+3 −63 30 47. y+1 for y = 3 y−1 51. n(n − 2) for n = −1 n2 − 4 2 3 − 13 49. s2 + s for s = −4 s+1 −4 53. |p + 7| for p = −13 6 57. −2 |−6x| for x = 5 −60 61. r − |r | for r = −10 −20 50. y 2 + 3y + 2 for y = 5 y+2 −1 6 54. − |4 − u| for u = 18 −14 a 55. − for a = −22 2 0 56. |−11y | for y = 7 −11 y 58. 12 for y = −30 5 59. 3 |s − 11| for s = 8 62. x − |x| for x = 10 63. y |y | for y = −6 9 72 0 ALG catalog ver. 2.6 – page 48 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −36 60. −5 |k + 1| for k = −11 64. −50 |n| for n = −27 n −1 77 DA 65. −ab for a = 6, b = −4 24 66. 8xy for x = −3, y = 2 67. −c(3d) for c = −4, d = −5 −60 68. 11(rs) for r = 2, s = 10 71. −2ab + 8 for a = 3, b = −8 56 72. −n + 7p for n = −16, p = 4 220 −48 69. x + 3y for x = −12, y = −3 −21 70. 10 − uw for u = 6, w = 5 −20 44 73. −(k − j) for j = −5, k = 11 −16 74. −(a + b) for a = −4, b = −12 16 75. − [−(x − y)] for x = 7, y = 14 −7 76. − [c + (−d)] for c = −3, d = −8 −5 77. 2(rs − 1) for r = 2, s = 8 30 78. −6(3e + f ) for e = 3, f = −1 −48 80. −5(xy − 9) for x = 5, y = −2 79. 12(w + 5z) for w = −16, z = 3 95 −12 81. 12 − 3(q + 2r) for q = −6, r = −4 82. −11 − k(h + 1) for h = −5, k = 9 25 83. −6r + 2(s − 8) for r = 8, s = −8 84. 2(4a − b) + 18 for a = 7, b = 12 50 −80 54 85. 7c − (c + 2d) for c = 9, d = −10 86. 3(x − 5y) + 10y for x = 6, y = 2 8 87. −6b − 6(a − b) for a = −1, b = −4 74 88. 8r + 3(r + u) for r = −5, u = 9 −28 6 89. 12n + 3p − 6np for n = −2, p = 5 51 90. −2c − 9cd + d for c = −3, d = −4 91. x(x + 13) − 4xz for x = 5, z = 9 −90 92. 2k − jk(j − 4) for j = 6, k = −4 95. (a + d − 3)(a + d) for a = −7, d = 3 28 96. (x − y)(x − y + 5) for x = −8, y = −1 40 −106 93. r − [−s − (r + s)] for r = 15, s = 12 94. −p + [n − (p − n)] for n = 14, p = −8 54 44 97. (w − z)(w + z) for w = 11, z = −4 14 98. (a + b)(a − b) for a = 4, b = 10 99. (nt + 1)(t − 3) for n = −6, t = −2 −84 105 101. 6b ÷ 5a for a = −9, b = 18 − 12 5 100. (c − 7)(c + d) for c = −3, d = 14 −65 102. −4x ÷ 9y for x = 9, y = −4 1 103. −3r 2s for r = 20, s = 6 −110 104. −5 7m 4k for k = −21, m = −8 2 3 105. y +x 3 for x = −5, y = −12 c 106. d − 2 for c = −6, d = 7 107. 10 −9 109. k j+5 for j = −7, k = 4 108. p n−8 for n = 2, p = 3 12 t+u for t = 1, u = −9 110. r−s for r = −16, −4 s = −12 1 111. xy + 3 2x for x = 3, y = 11 112. 6 a−b for a = −5, 2b + 1 b = 7 −4 5 − 32 113. c+d c−d for c = 6, d = 4 114. 5 np − 4 np + 4 for n = 3, p = −1 115. w(8 − z) wz + 1 for w = −2, z = 3 118. 2 a − 3b + 4 a−7 for a = −5, b = −2 116. 3(a − b) for a = 8, b−a b = 11 −3 119. 2d + 6(c + 1) 3d − 8 for c = −6, d = 4 120. − 11 2 121. −x2 y for x = −4, y = −7 122. p2 q 2 for p = −3, q = 2 7x + z + 8 x−z for x = 4, z = −6 3 5 − 12 −7 117. − 12 −2 36 123. −ns3 for n = 9, s = −2 112 ALG catalog ver. 2.6 – page 49 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −3(r + s) 6r − s + 4 for r = −2, s = −10 18 124. b4 d2 for b = 2, d = 5 72 400 DA 125. (ab)3 for a = 5, b = 2 1000 126. −x(4y)3 for x = −6, y = 12 48 127. 4r(3u)2 for r = 61 , u = 3 54 128. (2ac)2 for a = 3, c = −4 576 129. n2 − p2 for n = 6, p = −9 130. w2 + 4u3 for u = −2, w = −10 68 131. −a2 + 7c4 for a = −11, c = 2 −45 134. (c + d)2 for c = 15, d = −9 36 135. w2 y − wy 3 for w = −4, y = −1 −125 e2 −4f for e = −12, f = −4 x2 y2 + 4 9 y = −6 136. 2ns2 + n2 s for n = −6, s = 2 138. −2x3 u for u = 6, x = 3 139. −9 (−s)3 n2 for n = 5, s = −10 140. 40 for x = 6, 142. 13 r2 s2 − for r = 9, 6 10 s = 5 11 143. m + p2 for m = −1, 3mp p = 5 −8 5 149. |c − d| for c = 4, d = 18 146. 6xz 2 x+z for x = −4, z = −2 147. (a + d)2 −d for a = −12, d = 4 144. 2(c − 3)2 for b = 3, bc2 c=6 1 148. 6 16 14 a4 −d2 for a = −3, d = 9 −1 −16 145. 24 −20 9 141. 160 −9 133. (r − t)3 for r = 8, t = 13 137. 132. −10x2 + 5y 2 for x = 4, y = 8 (e − 1)2 for e = −9, e+f f = −11 −5 −3(y − z)2 y2 + 5 for y = 2, z = −4 −12 150. |n + p| for n = 1, p = −9 8 151. |w | − |y | for w = −2, y = −8 152. − |s| + |r | for r = −7, s = 6 1 −6 153. |−5p + r | for p = −3, r = −11 4 157. −b |a − b| for a = −5, b = 6 −66 154. − |3c − 2d| for c = −5, d = 4 155. − |−5(r + s)| for r = 6, s = −10 −23 88 −20 158. u |u + w | for u = −3, w = 8 159. b + |a| for a = −9, b = 4 13 160. k − |h| for h = −15, k = −12 −27 163. 3 |j + k | − 10j for j = 3, k = −7 164. 6d − 2 |c − 3d| for c = 9, d = −3 −15 161. |7w − 4y | − |−y | for w = −4, y = 8 52 162. − |−2t| + |5s − t| for s = −2, t = −6 n+p 165. − n for n = −3, p = −9 −a for a = 10, 166. a−b b = −5 2 −8 −4 156. |8(w − 3y)| for w = 4, y = 5 −18 167. 3 ALG catalog ver. 2.6 – page 50 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. |x| + |y | |−y | for x = −6, y = 2 −54 168. 4 |y + z | − |−z | for y = 4, z = 8 − 32 DB Topic: Evaluating expressions (replacement set). Directions: 61—Evaluate for the given replacement set. 1. −x for {−8, −6, 0, 2, 4} 3. x − 6 for {−5, 0, 3, 6, 14} 5. 5 7x for −2, − 47 , 0, 21 ,3 7. − 9. x4 for {−2, −1, 3, 5, 10} x for {−9, −3, 0, 6, 15} 3 11. x3 for − 13 , −1, 0, 12 , 4 2. x + 10 for {−15, −10, −5, 0, 5} {−11, −6, −3, 0, 8} 4. 6 − x for {−4, −2, 0, 6, 12} −14, −4, 0, 53 , 21 6. −4x for − 34 , − 18 , 56 , 32 {3, 1, 0, −2, −5} 8. x for {−20, −6.5, 0, 2.4, 8} 2 {8, 6, 0, −2, −4} {16, 1, 81, 625, 10000} x 2 13. (2x)3 for −2, − 12 , 0, 1, 34 −64, −1, 0, 8, 15. −8x3 for −5, −1, 14 , 32 , 2 1000, 8, − 18 , −27, −64 16. 3x2 for −3, − 13 , 56 , 1, 10 3 x for −4, −2, 12 , 16, 96 4 −1, − 32 , 38 , 12, 72 18. 17. 3, 12 , − 10 3 , −6 12. −x2 for −6, − 14 , 1, 23 , 7 1 , −1, 0, 18 , 64 − 27 27 8 {10, 8, 6, 0, −6} x+1 for {−11, −1, 0, 1, 101} −5, 0, 12 , 1, 51 2 21. 5x − 1 for −5, −3, 0, 15 , 3 {−26, −16, −1, 0, 14} 19. {−10, −3.25, 0, 1.2, 4} 10. x2 for {−8, −0.1, 0.5, 1.2, 11} 14. 3 {−5, 0, 5, 10, 15} {64, 0.01, 0.25, 1.44, 121} 1 , −1, − 49 , −49 −36, − 16 for {−6, −2, 3, 5, 12} 4 4, 9 , 1, 27, 13 , −2x for {−21, −2, 0, 3, 15} 3 25 9 , 16 25 12 , 3, 300 14, 43 , 0, −2, −10 x−1 for {−1, 1, 2, 5, 6} 2, 0, 12 , 45 , 56 x 22. −3x + 4 for −1, − 13 , 0, 23 , 1 {7, 5, 4, 2, 1} 20. 23. 2(x + 7) for {−10, −7, −4, 1, 13} {−6, 0, 6, 16, 40} 24. −3(x − 6) for {−2, 0, 4, 6, 9} 25. x + 2(x − 2) for {−2, −1, 0, 2, 4} {−10, −7, −4, 2, 8} 26. 3x − (x + 8) for {−3, −1, 0, 4, 6} {−14, −10, −8, 0, 4} 28. 3(x + 4) − 3x for {−2, 0, 4, 8, 14} {12, 12, 12, 12, 12} 27. x − (x + 3) for {−12, −6, 0, 5, 20} 29. x2 + 5x for {−6, −5, −1, 0, 2, 5} 31. −x(1 − x) for {−6, −2, 0, 1, 4} 33. x+1 for {−3, −1, 0, 2, 3} x−1 35. (x3 )2 for {−2, −1, 0, 1, 2} {−3, −3, −3, −3, −3} {6, 0, −4, 0, 14, 50} {42, 6, 0, 0, 12} 1 2 , 0, −1, 3, 2 {64, 1, 0, 1, 64} 37. |x| for {−12, −7.5, −0.44, 0, 9} 39. |x − 14| for {−5, 0, 3, 14, 25} {12, 7.5, 0.44, 0, 9} {19, 14, 11, 0, 11} {24, 18, 6, 0, −9} 30. x(x + 3) for {−5, −3, −1, 0, 3} {10, 0, −2, 0, 18} 32. (x + 1)(x − 1) for {1, 2, 3, 4, 5} {0, 3, 8, 15, 24} 34. x2 − 1 for {−4, 0, 2, 5, 6} x−1 36. 2x for {1, 2, 3, 4, 5} {−3, 1, 3, 6, 7} {2, 4, 8, 16, 32} 38. −2 |−x| for −8, −5, 0, 12 , 6 40. |5 − 6x| for −2, 0, 56 , 1, 3 ALG catalog ver. 2.6 – page 51 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. {−16, −10, 0, −1, −12} {17, 5, 0, 1, 13} DC Topic: Evaluating expressions. Directions: 62—Evaluate for w = 6, x = 3, and y = 10. 1. 2(wxy) 360 5. 5w − 3x + 2y 41 9. 2(x + y) − 4w 2 2. (3x)(wy) 6. y + 2w − 6x 540 4 10. 5(y − w) + 12x 56 3. 3xy − 11w 7. 12x − (w + 2y) 24 10 11. 5w + x(3y − 4w) − 11 4. wy + 2wx 8. 25 − (y − x + w) 14. 8(5x − y) − 2(w + x) 17 17. 2w(3y − wx − 4x) 0 18. xy(2w + y − 5x) 5 22. w−x 3 25. y+8 w+x 2 26. 15 + w y−x 29. w−x y−1 1 3 30. x+5 xy 33. 3y − wx 2y 34. 7w + 2xy 2y − x 13 38. y 2y + − 2x w x 1 42. 7(2y − 3x) 4w − 2 46. w − 4 2y + w x 37. 2x + 3 5 3w y − 2 5 41. 4(y + x − 8) 3w + 2 45. x+5 w − y y 49. y 2 − 5wx 1 5 53. w(3x)2 − 3y 2 57. 2y 2 − 3x2 w 186 38 61. (x + y)2 − (w + 2)2 210 1 3 4 15 50. w2 + 4xy 10 6 2 3 7 2 7 58. x2 y + 5w2 27 19. (4w + y)(4 − x) 23. w +y x 27. y−w +x 2 31. 4w − y 4x 35. 6x − y + 8 7w − 4y 39. w w+x − 8 y+8 43. 6y − w (y − 8)(2x + 3) 47. 5 2w · y w+x 0 270 62. (w − 4)2 + (y − x)2 34 20. (y − w)(x + w) 24. y − 12 5 7 6 8 1 4 3 2 3 51. 2(wy − x2 ) 156 54. 3wy − 5(2x)2 105 16. x + [4w − 3(y − 10)] 74 x 3 21. w − 14 15. 15w − [2(w − x) + y ] 22 59. wx2 − 2y + w2 63. 3(wx − y)2 192 28. y 2 − w x 32. w + 2x y+w 36. 2wx + 3y − 3 4wx 40. y + 5x x − y w 44. (w + 1)(x + 2) w(y − 3) 48. 4x − y x ÷ 8 wy 1 3 4 70 3w2 x2 y 69. (w − 2x)2 y+5 6 5 0 66. xy 2 5w2 70. 2(x + 2w)2 3y − 5 5 3 18 67. 6y − w2 x 71. (w + x)2 9y + x2 ALG catalog ver. 2.6 – page 52 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 8 9 11 7 8 2 5 6 5 354 56. 2w2 + (xy)2 24 36 8 52. x(y 2 + 3w) 102 55. (wx)2 − 5wy w x 972 60. y 2 + 5x2 − 6xw 64. 4(2y − wx)2 16 53 65. 12 12. 6y + 8 − xw(2w − 9) 37 13. 5(y − w) − 3(y − 3x) 96 68. 2x2 + 7w 2y 72. 3(y − w)2 y2 − w2 3 3 4 37 DD Topic: Evaluating expressions. Directions: 63—Evaluate for a = 5, b = 7, and c = −2. 10 2. a−b−c 140 6. 5c · 2ab 1. a+b+c 5. (ac)(bc) 9. −3a + 2b + 4c 13. b(c − a) −9 0 3. 4b − ac −700 7. −3c(ab) 10. 6b − 4a − 11c 14. −c(a + b) −49 17. 9a − 10(b + 5c) 75 38 210 11. −7ac + 6bc 44 15. 5a(b + c) 24 18. 3(2c + a) − 11b 3a + bc 8. (−5b)(−ac) 1 12. 9b − 2abc −14 −350 203 16. −2b(a − c) 125 19. 2(a − b + c) + 2ac −74 4. −98 20. 13c + a(2b + c) 34 −28 21. (a − b)(12 − c) 25. ab ÷ 10c 4b − a − c a 33. 3b − 2c a+b+c b c − a a 22. (−a + c)(3a − b) 26. ac ÷ bc − 74 29. 37. − −28 −56 23. (2b + c)(−5 + a) 5 7 27. a−b c 1 30. ac + b a+c −1 31. c − 2b a+b 5 2 34. ab + 1 −c 18 35. 4c − a + b 2b − c −1 38. a+b +b c+1 −5 39. a+c b − c c 42. (ac)2 − b2 51 43. −b(ac)2 5 41. a2 c + bc2 −22 45. (a − b)2 − c2 0 46. ab − (a − c)2 0 − 43 − 38 2 28. a+b a+c 32. a + 4c a − 5b 36. a+b+c −a −2 40. a−c 1 + b−1 c 2 3 64 4 1 10 44. ac(b + c)2 −700 47. (b + c)2 − (a + 1)2 −14 24. (3a − b)(c + 2a) 250 48. a2 − (a + b + c)2 −75 −11 49. ac4 + bc3 53. 50. bc5 − a3 24 b2 − a 2 c2 54. 6 57. 6c(2a − b) + 3(a + b) (b + c)2 ac 99 51. (ac)3 + (ab)2 − 52 55. 58. 7(b − c) − a(b + c) 38 52. a2 c3 − b2 c 56. 3 59. −5(ac + 1) + 9(2b − 3a) 0 62. (8c − b) − (−ab + ac) −18 65. − [−(−15c + a) − (b + 6c)] 67. (a + b) − [−(b − a) + (c − a)] 73. |a − b| 36 81. |−a(b − c)| 85. − |−(b + c)| a+b 93. c −3 6 45 −5 12 66. − [−2ab + (−b − c) − 3ac] 45 68. 3ac − [(ab + c) + (ac + b)] −60 71. − |5a| 7 74. |b − c| 2 77. 4 |a + bc| 89. |c| − |a| 21 70. |−b| 12 75. |a − b + c| 9 −75 79. b |1 + ac| 82. |c(a + 2b)| 38 83. |2abc| 86. − |−(2a − c)| 90. |b| − |a| |a − b| c 72. − |−c| −25 78. −a |b − 4c| 94. 64. − [(b − 16) − (a + c)] −15 30 2 −1 −12 −1 −16 63. − [2a − (b − c) + 14] 22 −a2 3b + c2 −102 60. c(b − 9) + a(bc + 10) 36 61. −(−b − 7c) + (−a + 3c) 69. |6c| (b − c)2 4a + b 225 −2 4 76. |a − b − c| 0 63 80. −c |a − 3b| 32 84. |−3a − bc| 1 140 87. |a − (b + c)| 0 88. |b − (c − a)| 91. − |ac| − |3b| −31 92. |bc| + |2a| 95. ALG catalog ver. 2.6 – page 53 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. |4b| + |c| a 6 4c − b 96. − a 14 24 −3 DE Topic: Evaluating expressions. Directions: 64—Evaluate for n = −3, p = 4, and r = −1. 1. nr + pr 5. (np)(−pr) 9. 5r − 6n + p −1 −48 13. nr(2p + 3) 6. −5npr 15 3. 10n + pr −60 7. 2p · nr 14. −p(nr + p) 33 −4 25. n − [−(−p + r) − n] −28 22. 7(n − p − r) −4 −n 6pr −2 38. 5n + r p 5 42. n + 9r p−2 46. 5n 3r − p p 50. 5n n · n+p r+6 37. p − 2r n 41. pr − 6 n+1 45. n nr + p p 49. p+r p · n r−n 3 4 0 −2 12. 4pr − 5n + 6 15. −7(p + 2nr) −70 16. 2p(n − 10r) 19. 11n − 3(p − r) 27. − [−(p − r) − (p + n)] (p − r)2 3n + r − 52 77. |p − r | 28. − [−(n + r) − (−n + p)] 3 32. −7nr(4n + p − 2pr) 31. 3pr(np + 8p + 9r) p r − 12 40. −n − r −p + r − 45 −6 43. np + 2pr n + 2r 44. r − 5nr np − p 1 48. 6 p − nr − n r 52. −10p(pr + 5r) 3n(p + 2n) 47. 7p + −3 51. 9 66. p2 r 3 2n 70. (n + pr)2 n + 10 4 p r + n n 27 8r(p + r) n(3n + p − 7r) 55. −n2 pr3 17 8 3 7 56. np2 r2 67. 7r5 p−n 71. n2 + p + r p2 + r −1 4 5 15 64. (n − p)2 − (r − 1)5 68. n2 − p 3n + r 72. n2 + p 2 − r 2 p 8 82. r |8n + p| −20 83. p |1 − nr | 8 84. −p |15r − n| 85. |−10n − p| 26 86. |7n + 5p| 1 87. |2nr + p| 10 88. |9 − npr | 89. |−(p − n)| 7 90. − |−(3p + r)| 94. − |r | + |n| −1 97. − |2r(p − n)| −14 95. |2pr | + |n| 2 98. |n(p − r + 5)| 91. − |p − (r − n)| 30 −2 11 99. − |(p − r) − (n + 2)| 6 −6 −42 −11 2 5n + r 102. − p −4 103. ALG catalog ver. 2.6 – page 54 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. |n| − |p| r 1 −48 3 92. |n − (p + 2r)| 5 96. − |nr | − |3p| −15 100. |(r + 8) − (p − n)| −6 p − 2r 101. n 104. 81 − 12 80. |n − p + r | 0 20 −48 76. − |−6r | −4 79. |n + p + r | 7 −174 −9 81. −6 |p + nr | 93. |n| − |p| 0 1 60. 6pr2 − n2 −46 63. (5r)3 − (p − n)2 75. − |−p| 21 4 36 59. p2 r − 10nr 84 62. (n + p)3 + (2r)4 78. |n − p| 5 −40 −55 n+p n−r 108 74. |−7n| 3 24. (r − p)(8 − n) 39. 58. −7p · nr2 69. 20. −9p − 2(r − n) −4 96 16 −6 56 36. n − 57. np(2r)3 −np2 nr −48 5 7 54. n3 pr 65. −36 n +p r −240 −137 −3r(np) 35. − 18 53. −5np2 r 61. (r − p)2 − 2n4 8. −132 34. 9r np 18 0 −54 33. 6p − 2nr 6 30. r(p − 4) − 2(6p + 3) −35 24 4. 11. 11 − nr − 2p 7 29. 5(n + r) + n(p − r) −34 23. (p + r)(n − r) −42 26. −r − [−p − (−n + r)] −11 73. |3r | −6 18. −2p − (n + r) 2 21. −2(n + p − r) nr − np 10. −3p + n − 9r 17 17. 5r − (n − p) 2. |−7p − r | n −9 0 DF Topic: Evaluating expressions. Directions: 65—Evaluate for x = −2, y = −3, and z = 5. 1. 4x − yz 5. −y(x + yz) 9. 2(x − y) + 9z 7 −51 2. z + 10xy 6. 8x(yz − 1) 65 256 10. −z(y + 4) − 3x 47 −225 14. xyz(xy − z − 5) 17. (x + 4y)(x − z) 98 18. (3y + z)(2y + x) 3x − (y + z) −8 4. y − (6z − x) 7. 5(x + y + z) 0 8. −x(y − z + 18) 11. z − xy(z + 1) 1 13. 3yz(x − 4y − z) 3. −120 32 12. yz + 6(x + z) −31 15. −4xz + 9y − 2yz −35 20 3 16. 10x − 8xy + 2xz 43 −88 20. 4(y + z) − 8(x − y) 19. x(y + 1) + y(z + 3) 0 −20 21. y − [5x − (6y + z)] 22. 3z − [−y − (x − 4z)] −6 26. z−1 xy 2 3 27. 2y + x z+3 30. xyz x+y −6 31. xy − 11 5xz −4 34. 4x − yz − 7y xz + 8 −14 35. 12y + 8z x+y−z 4 3 38. x(9 + 2yz) 2z(1 − x − y) 7 10 39. 7z(6y − 4x) −2(x − z) 42. −3y − z (y − 2x)(z + 4) 43. x − 4y x − 4 · y xz 46. y+z z + 4x 2−x 5y z − 4 2x 25. y+9 x+z 29. 3yz 4z + x 33. xz + 4y − 6 2xy − z 37. −8(2z + 5y) 3x(x + y) 41. (4z + x)(y + z) −x + 3y + z 45. z z − xy y 49. −x2 yz 23. xy [z − (2x − y)] 24. 5x [2y + x(z + 1)] 36 2 − 52 −18 5 2 50. xy · z 2 60 53. x3 + xy 2 − z 2 57. 10z − xy 3 −51 −4 61. z 2 − (x + y)2 −3 4 9 47. −x + 1 51. −xy 3 z 150 28. y−4 xz − 4 32. 8xz − y x + 3y 36. 3xz + z − 2 x−y+z 40. −yz(7y + 1) 5xyz −2 44. 2y 1 · 3y + z 2y − x − 12 48. y xz + +y 3 z −1 1 10 − 25 25 52. x4 yz 2 −270 1 2 7 − 92 −2 −1200 12 55. z 2 − (xy)2 −11 56. (xz)2 − 6y 2 46 58. −x4 y 2 + 2z −134 59. 2z 2 − x3 y 2 122 60. 4xy 2 − x5 z 88 64. 3z(y − x)5 −15 63. x(y + z)4 22 66. 10y 2 + xy 2 − z 3 −53 −32 67. (x + z)2 + (y + z)2 13 − 38 −6 54. x5 − y 4 + z 3 62. (z − x)2 + y 3 0 65. 6x3 − 5xy + 3z 2 68. (z − y)2 − (−x − y)2 39 69. y 2 − 3x z2 73. |x + y | 70. 3 5 z2 − y2 x2 74. |x − z | 5 71. 4 −2 78. |1 − xyz | 81. |x + y − z | 10 82. |x + y + z | 85. |z | + |y | 86. |x| − |z | 8 89. z |y | − y |x| 21 93. |(12 − z) − (x + y)| (x − z)2 y−4 75. |z − xy | 7 77. − |4y − xz | 79. y |2xz | 29 72. 1 76. |x + zy | 87. |z | − |xy | −3 90. −4 |yz | + |4x| −52 94. |(y + z(x − 1)| 18 − 53 17 80. −x |y + z | −60 83. |x − (y − z)| 0 (x + y)2 yz −7 84. |−z(x + y)| 6 88. |2x| + |yz | −1 91. |6x − z | − 8y 95. 2y |x + z + 12| 41 −90 4 25 19 92. 6x − |z − 10y | −47 96. −x |y + 4z − 2| 30 12 97. |y − z | − |x| 180 −10 −4 x+y 98. − z −1 99. ALG catalog ver. 2.6 – page 55 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. |yz | |x − 1| 5 x+y−z 100. −5 2 DG Topic: Evaluating expressions. Directions: 66—Evaluate for a = −4, b = 8, c = 2 and d = −3. 1. a−b−c+d −17 2. a+b−c−d 5. 2a + 3bc − d 43 6. −a + 7c + 5cd 9. 6c + d(a + b) 0 5 −12 10. −9d + a(b − c) 3. 10ac − bd 7. a + b − (c − d) −56 −1 11. 3(c + d) − 2(a − b) 3 21 4. −acd + 6b 8. a − (b + c) − d 24 −11 12. −7(b + c) + 5(a − d) −75 13. −4a(bc + bd) 14. abc(5c + 3d) −128 17. b(3a − c + d + 10) 15. −ad(2bc + 7d) −64 −132 18. −d(a + b − 4c + 9) 15 19. (a − d)(3b − 11c) 22. −(b − c) − (a + d) 1 23. −c − [−(a + b) + d] −2 16. 10c(−13a + bcd) 80 20. (5d + b)(a + 2c) 0 24. a − [b − (c − d)] −7 −56 21. (−a + c) − (−b + d) 5 17 25. − [b + (−a + c) − (−d)] 26. − [−(b − d) + (a + c)] −11 29. −ac [a + cd(b + d)] 28. − [−(a + d)] + (b − c) −17 30. cd [b − a(ac + bc)] −272 33. 27. −(b − a) − [−d − (−c)] 9 −1 31. (ac − b)(cd + bc) −160 32. (bc − ad)(c + ad) 56 −240 a+b+c d −2 d a 37. − + c b 1 41. 6c − d 2b − a 45. −6(a + bc) 3 − 7d 3 4 49. ad3 − bc2 −3 34. c b + ad 38. a+b −d c 42. 11a − bd − 6 c −13 43. 9d − 5 −a + bc + 8 46. c(a + d − 5) 6b − 12 47. −cd(b + 7) 4a + 1 35. 1 10 39. ad − 5 50. −ab − c3 d2 76 a+b cd − 23 36. bd a−c 8 40. c d − b a 44. 7c + 5b ad + d 48. 7(b + d) 3c − 9a b c − 87 −6 51. (b − c)2 + (a − d)2 −40 37 4 − 12 6 5 6 52. (b + d)2 − (a − c)2 −11 53. (a + b)2 (c − d) 54. (a + b)(c − d)2 80 57. −6a − (cd)2 + b2 52 55. a(b + c + d)2 100 58. ac2 + (4d)2 + 3b 152 −196 59. 2bd − 5c3 + (a − 1)2 56. −d(a − b + c)2 60. 10a − (b + c)2 − 2d3 −63 61. b2 − a 2 c + 2d 65. |a − b| 62. −12 66. |c + d| 12 69. |ac + bd| 32 73. − |5(ac − d)| −25 77. |(a + b) − (c − d)| 81. |−8d| − |a − b| 85. |a − b + c| + 10d 89. |a| + |bd| |c| d 2 + a2 4b − c 14 1 12 −20 63. 5 6 1 (a − b)2 cd −86 64. 67. − |c − b| −6 68. − |a + d| 40 −16 71. c |ad + b| 74. |a(7 − bc)| 36 75. |cd − (a + 7)| 82. − |c − d| + |a − 1| 86. ab − |7c + d| 90. |ad − c| |b − 3| 2 −43 0 83. 5c |b − 2a| b − 4d 91. − a ALG catalog ver. 2.6 – page 56 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −5 −7 8 76. |2(b + d) − 5c| 9 −5 80. |b + d| − |ac| 84. cd |3a + 11| 160 87. |(a + b)(c + d)| − 34 72. −a |b + cd| 79. |c − a| − |b − d| 17 −ad (a + b)2 −24 70. − |acd − b| 78. |b − (a − c + d)| 300 4 −3 −6 88. |(b − c)(a + d)| ab − 1 92. d 11 0 42 DH Topic: Evaluating expressions (negative and zero exponents). Directions: 66—Evaluate for a = −4, b = 8, c = 2 and d = −3. 1. c−5 5. −b−2 9. (a − d)−5 13. −3 d 9 1 32 1 − 64 21. cd ab 25. a3 b−2 6. −d−4 14. 1 8 1 − 81 c −2 10 22. 1 5a 3b 0 33. a−1 + c−2 0 34. b−1 − c−3 0 38. a−1 + a0 − 14 16 9 −1 42. (c−2 − 1)−3 45. 1 c−4 − 1 − 16 15 46. 1 b−1 + c−3 49. 1 + a−2 a−2 17 50. b−1 1 − b−1 a−2 1 4 8. −c−3 c −3 d 1 16 − 18 12. (c − b)−2 1 16 16. 1 20. (d − c)0 ac −2 24. 9 bd 1 36 −2 d a − 27 8 3c 4d 16 9 1 −3 −8 28. 12c−1 d−2 −6 2 3 31. (5a−3 b2 )0 1 32. (b−1 c3 d)−4 35. a−1 + b−1 − 18 36. d−1 + d−2 39. c0 − c−3 − 64 27 4 1 7 4. 27. b2 c−5 d − 12 30. (3a0 d−1 )−5 41. (a−1 − c−1 )−2 −a−1 23. 1 16 8 9 7. 1 − 27 19. (−3b)0 1 12 29. (b−2 c2 )−1 37. 1 − d−2 d−3 15. 25 26. a−1 bc−2 −1 3. 11. (a + b)−2 1 18. (b − a)−1 1 − 20 0 b−1 10. (c + d)−4 −1 −27 17. (5a)−1 2. 40. c−2 − 1 7 8 43. (c−1 + d−1 )−1 47. 1 1 − a−1 51. b−1 + c−3 a−3 ALG catalog ver. 2.6 – page 57 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 4 5 −16 6 1 81 − 29 − 34 44. (1 + b−1 )−2 48. 1 d + d−1 52. b−1 c−2 − a−1 64 81 3 − 10 1 4 DI Topic: Adding variable terms. See also categories DJ (combining like terms), EA and EB (adding and subtracting polynomials). Directions: 6—Simplify. 1. a + 4a 5. 10d − 6d 9. y − 7y 5a 4d 17. −4m − (−23m) 21. −8x − (−8x) 6. 20w − 11w 10k 37. 3y 5 + (−15y 5 ) 53. −6ux + (−8ux) 57. 11bc − (−9bc) 9p 5a + 3a 8. −5k + 8k 8a 12. 8n − 12n −9c 3k −4n 15. 16r − (−12r) 28r 16. 4w − (−7w) 11w 19. 2h + (−14h) −12h 20. 5x + (−11x) −6x 24. 14k − 14k 0 0 27. −7d3 − 14d3 −21d3 28. −m4 − 4m4 30. 12c2 − 11c2 c2 31. −6y 4 + 10y 4 4y 4 32. −10x3 + 11x3 35. 5x2 − 6x2 −a7 −x2 39. −5p2 + (−4p2 ) 2x4 43. 4wz + 2wz 8ab 6hk −3rs 54. −11cd + (−cd) −12cd 58. −3wz − (−13wz) 20bc −3p + 12p 4. 7w4 50. rs − 4rs −14ux 7. 12y 23. −10r + 10r 0 46. −7hk + 13hk −5xy 7y + 5y 26. 5w4 + 2w4 42. ab + 7ab 8pr 49. 14xy − 19xy 10a 38. −x4 − (−3x4 ) −12y 5 5cd 45. −pr + 9pr −10z 34. −10a7 + 9a7 −6h2 3. 11. 2c − 11c −x 22. 21p + (−21p) 0 5a8 33. −7h2 + h2 9w 18. −6a − (−16a) 19m 2k 2 41. 2cd + 3cd 9k + k 14. −6z − 4z −11z 29. 9a8 − 4a8 2. 10. 4x − 5x −6y 13. −3z − 8z 25. k 2 + k 2 98—Perform the indicated operation(s). −9p2 6wz −5m4 x3 36. 8w2 − 13w2 −5w2 40. 2a4 − (−a4 ) 3a4 44. 3xy + xy 4xy 48. 8ab − 4ab 4ab 47. 10mn − 9mn mn 51. −15ab + 9ab −6ab 52. −21mp + 8mp 55. −7pr − 12pr −19pr 56. −2ax − 4ax 59. −16km − (−10km) −13mp −6ax 60. −8rx − (−9rx) rx −6km 10wz More than two terms 61. 5k + k + 2k 62. 3m + 2m + m 8k 65. 12p − 3p + 5p 69. −4a − 15a + 9a 66. 8x + 3x − 2x 14p −10a 21x 74. 2k + 5k + 11k 77. 12k − 8k − 5k −k 78. 9z − 2z − 6z 81. −7r3 + 10r3 − 2r3 r3 9x 70. 13x − 21x + 6x 73. 6x + 3x + 12x 63. 3c + 6c + 4c 6m −2x 18k z 82. −5n2 − 7n2 + 4n2 64. w + 2w + w 13c 4w 67. 2k + 15k − 9k 8k 68. 11z − 2z + 5z 71. 10c − 2c − 16c −8c 72. −5y − 9y − 2y −16y 14z 75. 15p + 9p + 2p 26p 76. 4h + 12h + 3h 19h 79. 5r + 9r − 13r r 80. 8u − 11u + 2u −u 84. 3z 4 + z 4 − 6z 4 −2z 4 83. 2c2 − 8c2 + 6c2 0 −8n2 85. 5d2 + (−11d2 ) + 3d2 86. 3k 3 + (−8k 3 ) − (−5k 3 ) 0 −3d2 89. −7ay + 10ay − 3ay 87. x4 − (−2x4 ) + (−4x4 ) 0 90. −2cd − 5cd + 8cd −x4 cd 91. 6ab − 8ab − 3ab 88. −4y 2 − (−5y 2 ) + 9y 2 10y 2 −5ab 92. 9mn + 4mn − 6mn 7mn 93. 3bc − (−7bc) + (−18bc) −8bc 97. 4y − 2y + 6y − 2y 94. 11uw + (−12uw) + 4uw 95. −2rz + (−2rz) + rz −3rz 3uw 6y 98. −8k + 20k − 7k + 2k 99. −4x + 10x − 6x + 5x 7k ALG catalog ver. 2.6 – page 58 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 5x 96. −8y 2 + 5y 2 − (−3y 2 ) 0 100. 10p − 5p + 9p − 3p 11p DI 101. 3a + 12a − 19a + 4a 102. 6x − 15x + 3x + 6x 0 103. 10y + 4y + 6y − 20y 0 104. −16k + 5k + 8k + 3k 0 105. −15c − 28c − (−11c) + 45c 107. −8p − (−4p) + 2p − 7p −9p 109. 5w + (−18w) + 26w + 7w 111. 12c + 6c + (−10c) + 3c 13c 0 106. −5n + 9n + (−16n) + 9n −3n 108. 15x − (−20x) + 8x − 17x 26x 110. 6p − 11p − (−9p) + 21p 20w 112. −12y + 5y + 17y + (−9y) 11c 113. −3p − p − (−9p) + (−11p) + 7p y 114. 11x + (−7x) + (−4x) + 3x + 2x p 115. 3m + (−5m) − 13m − (−6m) + 8m 25p 116. 5a + (−11a) − 2a − (−14a) + 3a −m 5x 9a Fractions and decimals 117. 4 1 y+ y 5 5 121. − k k − 6 6 − 3 1 125. − d + d 4 4 2 129. 2a − a 3 133. m −m 4 137. 2w w + 3 6 118. y k 3 1 − d 2 5a a + 6 2 −w 1 1 123. − z − z 2 2 −z 124. − 7 1 c− c 10 10 1 5 n− n 12 12 1 − n 3 127. 128. − 7r r + 8 8 5w 6 135. −2a + 5w 6 138. 3x 3x + 7 14 9x 14 9 k 10 4 h 3 − a 3 5 1 161. − x − x 6 8 146. − 3 1 r+ r 10 2 4 r 7 7k 3k − 4 8 3 a 10 166. c 7c 5c 173. − + − 4 2 4 170. − 2c 174. k 8 − a 4 132. 7 − a 4 2 1 c+ c 5 10 3g g − 8 2 147. − 5x 2x + 18 3 − 7 2 y− y 5 10 148. 3 y 10 152. − 4r 5r − 5 6 0 171. 9a 4a a + − 4 3 12 −n 175. 5 5 5 p− p+ p 9 6 18 − 2b 5 5p 2 11 2 p+ p 15 3 − 1 p 15 5x 3x + 2x 4 4 5 1 160. − p − − p 9 3 164. 4 r 30 1.3y 8p p − 3 6 7 z 12 156. − 5 n 6 179. 4.7w − (−2.4w) ALG catalog ver. 2.6 – page 59 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 5y 6 7 x 18 3k k 2 2 7b b 159. − − − 10 2 183. 5.2y − 3.9y − − 167. −9.2x 8 r 3 5z z 144. − − 6 12 7 w 12 9.1x 3r 4 7g 8 3 8 n+ n 10 15 1 1 7 n− n− n 3 6 6 − 4 − c 5 1 a 2 − − y 6 x 1 1 a+ a 3 6 140. 155. −k + 9 x 5 2 r + 2r 3 136. −y + 1 c 2 163. 2x x x + − 5 2 10 182. 2.6x − 11.8x 3 k 2 143. − 151. 2x 3 − 19 r 18 − 178. 3.6x + 5.5x −4.1w 3 − w 4 1 r 5 17 9 w− w 6 4 0 4.3r 139. 5 1 154. −2c + c − c 3 3 3 12 158. − x − − x 5 5 5 5 162. − r − r 9 6 2 1 1 y− y− y 3 2 6 181. −9.6w + 5.5w 7 2 w− w 20 5 23 x 24 − 2 7 165. − a + a 5 10 142. − 150. k 2 131. k + 7 − x 5 − x 7x − 9 9 w 6 3 x − 2x 5 5 1 w − 3w − w 2 2 2r 6r 157. − − − 7 7 177. 1.4r + 2.9r 120. 4w 3w − 7 7 130. w − 153. 169. 3m 4 119. 134. 7 9 h− h 5 15 149. − 126. x 2x + 3 3 3m 3m + 8 8 1 a 2 3m 4 3 3 141. − k − k 5 10 145. 122. − 4 a 3 − 1 1 a+ a 4 4 3 7 c+ c 4 10 168. − 172. a 2 − p 9 29 c 20 11 11 m+ m 4 5 5 2 5 k+ k− k 6 3 2 − 11 m 20 −k 11w 7w 9w − + 4 4 2 0 176. − 7.1w 180. 2.8k − (−3.6k) 184. −1.7p + 8.2p 6.4k 6.5p 0 DI 185. 0.7k − 0.4k 186. −0.2w + 0.9w 0.3k 0.7w 187. −0.8x − (−0.2x) 188. −0.7m − (−0.4m) −0.6x 189. −0.01y + 0.05y − 0.02y 0.02y 193. 22.7z − 25.1z 190. −0.22x − 0.43x + 0.85x 191. 0.26c − 0.97c + 0.31c −0.4c 0.2x 194. 12.4c − 18.9c −2.4z 197. 6.8x − 1.9x − 3.9x x −0.3m −6.5c 198. −3.7a − 5.4a + 7.1a 195. −19.7p + 22.3p −0.07a 2.6p 199. −2.1m + 2.7m − 1.6m 2a ALG catalog ver. 2.6 – page 60 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −m 192. 0.03a − 0.09a − 0.01a 196. −5.3r + 15.2r 9.9r 200. 3.6q − 9.3q + 2.7q −3q DJ Topic: Combining like terms. See also categories EA and EB (adding and subtracting polynomials). Directions: 6—Simplify. 7—Simplify, if possible. 98—Perform the indicated operation(s). 1. 6m + 2m + 3 8m + 3 2. 5p − 7 − 2p 3p − 7 3. 9 + 8a − 1 5. −r3 − r − 2r −r3 − 3r 6. y + y 2 − 2y y2 − y 7. 4a2 + 3a + 5a2 8a + 8 4. 4 + 7y − 10 8. 2x − 2x2 + 3x2 7y − 6 x2 + 2x 9a2 + 3a 9. 2x + 5 + 12x − 4 10. 11c − 3 − 4c + 8 7c + 5 11. −3 − 2y + 1 + 5y 13. −5m + 2 − 4m − 9 14. 3x − 5 − 9x + 6 −9m − 7 17. 18m − 2k + k + 2m 29. −9ab2 + 9b2 + 18ab2 9ab2 19. 2a + 7c + 8a − c −2r − 3p 23. 14x + 6xy − 17xy + 8x 26. 6g − f + 7f − 18g + 3f 37. w + 4 − (−w) − 8 − (−10) −5x + 5y 24. 7pr − 8r − 5pr − 3r −11r + 2pr −10k 30. −5kn − 2k 2 n + 11kn 35. 22p − 7p + 19 − 15p − 12 20. 11x − 4y + 9y − 16x 27. 12h − 14k − 8h + 4k − 4h 28. −9b + 9a + 2b − 2a + 7b 9f − 12g 31. c2 d − cd − 3c2 d 6kn − 2k 2 n 33. 18r − 12r − 17 + 21 − 3r − 4 −4a − 3 22x − 11xy −3a + 4ab + 9b2 16. −a + 5 − 6a − 8 + 3a 10a + 6c 22. −5a − 6ab + 10ab + 2a 3x − 3y 8y − 21 −2k + 11 18. 4r − 8p − 6r + 5p 17n − 5kn 25. −x + 3y + 4x − 5y − y 15. 2k − 3 − k + 14 − 3k −6x + 1 20m − k 21. 4kn + 13n − 9kn + 4n 12. 19 + 8y − 34 − 6 3y − 2 14x + 1 7a 32. 4x2 y − 8xy 2 − 2x2 y −2c2 d − cd 34. 6h + 6 + 5h − 13 + 7 − 15h 3r 36. 4m − 11m − 27 + 7m + 15 7 41. 11p + (−5p) − 3r − (−2r) − 6p + r 45. −13a + 6 − 4c − 11 + 5a − 2c 49. −3w + 8x + (−y) − 9x + 4w + y 0 46. 1 − 2w + (−5z) − 11 − (−7w) + 4z 5w − z − 10 −10a + 10b 11r + 4w 54. −64 − 2m + 28 − 8a − (−m) + 6a + 36 + m 6 56. −9y − 4x − 15 + 7x + 46 + 5y − 3x − 8 8c − 1 57. −17a − 20 + 3b + 13 + 24a − 11 − 18b − 6 + 9b −2a −4y + 23 58. 8k − (−6w) − 14 + (−8w) − k + 3w − 9k + 10 7a − 6b − 24 −2k + w − 4 59. −2r − 5p + 3s − 4p + 4r + 9p − 7s − 2r + 10s 61. 9a − 8aw − 5a + 3w + 10aw − 4a −2m + p − 5 52. 17r − (−2w) + (−2y) − 6r + 2w + 2y 27h + 25k 53. 12 + 4n − (−6k) − 6 + 8n + (−6k) − 12n 0 0 50. 10a + 15b − 15c − 5b − 20a + 15c w−x 55. 4d − 12 + (−3d) + 8c − (−6) − d + 5 3d − 8 44. 12 + (−4a) + (−14) − 8a + 2 + 12a 48. −4m + 6p − 8 + 2m − 5p + 3 −9d − 2e + 26 51. 45h + 6j + 11k − 28h + (−6j) + 14k 7k + 17 42. 4x − 16y + 9x + 20y − 13x − 4y 0 −8a − 6c − 5 47. 15 − 7d − (−3e) − 2d + 11 − 5e −12 40. 2d + (−15) − 5d − (−6d) + 7 −z + 2 43. −9 + 4w − (−15) − 6w − 6 + 2w −4h 38. 6 − 6k − (−11) + 10k − (−3k) 2w + 6 39. 6 − (−4z) − (−8) + (−5z) − 12 2x2 y − 8xy 2 6s 3w + 2aw 63. 2h − 11k − 13hk − (−7k) + 5h + 4k 7h − 13hk 65. −2xy + 7xz − 5x − (−4xy) + 10x − xz 6xz + 2xy + 5x 60. c − 3a − 6c + (−4d) − 4a + 4d − (−5c) + 6a 62. 4cy − 10c + 6y − 2c + (−4cy) + y 64. −3mx − 9x + 18mx + 9 − 15mx −12c + 7y −9x + 9 66. 2ah − 6ak − 10a + 4ak − 7ah + 12a ALG catalog ver. 2.6 – page 61 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −a −5ah − 2ak + 2a DJ 67. 20c − 12cd − 45d + 21cd − 32c + 32d 68. 20np − 4n − (−13nw) − 5np + 3n − 16nw −12c + 9cd − 13d 15np − 3nw − n 69. −7cw + 6c + 4w − 4c + (−5w) + 6cw + w − 2c 71. 16a + 8ax − 23x − 9a − 9ax + 18x − 7a + 5x + ax 73. 3p2 − 3 + p2 + 2 − 6p2 70. 8p − (−3mp) + 5m − 6p + mp − 2m − 2p − 4mp −cw 0 74. 4 − (−c3 ) + (−8) − 2c3 + 5 −2p2 − 1 75. 3w2 + 19 − (−10w2 ) − 10 − 9w2 77. −9x + 4x3 − (−3x) − 2x3 + 6x 79. −9y 2 − 5y + 4y 2 − 2y + 7y 2x3 81. 7y 2 − 2y 3 + y 3 − 6y 2 + 3y 2 − 3y 3 83. 2k 2 − (−2k 3 ) − 3k 2 + (−k 3 ) + 9k 3 87. −3x2 − 7 + 4x2 + 4x + 8 −m4 − 9m 2c3 + c 3x2 + 10x − 7 95. 11n − 10n2 + 8 + 5n − 14 − 3n2 −13n2 + 16n − 6 97. y 2 + 18 − 7y − 23 + y − 3y 2 + 6y + 5 + 2y 2 99. 5x2 − 7x3 + x + 2x3 − 5x2 − 4x + 5x3 0 5p3 + 3p2 − 6 103. −5k 2 − 12k + k 3 − 4k 3 + 15k − 3k 2 − 2k − 8k 2 6c 4w4 + 3w2 −3r4 + r3 −p2 − 4p + 8 2y 2 − 2y − 4 90. −8w3 − 6w − 2w + 6w3 + 4w −2w3 − 4w 92. 3k + 2k 4 − 9k − 6k 4 − (−7k) −4k 4 + k 94. 4a2 + (−10a) + 5 − a2 + 9a − 6 3a2 − a − 1 96. −5 − 5c + 7 + 12c2 + 14c − 7c2 5c2 + 9c + 2 98. 9n4 + n3 + 5n2 + 4n3 − 10n4 − 5n3 − 5n2 −n4 100. w − w2 + 14 − 3w2 − 6 − 6w + 4w2 + 7w − 8 −3x 101. 4p3 + p − 6 − (−p3 ) + (−4p) + 3p2 + 3p −3k 3 80. c2 − (−8c) + (−c2 ) + 5c − 7c 88. 6y 2 − 6 + 2y − 4y 2 − 4y + 2 x2 + 4x + 1 93. −3x2 + 7x − 7 + 3x + 6x2 −4n 86. 3p2 − 7p + 8 + 3p − 4p2 4a2 − 2a + 7 91. −c3 − (−5c) + 8c3 − 4c − 5c3 78. 14n3 − 5n − 11n3 + n − 3n3 84. −r3 + r4 − 6r4 + 3r3 + 2r4 − r3 10k 3 − k2 89. 4m4 − 4m + (−10m4 ) − 5m + 5m4 2m3 − 2 82. 8w4 + (−4w2 ) + 6w2 − (−w2 ) − 4w4 −4y 3 + 4y 2 −3 −c3 + 1 76. 16 − 8m3 + 4m3 − 4 + 6m3 − 14 4w2 + 9 −5y 2 85. −8a + 17 + 4a2 + 6a − 10 72. 2br − 13r + 8 + 3r − 7br + 6r + 5br − 11 + 4r 3m 102. 6m2 − 5 + 2m + 8 − 7m − 4m2 − 9 2w 2m2 − 5m − 6 104. 15 − 4r2 − 6r + 9r2 − 19 + 7r + 8 − 2r + r2 6r2 − r + 4 +k 105. y 2 − y 3 − 4y 2 − y 4 + 2y 3 + 6y 4 + 3y 2 5y 4 + y 3 106. −w2 + w − (−5w2 ) − 3w3 − 7w − 4w2 + w3 −2w3 − 6w 107. 6b2 + 2b4 − 8b + 5b2 + b4 − 11b2 3b4 − 8b 108. −8m + (−m3 ) + m2 + 12m − (−4m3 ) − 4m 109. mp2 − 4m2 p + (−6m2 p) − 2mp2 −mp2 − 10m2 p 110. −3ac − (−ac2 ) + 9ac + 6ac2 111. 2r2 q − 6r2 − (−8r2 ) − 7r2 q 113. x3y 2 − (−x2 y 3 ) + (−2x2 y 3 ) − x3 y 2 115. x4 y 2 + (−9x2 y 4 ) − (−3x2 y 4 ) − 4x4 y 2 −3x4 y 2 − 6x2 y 4 7k 5 m3 + k 5 116. 2x2 y 2 + xy 3 − (−2x2 y 2 ) − 5xy 3 121. 10a2 − ac + 7c2 − 4a2 − 3ac − a2 − 4ac + c2 3x2 y 4x2 y 2 − 4xy 3 118. 17a2 b3 + 11a2 − 14a2 b3 − 4b3 − 3a2 b3 11a2 − 4b3 120. −d5 + c2 d5 − c2 + 2d5 − 4c2 d5 − d5 + c2 9p3 r3 −3c2 d5 122. −20m3 − 18mn + 2n2 + 12mn + 14m3 − 4n2 5a2 − 8ac + 8c2 123. −rx2 − 5r2 x − 5rx2 − 3r2 + r2 x + 6rx2 6hk 2 − 3h2 k 114. xy 4 + 2x2 y + (−3xy 4 ) + x2 y − (−2xy 4 ) −x2 y 3 117. 20m3 + 6k 5 m3 − 9m3 + k 5 + k 5 m3 − 11m3 119. 5p3 − 4r3 + 9p3 r3 + 4r3 − 5p3 7ac2 + 6ac 112. −5hk 2 + (−6h2 k) + 3h2 k + 11hk 2 −5r2 q + 2r2 3m3 + m2 −6m3 − 6mn − 2n2 −4r2 x − 3r2 124. 4h2 k − 4hk 2 + 2k 2 + 7hk 2 − 3h2 k − 3hk 2 ALG catalog ver. 2.6 – page 62 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. h2 k + 2k 2 DK Topic: Multiplying monomials. See also categories BB, BC and BE (laws of exponents), and EC (multiplying monomials and polynomials). Directions: 6—Simplify. 1. 5(−2x) −10x 5. k 3 (k 2 ) 9. (−2y)(−6y) k5 13. −r · 15r3 −15r4 21. x2 y 2 (xy 4 ) 2. −6(3y) 6. c4 c7 −18y c11 10. −5x · 4x 12y 2 17. (10n2 )(6n3 ) 3—Multiply. 60n5 25. (−5mp)(−m2 p) 5m3 p2 3(11a) 33a 4. −4(−8a) 7. y2 · y5 y7 8. (r3 )(r6 ) 11. 5p(−7p) −20x2 14. (−a)(−12a5 ) 12a6 18. (−2p)(25p4 ) −50p5 22. c4 d · c2 d3 x3 y 6 3. c6 d 4 26. (−3x2 y 4 )(8xy 3 ) 15. (−7w4 )(−3) −27a6 b5 21w4 r9 12. 8w · 9w 72w2 16. −6(8t6 ) −48t6 19. 5y 3 (−7y 5 ) −35y 8 20. 4m2 · 11m8 44m10 23. km3 · k 3 m3 k 4 m6 24. (a7 b3 )(ab5 ) a8 b8 27. (2r4 w3 )(−11rw2 ) −24x3 y 7 29. −3a5 b2 · 9ab3 −35p2 32a 28. 7h4 k 2 · 8hk 3 56h5 k 5 −22r5 w5 30. −12k 6 m(−k 3 m) 31. c3 d2 · 18c7 d3 18c10 d5 32. (4xy 5 )(−7xy) −28x2 y 6 12k 9 m2 33. (2xy 2 z)(−5x2 y 2 z) 34. 3w4 x2 y · 9wx3 y 5 35. (−6a5 bc7 )(9ab3 c2 ) 27w5 x5 y 6 −10x3 y 4 z 2 37. x3 · x2 · x4 38. y 5 · y · y 7 x9 41. (2c3 )(−c)(13c2 ) −26c6 36. (−6m2 p3 r2 )(−6m2 pr2 ) −54a6 b4 c9 36m4 p4 r4 39. p · p4 · p3 y 13 42. (3y)(12y 2 )(y 2 ) 36y 5 40. a7 · a3 · a2 p8 43. (4x2 )(−5x)(−2x) 40x4 a12 44. (−7c3 )(−2c)(−5c4 ) −70c8 45. −1(−cx2 )(−5c4 x) 46. −a(3b3 )(−8ab5 ) 24a2 b8 47. −c(−9c6 d)(4d2 ) 36c7 d3 −5c5 x3 48. −5(a2 y 5 )(12a6 y) −60a8 y 6 49. (−2km3 )(4k 3 )(−8k 2 m) 64k 6 m4 50. (−9ax)(−3a2 x3 )(−4x) 51. (6w3 y 4 )(−2y 2 )(5w5 y) −108a3 x5 53. (2xy 3 )(w5 x2 )(5wy) 10x3 y 4 w6 −60w8 y 7 54. (m5 r2 )(3m)(−2r2 p7 ) 28p8 r9 55. (3xy 5 )(2yz 2 )(5x6 ) −6m6 p7 r4 52. (4r4 )(−7p7 r3 )(−pr2 ) 30x7 y 6 z 2 56. (−14a2 )(−2b3 c)(−a3 bc2 ) −28a5 b4 c3 Power to a power 57. (4w)3 58. (−2q)5 64w3 61. (−y 3 )2 62. (r3 )4 y6 65. (−2d3 )5 66. (3p2 )3 −32d15 27p6 81m12 p8 70. (−8x4 y)2 73. −5x(2x)4 −80x5 74. (3y)2 (−9y) 81. (−2a3 b4 )3 15n10 −8a9 b12 85. (2a2 b)3 (5ab3 ) 40a7 b6 64x8 y 2 −81y 3 78. (−2c2 )3 (−3c2 ) 82. (7y 3 z 4 )2 24c8 49y 6 z 8 86. (5w4 x2 )(2wx2 )4 60. (−5a)2 81c4 63. (−x2 )3 r12 69. (3m3 p2 )4 77. (15n4 )(−n3 )2 59. (3c)4 −32q 5 64. (k 2 )5 −x6 25a2 k 10 67. (−7a4 )2 49a8 68. (2y 3 )4 71. (2r2 p4 )5 32r10 p20 72. (−5ac3 )3 75. (−5a)2 (6a) 150a3 79. (−3p4 )(−2p2 )4 83. (−3n5 p3 )4 −48p12 81n20 p12 87. (3cy 2 )3 (2c2 y) 54c5 y 7 16y 12 −125a3 c9 76. −9r(−2r2 )3 72r7 80. (−x2 )3 (4x3 ) −4x9 84. (−4m6 r)3 −64m18 r3 88. (4pr2 )(5p2 r3 )2 100p5 r8 80w8 x10 89. −p2 r3 (−p4 r)4 −p18 r7 90. −ab3 (−a2 b)2 −a5 b5 91. −km(−2km3 )5 32k 6 m16 ALG catalog ver. 2.6 – page 63 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 92. x3 (−x2 y 3 )4 x11 y 12 DK 93. (−8ab)2 (a2 b)3 94. (2xy 2 )5 (x2 y)2 64a8 b5 32x9 y 12 95. (−p2 r)3 (3pr)4 96. (−2cd)3 (−3c3 d)2 −81p10 r7 97. (−2x3 y)(y 4 z)(−4x5 z 2 ) 98. (−3a4 c2 )(−6bc3 )(a2 b3 ) 8x8 y 5 z 3 99. (5k 2 n)(n2 w3 )(−2kw3 ) 18a6 b4 c5 101. (7u2 w)(−3u)2 (−u4 w5 ) 100. (m2 r3 )(−3m3 pr4 )(7mp2 ) −10k 3 n3 w6 102. (−2p3 )3 (pr5 )(12r2 ) −63u8 w6 −72c9 d5 −21m6 p3 r7 103. (4x)2 (−2x3 y)(−5y 3 ) −96p10 r7 104. (−6a3 b)(−a2 b4 )3 (9b2 ) 160x5 y 4 54a9 b15 Fractions and decimals 105. (10d2 )( 35 d5 ) 106. (− 73 a5 )(−12a3 ) 6d7 109. (− 54 a2 c6 )(20ac2 ) 110. (24km3 )(− 18 k 3 m) −25a3 c8 113. ( 25 y 2 )2 28a8 107. (6k 3 )(− 52 k 2 ) −15k 5 111. ( 49 x5 y 2 )(54xy 3 ) 24x6 y 5 108. (− 34 m4 )(24m5 ) 112. (−80rw5 )(− 25 r3 w2 ) −3k4 m4 114. (− 34 b2 )3 4 4 25 y 117. (− 32 a3 h4 )3 121. ( 14 x4 )( 23 x3 ) 115. ( 21 c3 )5 6 − 27 64 b 3 8 10 d 126. ( 45 y 4 )(−20y)( 21 y 5 ) −5a6 − 34 y 8 127. (24x2 y)( 23 y)( 56 xy 2 ) 120. ( 25 r2 p3 )3 130. (0.1ab4 )(60a2 b) 6a3 b5 134. (−0.3x4 wy 2 )(0.6xw5 y) −1.2h4 r3 p7 138. (0.9r2 p3 )2 0.125h3 k 15 132. (−0.8h7 k 2 )(30hk) 141. (1.5ab2 )(0.4ab)(25b4 ) 15a2 b7 143. (−0.2pr)(−6p2 )(−0.3pr2 ) −0.36p4 r3 −24h8 k 3 135. (0.6abc2 )(0.5a2 bc3 ) 136. (0.2kmr3 )(1.2k 2 mr3 ) 0.3a3 b2 c5 0.81r4 p6 139. (1.2x5 z)2 0.24k 3 m2 r6 1.44x10 z 2 140. (0.4a2 b4 )3 142. (10c2 )(−0.4cd2 )(−0.7d7 ) 2.8c3 d9 144. (8w4 y)(0.01w2 )(−5w4 y) −0.4w10 y 2 ALG catalog ver. 2.6 – page 64 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 5 − 10 a 3c4 d4 131. (0.5y 4 z 3 )(−18yz 3 ) −0.18x5 w6 y 3 8 6 9 125 r p 128. (− 34 cd)(−10c2 )( 25 cd3 ) −9y 5 z 6 133. (2.4h3 rp4 )(−0.5hr2 p3 ) 49 10 100 w 124. (− 35 a2 )( 61 a3 ) 30x3 y 4 3w4 z 5 137. (0.5hk 5 )3 16 8 4 81 m k 3 7 y ) 123. (− 52 y)( 10 −8y 10 129. (−0.2w3 z)(−15wz 4 ) 7 5 2 w ) 116. (− 10 1 15 32 c 119. (− 23 m2 k)4 1 14 6 25 c d 122. (− 38 d2 )(− 45 d6 ) 1 7 6x 125. (−6a2 )( 12 a)( 53 a3 ) 32r4 w7 118. ( 15 c7 d3 )2 9 12 − 27 8 a h −18m9 0.064a6 b12 DL Topic: Dividing monomials. See also categories BD and BE (laws of exponents), and EG (dividing monomials and polynomials). Directions: 6—Simplify. 9—Simplify (assume no denominator equals zero). 76—Find the quotient. 1. 10x 2x 5. −15y 45 9. 70p4 ÷ p3 13. −y 6 −2y 6 17. 9c5 6c2 21. k 3k 5 25. −32y 4 16y 3 5 − y 3 6y 12y 1 2 3. −20a 6a 6. 24w −3 −8w 7. 65x 5 2 c 10. 24c ÷ 12c2 70p − k8 15. −30r3 −5r3 3c3 2 18. 72a3 8a 9a2 19. 1 3k 4 22. 10y 4 25y 5 2 5y 26. 36w8 −12w5 1 4x4 −3w3 30. 20n4 ÷ (−30n3 ) 7 a3 33. 35a2 ÷ 5a5 −14k 12 −42k 9 − 34. 100y 6 ÷ 200y 3 k3 3 38. 41. −108h7 ÷ (−9h7 ) 12 −24r5 −72r4 1 2n2 11. 44 ÷ 88n2 −6k 8 −6 −2y 10 3 13x 14. 1 2 29. −6x ÷ 24x5 37. 2. − 2n 3 y3 2 r 3 4. 35m −5m 8. 8 48k 13n4 −1 49. pr3 p2 r 53. 12x2 y 4xy 57. 75c4 d6 100c3 d4 61. −8a3 b3 30a2 b4 −3a6 3a6 50. n4 m nm 54. 3cd 18c4 d 3cd2 4 58. 14wx5 49w3 x 2x4 7w2 4a 15b 62. 32kn8 −6kn3 − r2 p 3x − 65. 6pr4 ÷ 72p2 r4 69. −2x3 z ÷ 22xz 4 1 12p − 16. −5c7 −75c6 c 15 2n2 22n4 1 11n2 20. 100h7 20h3 5h4 23. −8w 32w6 − 24. 56x2 −7x9 − 27. 120r4 24r5 28. 3p10 21p4 p6 7 1 4w5 5 r 31. −33w6 ÷ 3w5 4c2 3 35. 36c4 ÷ 27c2 −18x8 −80x12 −11w 1 5x4 32. 105y 4 ÷ (−70y 4 ) 40. 2 7p7 43. −16p ÷ (−56p8 ) n3 1 6c3 16n5 3 51. x2 y x2 y 3 55. 10rw 2rw3 59. −12mp8 36mp10 63. 17c12 d2 17c7 d8 70. 18n3 w2 ÷ (−12nw2 ) 1 y2 5 w2 − 1 3p2 c5 d6 67. 2y 5 z 4 ÷ 18y 5 z 8m7 r2 − 8 x7 36. 63k 5 ÷ 28k 9 47. −22y 4 ÷ (−22y 4 ) −1 66. 80m8 r10 ÷ 10mr8 x2 11z 3 y3 16 −36w4 −12w − 3 2 9 4k 4 3w3 44. −18x11 ÷ (−66x6 ) 3x5 11 46. −13n4 1 6k 12. 6y 3 ÷ 96 4y 6 45. −7 6 39. 42. −140y 10 ÷ (−35y 4 ) 4—Divide. z3 9 71. 15ab9 ÷ (−85a2 b8 ) 3n2 2 ALG catalog ver. 2.6 – page 65 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. − 3b 17a 1 48. −15h7 ÷ (−1) 52. ab2 a4 b 56. 5p2 q 2 20pq 2 60. 64h5 k 2 −4hk −16h4 k 64. 7x4 y 3 35x5 y 5 1 5xy 2 15h7 b a3 p 4 68. 12a2 b6 ÷ 30ab7 72. −80k 4 p ÷ 50k 4 p 2a 5b − 8 5 DL 73. −5k 3 m8 −10k 2 m9 77. 32x4 y 16y 2x4 81. r7 w2 −7rw9 − k 2m r6 7w7 85. −84cd ÷ (−7c2 d) 12 c 74. −14dh3 −2dh12 78. 4p3 20pr4 82. 2h3 k 6 −hk 2 75. −24x2 y −8xy 5 p2 5r4 79. −3m 21m3 n −2h2 k 4 83. 20a 5a2 b3 7 h9 86. (−16rp3 ) ÷ (−2rp3 ) 8 3x y4 76. −4w7 z 2 −6w4 z 2 1 7m2 n 80. 8r2 w3 −12w3 84. y2 5x3 y 2 − 4 ab3 87. (−6k 2 n) ÷ (−24kn6 ) −1 −6a2 b −1 6a2 b 92. −2c5 d2 −2c5 d2 1 2hk 95. −3x2 y −x 3xy 96. −r3 p5 r3 x y 99. −4a4 b 8b − a4 2 100. −z −4wz 2 1 4wz 103. x4 y 2 z x8 y 2 z 2 1 x4 z 104. d2 h8 k 3 dh4 k dh4 k 2 107. 96m2 rt5 −12mrt5 −8m 108. −39b3 x2 y 78bxy 3 2 17acd 112. 4pr2 w2 64pr3 w3 1 16rw 6m p 116. −0.6b2 y 5 2.4by 5 − 120. −5.4h −1.8h3 k 3 h2 k 124. 0.21a3 c −0.03a2 c2 −2p2 r2 −6 −12hk m 3 98. 5xy −5y 2 102. −m3 pr2 mp2 r2 106. 2a3 bc 10abc6 a2 5c5 3mp 4 110. 81x2 y −9x2 z 2 − 9y z2 111. −6ad 51a2 cd2 1 3a2 x 114. −0.9cd4 −0.3cd 3d3 115. 1.8m2 p3 −0.3mp4 c 3y 5 118. 4.8w3 x −1.2wx2 − 119. 0.5ad2 3.5a2 d2 12p2 r2 122. 12ab4 0.3ab5 123. −0.04x2 y 8 0.2xy 7 97. −m2 n −3mn 101. a5 b7 c2 −a9 b2 c3 105. 28xyz 7x2 yz 3 109. −9m2 pr −12mr 113. 0.2a3 x 0.6a5 x2 117. −1.3c2 3.9cy 5 121. −6p3 r2 −0.5pr4 − b5 a4 c 4 xz 2 − − 1 5x3 91. 90. 2p2 r2 ÷ (−1) 94. 45vw −5 2r2 3 3a 11b2 −9vw 93. − 88. −15a10 b7 ÷ (−55a9 b9 ) k 4n5 89. −5xy 5 ÷ (5xy 5 ) 2w3 3 − 40 b m2 p 4w2 x ALG catalog ver. 2.6 – page 66 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. − − 1 7a − xy 5 1 −p5 − b2 x 2y 2 b 4 − 7a c DM Topic: Combined methods (monomials). See also category BE (laws of exponents). Directions: 6—Simplify. 1. 8(3w2 ) − 3w(5w) 98—Perform the indicated operation(s). 2. 9w2 2a(−5a) − (−10a2 ) 0 3. y(2y 2 ) + 5y 2 (−6y) 14m2 (2m3 ) − 3m(9m4 ) 4. −28y 3 5. (3x3 )(2x) + 7x4 6. 13x4 8y 5 − 5y 2 (3y 3 ) −7y 5 7. m5 2a3 (−4a3 ) − 10a6 −4k 6 (3k) + 2k 2 (9k 5 ) 8. −18a6 9. (2n)3 − n(3n)2 10. 2d(3d)3 + (5d2 )(2d)2 −n3 11. (−2a)5 + (4a)2 (2a3 ) 14. −4n4 (5n)2 + n3 (5n)3 −36p10 21. 3y(2y)2 + 4y 2 (y 3 ) − (2y)3 22. −5a(2a3 ) + (6a2 )2 − (5a)2 27. a3 (a2 )2 + (2a)4 − a(3a)3 a7 − 11a4 26. (5n3 )(3n)4 + (−2n2 )(3n2 )3 31. (2x)5 (2xy 2 ) − (6x3 y)2 + (−3x2 y)3 8x4 (−6x3 ) 12x5 37. 28n6 2n(6n8 ) 41. (−x2 y 4 )(−x3 y 10 ) x9 y −4x2 7 3n3 y 13 x4 18a(3ab4 ) 36a2 b2 49. 14p2 r4 −2pr3 (7pr2 ) 53. (10p5 w8 )(6pw2 ) 24p6 w7 57. 3c2 k · 14c3 k 2 7c4 k · 6c2 k 61. 14w5 (−2w2 )3 65. (3m2 )2 (6m)2 3b2 2 − m2 4 7 4w − k c 1 r 5w3 2 405n7 − 54n8 32. (3a)2 (ab)2 − (2a2 b)2 + (5ab2 )3 28x6 y 2 − 27x6 y 3 34. (−5y 2 )(10y 4 ) −25y 7 38. 12x10 9x(−10x4 ) 42. c4 d 3 (−c6 d)(−c5 d10 ) − 46. −15p2 w8 9pw(7p5 ) 2 y 35. 2x5 15 39. 1 c7 d8 43. −2a3 (6a) 8a4 50. 10c7 d4 (15cd)(4c4 d2 ) 54. 5ab3 (8a2 b2 ) −12a4 b 40. 16r8 −10r3 (2r5 ) 44. −g 4 h11 (−g 2 h4 )(−gh8 ) 5x4 2y 48. 22n10 r4 3n4 (33nr9 ) 2n5 9r5 3 40m3 52. −24u4 w2 u3 w(6uw2 ) − 8k 9h 56. (2xy)(−6x2 y) 10xy 4 60. 8rx3 · 7r2 x 28x2 · 4r3 x4 3 2 64. 2a5 (−15a2 ) (−10a2 )2 2 y2 68. (4d3 )3 (2d2 )5 3k 7 1 10k 3 (−6k 4 )(−5k 6 ) (−mx5 )(−m4 x3 ) −m9 x2 51. 6mn 3 (4m n)(20m) − 10b4 3a 55. −2h7 k 2 (20hk 3 ) −45h9 k 4 58. (−12yz)(6yz 4 ) (−y 3 )(−54yz 5 ) − 59. (25a3 b2 )(−3ab7 ) (5a2 b4 )(15a2 b5 ) 62. (5k 3 )2 25k 6 63. (−3r2 )3 −3r(6r5 ) 66. (−5c3 )3 (−5c3 )4 67. (2y)4 (−2y 2 )3 1 − 1 5c3 ALG catalog ver. 2.6 – page 67 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. c2 4 4 5 − − g h x6 m4 c2 6d 4 3y 2 5a4 b2 + 125a3 b6 (3c4 )(3c3 ) 36c5 3 2 −x3 y(10x2 ) 4xy 2 5w7 21p4 u8 w6 36. − 47. − −9w7 + 25w6 30. (4u3 w2 )(4uw2 ) + (u2 )4 (w3 )2 − (2uw)4 −200p2 r3 − 45. −32k 6 + 4k 5 28. −w(2w2 )3 + (5w3 )2 − w(w3 )2 29. (5p)2 (−2r)3 + (4p2 r)3 − (8p2 )(8p4 r3 ) 12x10 y 7 26a4 − 25a2 24. 2k 3 (−2k)3 + 4k(k 4 ) − (4k 3 )2 −27x3 3r9 − 32r7 15k 4 m4 20. 3xy(−2x3 y 2 )3 + 3x6 y 5 (2x2 y)2 14c7 d5 25. (3r4 )(−r)5 − (4r)(2r2 )3 33. 176x10 18. (−3k 2 m2 )2 + (3km2 )2k 3 m2 4y 5 + 4y 3 23. (4x2 )(5x) − (3x)(5x)2 + (3x)3 16. (2x2 )5 + 4x4 (6x3 )2 −9y 9 6a4 b4 19. (2cd2 )2 (5c5 d) − (6cd2 )(c2 d)3 −107r4 15. −18y(5y 8 ) + y(3y 2 )4 25n6 17. (2a3 b)(−5ab3 ) + (2ab)4 12. −7r2 (−3r)2 − 2r(−4r)3 0 74d4 13. (−p2 )3 (4p4 ) − (2p2 )5 6k 7 − − −1 2 d 4 w − 6x2 5y 2 1 2x2 − 3a3 10 DM 69. (−2c3 d)3 (−3cd5 ) −6c2 d2 (4cd)2 − 73. 70. (4x4 y)(−5xy 5 )2 10x6 y 3 (−2xy)3 − 5y 5 4x3 m2 rx2 (mrx)5 (mr3 x)3 (mx4 ) 71. m3 r3 72. c6 d4 4 k 4 g 2 p(k 2 gp2 )3 (k 2 g 3 p3 )2 (k 4 gp3 ) k2 g 2 p2 (−kn5 )(3k 2 n)2 (−6k 3 n2 )2 (−2kn3 ) 74. (2xy)3 (−5x2 y)2 (35xy 5 )(10x2 y 8 ) 78. (−6bc4 )(2b2 c2 )5 (−12b2 c7 )2 4x4 7y 8 75. (8c2 d)2 (2cd3 ) (3d3 )(4cd2 )3 2c2 3d4 76. (9a4 b3 )(12ab7 ) (−3ab)3 (2a2 b)2 4b7 3 79. (2pr)4 (9p3 r6 ) (−6pr5 )2 4p5 80. (−10h4 k 3 )3 (5hk 4 )2 (−12h2 k) − b5 a2 1 8k 2 77. (5xy 3 )2 (4x2 )2 (30x5 y 2 )2 4y 2 9x4 − 10h8 3 81. 12h2 21h6 14h5 6h2 4 3h 85. (3m2 p)3 ÷ 18m5 p3 82. 93. 97. 4 x2 y 4 6h2 −k 2 k5 12h4 −20x2 y 3 12xy 2 · 24x2 15y 3 − 101. − −1 · (12xy)2 (6x2 y 3 )2 − 9y 8 −10y 3 −25y 45y 6 86. −15pr8 ÷ (−5pr4 )2 3m 2 89. 94. 98. −8c 121c7 · 33c3 6c2 83. 3a2 b2 2 44c2 9 87. (4ab)3 ÷ (4ab)4 1 4ab 84. 3n w2 2 4k 3 3h4 91. 1 10bc3 w2 3n 95. 8x6 3h2 − 9h4 8 1 (3h2 k)3 w2 3n 3 20ab3 −16a · −12a2 b2 20b3 (−4y 3 )2 −6y 8 z 7 · 8y 4 z 2 (2yz 2 )3 − 3a6 88. (−3x2 y)5 ÷ (3x2 y)3 4 3b2 99. · (−10bc3 ) −3h2 4x2 −1 3 −12r2 w2 −16r3 w 10rw2 12rw4 92. 5x8 8y 3 · 8y 3 5x8 96. 103. 3y 7 2z ALG catalog ver. 2.6 – page 68 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −30k 3 m3 (−3km)3 · (9km2 )2 5k 6 m8 2 k 2 m6 2a3 c2 4 1 5c2 12a5 2 25a2 9c4 100. 8r3 5w3 102. a5 54a3 · 18a a −9x4 y 2 2xy 2 3 (3ab)3 (−2a3 b2 )2 · 6a2 b4 12a5 b − 3 5p 90. (6hk 3 )2 · 3k 3 1 2 − 104. 15hk 12k 3 16hk 2 −10hk 2 2h k2 −3u2 (u3 w2 ) (−2u2 )3 · (6uw2 )2 u4 w 2 2u5 3w4 DN Topic: Applications of monomials. See also category EK (polynomials). Directions: 0—(No explicit directions.) 1. The side of a square is 1 6 w. 48—Write each answer as a monomial in simplest form. What is the perimeter? 2. The side of a square is 7ab. What is the perimeter? 28ab 2 3w 3. Find the area of a square whose side is 5cd. 5. 2 3 x. 4. Find the area of a square whose side is The dimensions of a rectangle are 5y and 3y. What is the perimeter? 16y 6. The dimensions of a rectangle are x and is the perimeter? 7 x 7. Find the area of a rectangle whose dimensions are 5xy and 35 y. 3xy2 8. 9. The side of a square is 10xy. What is the area and perimeter? 100x2 y2 ; 40xy 10. The side of a square is perimeter? 9 k2 ; 3k 11. A rectangle has dimensions 3x and area and perimeter? 3 x2 ; 7x 1 2 x. 25c2 d2 What is the 2 13. The side of a cube is 2x. What is the volume? 8x3 3 4 x. 4 2 9x What 2 Find the area of a rectangle whose dimensions are 6ab and 4bc. 24ab2 c 3 4 k. What is the area and 16 12. A rectangle has dimensions 9a and a. What is the area and perimeter? 9a2 ; 20a 14. The side of a cube is 5y. What is the volume? 125y 3 15. The side of a cube is 4a. What is the surface area? 16. The side of a cube is 3n. What is the surface area? 96a2 54n3 17. The perimeter of a rectangle is 20pr and the width is 3pr. What is the length? 7pr 18. The perimeter of a rectangle is 7h and the length is 3h. What is the width? 1 h 19. The area of a rectangle is 21h2 k and the width is 3hk. What is the length? 7h 20. The area of a rectangle is 12ab and the length is 6ab. What is the width? 2 21. The perimeter of an isosceles triangle is 14a and the base is 5a. What is the length of each side? 9 a 22. The perimeter of an isosceles triangle is 7xy and the base is xy. What is the length of each side? 3xy 23. The area of a triangle is 20x2 and the height is 5x. What is the base? 2x 24. The area of a triangle is 30mn2 and the base is 3n. What is the height? 5mn 25. The length of a rectangle is four times the width. What is the perimeter? 10w 26. The width of a rectangle is half of the length. What is the perimeter? 3` 27. The length of a rectangle is three times the width. What is the area? 3w2 28. The width of a rectangle is one-fourth of the length. What is the area? 1 `2 29. The base of triangle is two-thirds of the height. What is the area? 1 h2 30. The base of a triangle is two times the height. What is the area? h2 31. The height of a triangle is six times the base. What is the area? 3b2 32. The height of a triangle is four-fifths of the base. What is the area? 2 b2 2 3 2 4 ALG catalog ver. 2.6 – page 69 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 5 EA Topic: Adding polynomials. See also categories DI and DJ (adding variable terms, combining like terms). Directions: 6—Simplify. 1—Add. 1. 14k + (7m − 9k) 3. (−4b + 9h) + (−14h) 5. (4x − 5) + (9x + 14) 7. (12 − 3a) + (−7 − 4a) 9. (−9a2 − 10b) + (a2 + 4b) 5k + 7m −4b − 5h 13x + 9 5 − 7a 13. (5c + 6d) + (2c + 8d) 27. (−y 2 + y − 1) + (6y − 7) (−7y − 2) + (2y + 17) −5y + 15 8. (−1 + 5r) + (−5 − 6r) −6 − r 9k 4 − 19m 3x3 − 4y 5x − 2y −3a + 8b 18. (7r − 3rp2 ) + (−6r + 9rp2 ) −9xy − z r + 6p2 r 20. (19h2 − 4hk) + (2h2 − 12hk) −3uw − 19u 21. [4a + (−11b)] + (−10a + 15b) 25. (2r − 5) + (r2 + 3r − 6) 6. 16w + 7z 16. (a + 11b) + (−4a − 3b) 19. (−17uw − 4u) + (14uw − 15u) 23. [8a + (−x)] + (−7a − 3x) (8w + 7z) + 8w 14. (4x + 8y) + (x − 10y) 5m − 3p 17. (8xy − 3z) + (−17xy + 2z) 4. 7a − c 12. (x3 + 3y) + (2x3 − 7y) −7c3 + 11d2 7c + 14d 15. (2m − 7p) + (3m + 4p) (12a − c) + (−5a) 10. (11k 4 − 4m) + (−2k 4 − 15m) −8a2 − 6b 11. (−5c3 + 2d2 ) + (−2c3 + 9d2 ) 2. 22. (2c − 10d) + [4c + (−d)] −6a + 4b 21h2 − 16hk 6c − 11d a − 4x 24. (−14c + 5y) + [9c + (−5y)] −5c r2 + 5r − 11 26. (x3 − 7x2 + 9x) + (4x2 − x) x3 − 3x2 + 8x 28. (7w2 z + 15z) + (w2 z − 5wz − 16z) −y 2 + 7y − 8 29. (3x2 + 7x + 9) + (3x2 − 7x) 31. (7cd − 4c) + (−4cd + 4c − 19) 4km + 10k + 15m 21r3 − 4r2 − 4r 37. (−2m + 3p − s) + (4m − 7p + 5s) 39. (5a − 2b + 7c) + (3a + b − c) 2m − 4p + 4s 43. (y 4 − y 2 − 2) + (−3y 4 + y 2 − 5) −5x2 − 3x 5x − 3y 47. (2pr − r + 6p) + (−8pr + 3r + 2p) 34. (−7a2 + 9a − 16) + (a + 20) −7a2 + 10a + 4 36. (2by − 5b + 19y) + (by − 7y) 3by − 5b + 12y 38. (6k − r + 9) + (−8k + r − 10) −2k − 1 7w − 10x − 3 42. (7c3 − 2c2 + c) + (8c3 + 5c2 + 7c) −6pr + 2r + 8p −8c − cd − d 48. (2a + 4ay − 8y) + (−2a − 6ay + 8y) −2ay −3a2 − a + 10 50. (10x2 − 6x − x3 ) + (9x + x3 + 5x2 ) 51. (−3c3 − 2 + 4c) + (5c + 3c3 − 7) 9c − 9 52. (8 + 2n4 − n2 ) + (−n4 − 1 + 6n2 ) a2 x2 − a + x −9m2 − 5m 46. (−2c + cd − 5d) + (−6c − 2cd + 4d) 49. (5a − a2 + 7) + (−2a2 + 3 − 6a) 53. (−2a2 x2 + 3a − x) + (−4a + 2x + 3a2 x2 ) 15c3 + 3c2 + 8c 44. (−2m3 − 7m2 + m) + (2m3 − 2m2 − 6m) −2y 4 − 7 45. (−xy + 2x − 4y) + (xy + 3x + y) 12a 40. (w − 6x + 12) + (6w − 4x − 15) 8a − b + 6c 41. (−3x2 − 6x + 5) + (−2x2 + 3x − 5) 10y 3 − y 2 32. (−9a2 + 12a − 10) + (9a2 + 10) 3cd − 19 33. (−km + 6k) + (5km + 4k + 15m) 35. (r2 + 5r) + (21r3 − 5r2 − 9r) 30. (6y 3 − 2y) + (4y 3 − y 2 + 2y) 6x2 + 9 8w2 z − 5wz − z 15x2 + 3x n4 + 5n2 + 7 54. (5u2 w − 8w + uw2 ) + (4w − 4uw2 − 6u2 w) −u2 w − 4w − 3uw2 55. (5xy − 7y + 9x) + (3x + 4y − 4xy) 57. (2c + 9cd − d) + (5c2 − 8c + 4d) xy − 3y + 12x 5c2 − 6c + 9cd + 3d 56. (−10n + 15p − 3np) + (13np − 6p + 10n) 58. (3ab − 3b + 8) + (−8a − 6ab + 4b) ALG catalog ver. 2.6 – page 70 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 9p + 10np −3ab + b − 8a + 8 EA 59. (−4p2 − 2p + 7) + (−p3 − 2p2 + p) 61. (y 3 − 2y − 4) + (−y 4 − y 3 + 3y 2 ) −p3 − 6p2 − p + 7 −y 4 + 3y 2 − 2y − 4 63. (a2 b − 9a + 5b) + (−2ab + 3a2 b − 5b) 4a2 b − 2ab − 9a 65. (−5by 2 + 3b2 y − 5y) + (−2by 2 − 5by + 7y) 60. (7r3 − 8r + 2) + (−10r3 − 3r2 − 2r) −3r3 − 3r2 − 10r + 2 62. (−k 4 − 6k 3 + 9k) + (k 5 + k 4 + 2k 3 ) k 5 − 4k 3 + 9k 64. (4by + 7b2 − 10y 2 ) + (3b − 3by − 8b2 ) by − b2 + 3b − 10y 2 66. (−3w2 + w2 y − 4y 2 ) + (10w2 − 3wy 2 + 4y 2 ) −7by 2 + 3b2 y − 5by + 2y 7w2 + w2 y − 3wy 2 67. (4hk − hk 2 − 3k 2 ) + (7hk 2 + 2h2 k + k 2 ) 68. (2a2 b + 4ab − ab2 ) + (−5a2 − 2a2 b − 3ab2 ) 6hk2 + 2h2 k + 4hk − 2k 2 −5a2 + 4ab − 4ab2 69. (7a3 − 5a2 + 14a − 13) + (−2a + 15) 7a3 − 5a2 + 12a + 2 70. (8c2 − 15c) + (−10c3 + 9c2 + 15c − 17) −10c3 + 17c2 − 17 71. (13p4 + 4p3 + 6p2 − 2p) + (−9p4 − 8p2 ) 4p4 + 4p3 − 2p2 72. (7w + 14y) + (−2w + 3x − 15y − 14z) 5w − y + 3x − 14z − 2p 73. (x3 − 5x + 2) + (x4 − 2x3 + 5x − 4) 74. (2c2 + 4c − 10cd) + (−6c2 − 4c + 8cd − d2 ) x4 − x3 − 2 −4c2 − 2cd − d2 75. (−5a3 + a2 − 2a + 7) + (3a2 + 4a − 12) 76. (k 2 − 4km + 3m − 8m2 ) + (3km − 3m + 6m2 ) −5a3 + 4a2 + 2a − 5 k 2 − km − 2m2 77. (c3 − 5c2 d + d3 − cd2 ) + (−2d3 + 5c2 d + cd2 ) c3 − d3 78. (a2 b + 8ab2 − 4b2 − 7) + (8b2 + 3ab2 + 11) a2 b + 11ab2 + 4b2 + 4 79. (8x + y − 9y 2 ) + (5xy 2 − 2y 2 + x − y) 81. (2x2 + 4) + (3x2 + 7x) + (x + 9) 9x − 11y 2 + 5xy 2 5x2 + 8x + 13 83. (17x − 12y) + (−23y − 15) + (10x − 19) 27x − 35y − 34 85. (x + 7y + 21z) + (7x − 3z) + (12y + 4z − 10) 80. (−a4 + 2a3 − 7a) + (−a4 − 2a3 + 8a − 4) 82. (5a − 9) + (−8b − 1) + (−7a + 4b) 2w3 − 2w2 13x3 − 11x2 + 37x − 75 88. (12x3 + 13) + (8x2 − 13x + 19) + (−8x2 − 32x) 12x3 − 45x + 32 90. (5p2 − p + r) + (−7p2 − 3p − 4r) + (5p2 − p + 3r) −14a + 7b − 25c 91. (x2 + 7x + 9y) + (4x2 + 3xy + 7y) + (7x2 + xy + 2x) 12x2 3p2 − 5p 92. (cd − 4c + 6) + (4cd − 9d − 9) + (5c + 14d + 3) 5cd + c + 5d + 9x + 16y + 4xy Fractions and decimals 93. 34 y 2 + 23 y − 1 + 54 y 2 − y + 45 2y2 − 13 y − 15 95. 12 c + 35 d + 2cd + − 32 c − 35 d − 32 cd −c − 12 cd 97. 12 m2 + 53 m − 14 + 12 m2 − 13 m + 12 m2 + 34 m + 14 3 2 1 3 99. 56 r2 + 3r − 13 + 23 r2 − 32 r + 16 2r + 2r − 6 101. (−3.4x − 0.6y + 2.8z) + (2.6x + 0.8y − 4.2z) + 58 p2 − 2p + 13 p2 − 6p + 1 96. 45 xy + x + 16 y + 15 xy − 23 x − 76 y xy + 13 x − y 1 1 98. 25 x − 12 xy + 23 y + 10 x + 32 xy − 12 y 2 x + xy + y 7 2 1 100. 34 w2 + 14 w − 12 + 18 w2 − 34 w − 32 8w − 2w − 2 94. 2 3 104. (4y 2 − 0.4y + 1.2) + (−2.9y 2 − 0.7y − 1.3) 1.1y 2 − 1.1y − 0.1 106. (−5w4 + 2.3w2 − 2.7) + (0.3w4 − 3.9w2 + 4) c2 + 3.8c − 4 107. (0.6a3 + 0.1a2 − 0.4a) + (0.2a3 + 2.9a2 − 1.4a) − 4p + −2.4pr + 2.8p2 r − 7.5r2 1.8ab + 0.2a − 0.1b 105. (1.8c2 + 4.9c − 3.6) + (−0.8c2 − 1.1c − 0.4) 3 2 8p 102. (0.3pr − 2p2 r − 3.5r2 ) + (−2.7pr + 4.8p2 r − 4r2 ) −0.8x + 0.2y − 1.4z 103. (−2ab + 0.6a − 0.15b) + (3.8ab − 0.4a + 0.05b) 5c3 − 7c2 − 8c 86. (9x − 33) + (−11x2 + 19x − 23) + (13x3 + 9x − 19) − 4w − 37 89. (9a + b − 12c) + (a − 15c + b) + (5b − 24a + 2c) −2a − 4b − 10 84. (2c3 − c) + (−3c2 − 7c) + (3c3 − 4c2 ) 8x + 19y + 22z − 10 87. (2w3 − 5w − 15) + (−6w2 + w − 15) + (4w2 − 7) −2a4 + a − 4 −4.7w4 − 1.6w2 + 1.3 108. (−7.2x + 1.6xy + 2.9y) + (−0.8x − 4.3xy − 0.4y) 0.8a3 + 3a2 − 1.8a ALG catalog ver. 2.6 – page 71 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −8x − 2.7xy + 2.5y EB Topic: Subtracting polynomials. Directions: 6—Simplify. 1. −(4c − 12) 5. −(−n2 − n + 9) 2—Subtract. −4c + 12 2. −(−5r2 − 2r) 6. −(ab − 4a − 5b) x − (x2 − 3x) −x2 + 4x −(6p2 − 7) 7. −(−c2 − cd + d2 ) −6p2 + 7 c2 + cd − d2 10. y 2 − (−3y 2 − y) 11. ab − (2a + 3ab) 4y 2 13. (a − c) − (c − a) 3. −ab + 4a + 5b n2 + n − 9 9. 5r2 + 2r 4. −(−2xy + y) 8. −(5y 2 + y − 7) −5y 2 − y + 7 12. 2m − (−m2 − 5m) −2ab − 2a +y 14. (x + 7) − (7 − x) 2x 15. (p − 8) − (p + 8) 2xy − y m2 + 7m 16. (4 + w) − (4 − w) −16 2w 2a − 2c 17. (9n + 7) − (4n − 5) 18. (6x − 17) − (−7x − 2) 19. (−8y + 7) − (3y − 2) 13x − 15 5n + 12 21. (−3x − 5y) − (8x + 2y) 22. (4a + b) − (6a − b) −11x − 7y 23. (−10m + 5p) − (8m − 3p) 27. (4cd − 8c) − (−3cd − 8c) 28. (2r2 − 6) − (5r2 − 10) 7cd 31. (−5u + 4w) − (−5u − 4w) −2a + 2b 3c + 7d 26. (−2y 4 + 18) − (−2y 4 + 17) 22p3 − 2p2 29. (−12rx − 8x) − (12rx − 8x) −7u − 3 24. (c + 11d) − (−2c + 4d) −18m + 8p 25. (12p3 − p2 ) − (−10p3 + p2 ) 20. (−2u − 2) − (5u + 1) −11y + 9 −3r2 + 4 30. (7x2 + y 2 ) − (7x2 − y 2 ) −24rx 32. (6a2 − 7a) − (−6a2 − 7a) 8w 33. (−a2 − 2a) − (−3a − 5) −a2 + a + 5 34. (4r − 7) − (r2 − 8) 35. (x3 + 3x2 ) − (−x2 + x) x3 + 4x2 − x 36. (−y 2 + y) − (−2y 3 + y 2 ) 37. (7cd − 6d) − (2cd − 16c − 4d) −a2 − b 41. (−x2 y − 5xy − 16y) − (7x2 y + 15y) 2y 2 12a2 −r2 + 4r + 1 2y 3 − 2y 2 + y 38. (−6pw + 8p + 14) − (5p − 21) 16c + 5cd − 2d 39. (−a2 b + a2 − b) − (−a2 b + 2a2 ) 1 −8x2 y − 5xy − 31y −6pw + 3p + 35 40. (2u2 + 3u − 6) − (−8u + 10) 2u2 + 11u − 16 42. (6a4 − 7a2 ) − (−a3 + a2 − a) 6a4 + a3 − 8a2 + a 43. (4km2 + 3m2 − 6) − (2km2 − 15) 2kmn2 + 3m2 + 9 44. (−4xy − x2 ) − (x2 y − 7x2 + 9xy) 6x2 − x2 y − 13xy 45. (3y 2 − 7y + 4) − (−2y 2 + 8y − 6) 5y 2 − 15y + 10 46. (−7 + 2c − c2 ) − (−5 − 6c + 2c2 ) −3c2 + 8c − 2 47. (2a2 − 5a − 4) − (3a2 − a + 1) −a2 − 4a − 5 48. (−6x2 − 3x + 1) − (4x2 − 5x − 1) 49. (−5a + 3b − c) − (3a + b − 4c) −8a + 2b + 3c 50. (m − 12mp − 7p) − (−2m − mp + p) 51. (−10w − 5z + 9) − (11w + 8z − 7) −21w − 13z + 16 53. (−13n5 + 4n4 − n3 ) − (−2n5 − n4 + 2n3 ) −10x2 + 2x + 2 3m − 11mp − 8p 52. (−3rt + 6r − 7) − (−5rt − 3r + 8) 2rt + 9r − 15 54. (4k 4 − k 3 + 6) − (−3k 4 + 2k 3 − 7) 7k 4 − 3k 3 + 13 −11n5 + 5n4 − 3n3 55. (−c5 + 3c3 − 7c) − (c5 − 3c3 + 8c) −2c5 + 6c3 − 15c 57. (−5x3 − 4x2 y 2 + 11y 3 ) − (10x3 + 3x2 y 2 − 3y 3 ) 56. (2b2 y + by + by 2 ) − (b2 y − 2by − by 2 ) 58. (8a4 − 12a2 b2 − 7b4 ) − (a4 − 8a2 b2 − 11b4 ) −15c3 − 7x2 y 2 + 14y 3 7a4 − 4a2 b2 + 4b4 59. (−3r2 t + 8rt2 − 9r2 t2 ) − (−11r2 t − 7rt2 + 5r2 t2 ) 8r2 t + 15rt2 60. (−14k 2 m + 9km − km2 ) − (16k 2 m − 4km + km2 ) − 14r2 t2 61. (6xy − 4x2 + 10y) − (−3x2 − 10y + 6xy) b2 y + 3by + 2by2 −30k 2 m + 13km − 2km2 −x2 + 20y 62. (−9a2 + 8a3 − 11a) − (9a3 − 12a + a2 ) ALG catalog ver. 2.6 – page 72 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −a3 − 10a2 + a EB 63. (−3d2 − 4cd + 8) − (−10 − 4cd + 5d2 ) 64. (−13w4 + w3 + 11w2 ) − (2w3 + w2 + 4w4 ) −8d2 + 18 −17w4 − w3 + 10w2 65. (p3 + 4p2 − 6p) − (−2p2 + 4p − 9) 66. (−y 2 + 5xy − 4x) − (6y 2 + 3y − 2x) p3 + 6p2 − 10p + 9 −7y 2 + 5xy − 2x − 3y 67. (2cd + 6c + 13) − (3cd − 2d + 24) 68. (−ab + bc − 2a) − (2ab − 2b + 5a) −cd + 6c + 2d − 11 69. (−3xy 2 + 3xy − y 3 ) − (−6xy 2 − y − 2y 3 ) −3ab + bc − 7a + 2b 70. (2m2 x − 4mx + 4m2 ) − (−2mx2 + m2 x − 8m2 ) 3xy 2 + 3xy + y 3 + y m2 x − 4mx + 12m2 + 2mx2 71. (−a3 − 2b3 + ab2 ) − (−a3 + b3 − a2 b) 72. (w2 − 2w2 x − wx2 ) − (−3w2 x + w3 − 4x3 ) −3b3 + a2 b + ab2 −w3 + w2 + w2 x − wx2 + 4x3 73. (−8ab − 9c + 3cd) − (4bc + 9cd − 14ab) 74. (13wx − 3wz + 17yz) − (9wx − xy − 5yz) 6ab − 9c − 6cd − 4bc 4wx − 3wz + 22yz + xy 75. (3x2 + 9xy + 7xy 2 ) − (5x2 y 2 + 4xy 2 + 3y 2 ) 3x2 + 9xy + 3xy 2 − 5x2 y 2 76. (2m2 + 6m2 r − 5s2 ) − (m2 r − 5mr + 7rs2 ) − 3y 2 2m2 + 5m2 r − 5s2 + 5mr − 7rs2 77. (6x2 + 11x) − (4x3 − 7x2 − 11x + 2) 78. (−c3 + 3c2 − 8c + 14) − (c3 − 10) −2c3 + 3c2 − 8c + 24 −4x3 + 13x2 + 22x − 2 80. (−2x2 − 3x − xy − y) − (2x − xy) 79. (7a + 14x) − (−2a + 3w − 15x − 14y) −2x2 − 5x − y 9a + 29x − 3w + 14y 81. (−rp − 15r2 p + 18r − 14) − (−16 − rp − 10r) 82. (wx2 + 5x2 + 6w) − (−x2 + 5wx3 + 7wx2 + 9w) −15r2 p + 28r + 2 −6wx2 + 6x2 − 3w − 5wx3 83. (−4x − 5x2 y 2 − 7xy + 12y 3 ) − (8x − x2 y 2 + 5xy) −12x − 4x2 y 2 − 12xy 84. (2a3 + 4a3 b − 19b3 ) − (11a3 + 17a3 b − 14ab − 9b3 ) + 12y 3 −9a3 − 13a3b − 10b3 + 14ab 85. (−y 3 − 4y 2 + 9y − 14) − (7y 3 + 4y 2 − 12y − 9) 86. (28a3 + 23a2 − 34a − 14) − (23a3 − 15a2 + 25a − 27) −8y 3 − 8y 2 + 21y − 5 5a3 + 38a2 − 59a + 13 87. (−7c3 + c2 + 7c + 9) − (−3c3 + 5c2 + 11c + 7) 88. (8r3 − 3r2 + 8r − 13) − (6r3 − 8r2 − 15r + 4) −4c3 − 4c2 − 4c − 2 2r3 + 5r2 + 23r − 17 89. (11x − 19x3 + 10x2 − 29) − (−17 + 11x − 19x2 + 12x3 ) −31x3 + 29x2 − 12 90. (−4ab + 16bc + 7cd − 25ad) − (cd − 17bc − 18ad − 12ab) 91. (9m + 6m3 + 5m2 + 14) − (8 + 7m + 11m2 + 8m3 ) −2m3 − 6m2 + 2m + 6 92. (10k 2 − 7k 4 − 6k 3 + 18k) − (−7k + 9k 2 − 18k 3 − 4k 4 ) 93. (−13hk − 15k) − (10hk + 19k) − (−17hk − 12k) 94. (23x2 − 27) − (−31x2 − 41) − (22x2 + 14) 95. (3wy 2 + 7y 2 ) − (w2 − 9y 2 ) − (−2wy 2 + 4y 2 ) 96. (4ab − 5ab2 ) − (2a2 b + ab2 ) − (5ab − 7a2 b) 8ab + 33bc + 6cd − 7ad −3k 4 + 12k 3 + k 2 + 25k −6hk − 12k 32x2 5wy 2 − w2 + 12y 2 −ab − 6ab2 + 5a2 b 97. (−11a2 + 9a − 23) − (9a − 33) − (13a2 + 9a − 19) −24a2 − 9a + 29 98. (8rp − 13r + 19p) − (−8rp + r − 32p) − (−12r + 13p) 99. (−7z 3 − 3z 2 ) − (z 3 + 7z 2 + 11z) − (7z 3 + 4z 2 + 10z) 100. (4x2 − 7x) − (2x2 − 5x + 15) − (−6x2 + x − 15) 16rp − 2r + 38p −15z 3 − 14z 2 − 21z 8x2 − 3x ALG catalog ver. 2.6 – page 73 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. EB 101. (c2 − 3cd + 4cd2 + d3 ) − (7cd + c2 − 10d3 + cd2 ) 102. (−h4 − 4h3 − 7h5 + h) − (−3h − 5h4 − 4h2 + h5 ) −10cd + 3cd2 + 11d3 −8h5 + 4h4 − 4h3 + 4h2 + 4h 103. (5a3 − a2 − a + 1) − (−5a3 − a2 − a + 1) 10a3 104. (6y 3 − 5y + 2y 2 − 1) − (3 − 7y − y 2 − y 3 ) 7y 3 + 3y 2 + 2y − 4 Fractions and decimals 105. 23 x2 − 34 x + 1 − 107. 1 3 2m + 7r 2m + 67 r + 2 2 3a −x− 4 5 −x2 + 14 x + 106. 9 5 + 2mr − − 32 m − 37 r − 53 mr + 83 a − 1 3 3 2 − − 35 c2 − 13 c + − 2 2 3a − 18 a + 1 6 1 2 1 2 2c + 2c − 2 1 1 2a − 2 113. (0.4r2 + 2.3r − 6.5) − (−0.7r2 − 1.6r − 0.5) 1.1r2 2 3 − − 3y − 1 3 1 2 1 5 ab − 3 a − 6 b 1 2 2y +y+1 −ab + 53 a + b 5 6w − 12 wx + 32 x − − 16 w − 32 wx + 12 x 112. 3 2 4y + 14 y + 3 5 − 1 2 8y − 34 y − 2 5 5 2 8y w + wx + x +y+1 −2.03n4 − 8.1n2 + 16.7 116. (−5.2p + 1.7pw + 2.9w) − (−0.05p − 4.3pw − 0.1w) −5.15p + 6pw + 3w +x 117. (−2.6a − 0.2b + 1.8c) − (−2.6a + 0.8b − 3.2c) 1 2 4y 114. (−2n4 − 4.1n2 + 8.7) − (0.03n4 + 4n2 − 8) 115. (0.1x3 + 0.2x2 − 0.6x) − (0.2x3 + 2.8x2 − 1.6x) − 2.6x2 − 2y + 110. + 3.9r − 6 −0.1x3 3 2 4y 108. − 45 ab + a + 65 b − 11 3 mr 1 2 109. − 10 c + 53 c − 111. 5 2 3x −b + 5c 118. (0.5rs − 8r2 s − 2.5s2 ) − (−3.5rs + 6.8r2 s − 5s2 ) 4rs − 14.8r2 s + 2.5s2 119. (−7yz + 0.04y − 0.03z) − (4.8yz − 0.1y + 0.05z) 120. (2c2 − 0.3c + 1.2) − (2.9c2 − 0.7c + 1.3) −11.8yz + 0.14y − 0.08z ALG catalog ver. 2.6 – page 74 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −0.9c2 + 0.4c − 0.1 EC Topic: Multiplying monomials and polynomials. Directions: 3—Multiply. 1. x(x + 4) 5. (−2)(5 − 11a) x2 + 4x 22a − 10 2. (w2 − w)(w) w3 − w2 3. (4k 2 + 1)(3) 12k2 + 3 4. 7(2y − 5) 6. −14(2c − 1) −28c + 14 7. −y(2y + 6) −2y 2 − 6y 8. (−f )(−f 2 + 3f ) 14y − 35 f 3 − 3f 2 9. (2g + 16)(3g) 10. 8z(−z 2 − 3z) 6g 2 + 48g −8z 3 11. 10c(4c2 − 7) 12. (3d3 + d2 )(6d) 40c3 − 70c − 24z 2 18d4 + 6d3 13. 5m3 (3m2 − 4m) 14. (f 2 )(3f 3 + 5) 15. (g 3 )(−2g + 8) 15m5 − 20m4 3f 5 + 5f 2 −2g 4 + 8g 3 −20n3 − 14n2 19. (3b2 + b)(−9b4 ) 20. −v 4 (−8v 2 + 5v) 17. −h2 (−7h2 − 1) 7h4 18. (4j 3 − 7j 2 )(−3j 3 ) + h2 −12j 6 21. (5ab)(−3a + 12b2 ) 22. 2xy 2 z(9x2 y 3 − z) −15a2 b + 60ab3 26. −a2 b(−a2 b − ab3 ) + x2 y 4 a4 b2 29. 2m2 n3 (m + 2mn2 ) 37. −r(−r2 + 3r − 1) − 3r2 20p3 r3 a4 − 2a3 14y 3 − 7y 2 − 70y 45. −d3 (d4 + 5d3 − 8d) 46. (a2 )(2a2 + 4a + 7) + 8d4 2a4 49. (−k 2 − k + 6)(5k 2 ) + 4a3 32. 11a2 b(3a3 b2 + 11) 42x5 y 2 − 54x4 y 4 33a5 b3 + 121a2 b 2x3 + x2 12p4 + 15p3 − 3p 47. −b4 (−6b2 − b + 1) 6b6 + b5 48. (−3t3 + t2 − 7)(t3 ) − b4 −3t6 + t5 − 7t3 51. 2p3 (4p3 − 3p2 + 5) 52. −5w4 (w4 − w2 + 2w) −7n5 + 21n4 − 7n3 8p6 − 6p5 + 10p3 −5w8 + 5w6 − 10w5 54. −rst(−3r − ds2 + rt) 57. (−3rs + r2 − 4s3 )(−rs3 ) 3r2 s4 − r3 s3 + 4rs6 58. (a2 b)(a4 − ab2 + 1) −x3 y 2 z + x3 y 3 z − x2 y 2 z 2 8x2 y 2 z − 20x2 yz 2 + 4xy 2 z 2 2j 3 k − 14j 2 k 2 + 24jk 3 15c3 d5 − 20c3 d4 − 55c2 d4 67. (−m2 + mn − n2 )(−4m2 n) 71. −c(3c5 + 4c3 − 9c + 1) 44. 3p(4p3 + 5p2 − 1) −10d4 + 4d2 − 8d 56. (cdf )(c2 + cd + cdf ) 69. y(y 3 + 2y 2 + 3x − 6) −5n5 + n3 − 4n 43. (5d3 − 2d + 4)(−2d) u3 w2 + 4u2 w2 − 5uw4 65. (3cd − 4c − 11)(5c2 d4 ) 40. (5n4 − n2 + 4)(−n) − 7x 55. (u2 w + 4uw − 5w3 )(uw) 63. 2jk(j 2 − 7jk + 12k 2 ) −18y 3 + 54y 2 + 30y 39. x(2x2 + x − 7) + 7a2 a3 b + 2a2 b2 + ab3 61. 4xyz(2xy − 5xz + yz) 36. −6(3y 3 − 9y 2 − 5y) 50. (n2 − 3n + 1)(−7n3 ) −5k 4 − 5k 3 + 30k 2 59. −x2 y 2 z(x − xy + z) −20u2 w2 x + 10uw2 x3 31. (6x4 y 2 )(7x − 9y 2 ) + 8a2 42. −7y(−2y 2 + y + 10) 28. (4uw − 2wx2 )(−5uwx) − 30p4 r 44k + 11km − 77m 5a3 + 10a2 − 35a 53. ab(a2 + 2ab + b2 ) 27. −10p2 r(−2pr2 + 3p2 ) −16x2 + 8x − 8 +r − 5d6 3c2 d4 + 4c5 d3 35. (4k + km − 7m)(11) 38. (a3 − 2a2 + 8a)a 41. (5a)(a2 + 2a − 7) −d7 −5m3 n − 3m2 n2 34. (−8)(2x2 − x + 1) 50c − 35d + 10 8v 6 − 5v 5 24. (cd3 )(3cd + 4c4 ) 7c2 d4 e3 − 28cd2 e4 33. 5(10c − 7d + 2) − 9b5 23. mn(−5m2 − 3mn) + a3 b4 30. (7cd2 e3 )(cd2 − 4e) 2m3 n3 + 4m3 n5 r3 −27b6 18x3 y 5 z − 2xy 2 z 2 25. (x2 y − xy)(−xy 3 ) −x3 y 4 + 21j 5 16. 2n2 (−10n − 7) 4m4 n − 4m3 n2 + 4m2 n3 y 4 + 2y 3 + 3xy − 6y −3c6 − 4c4 + 9c2 − c 3r2 st + drs3 t − r2 st2 c3 df + c2 d2 f + c2 d2 f 2 a6 b − a3 b3 + a2 b 60. p2 r3 (2pr + 4p2 − 3r) 2p3 r4 + 4p4 r3 − 3p2 r4 62. (−5m + p3 − 2mp)(−3mp) 64. (3a2 b + 2ab2 − 1)(9ab) 27a3 b2 + 18a2 b3 − 9ab 66. 6hk 3 (2h2 − 3k + 2hk) 12h3 k3 − 18hk4 + 12h2 k 4 68. −4x2 w2 (3x2 w + 2xw − 4w) 70. −3(t3 − 2t2 − 7t + 5) −12x4 w3 − 8x3 w3 + 16x2 w3 −3t3 + 6t2 + 21t − 15 72. 2(−5d4 − 8d3 + 2d + 4) ALG catalog ver. 2.6 – page 75 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 15m2 p − 3mp4 + 6m2 p2 −10d4 − 16d3 + 4d + 8 EC 73. (−4w)(w3 + 8w2 + 3w + 1) −4w4 − 32w3 − 12w2 − 4w 74. 6k(2k 3 − k 2 + 7k − 1) 12k 4 − 6k 3 + 42k 2 − 6k 75. (4x5 − 2x3 + x + 3)(8c) 32x5 c − 16x3 c + 8xc + 24c 76. (−n4 − 2n3 + 6n2 + 7)(−3n) 77. (f 3 − 6f 2 + 3f − 9)(f 2 ) f 5 − 6f 4 + 3f 3 − 9f 2 78. (−2z 3 + 5z 2 + 3z + 4)(−z 3 ) 2z 6 − 5z 5 − 3z 4 − 4z 3 79. (u4 )(7u4 − 7u3 + u2 − 2u) 7u8 − 7u7 + u6 − 2u5 80. q 2 (−5q 6 + 4q 4 + 3q 2 − 10) 81. −4t3 (−t5 − 2t4 + 5t2 + 6t) 4t8 + 8t7 − 20t5 − 24t4 82. (3h2 )(4h4 + 2h3 − 6h2 − 6h) 83. 2d3 (5d3 + 2d2 + d − 8) 10d6 + 4d5 + 2d4 − 16d3 85. (mnp)(2m + 3n2 − 2np − 1) 2m2 np + 3mn3 p − 2mn2 p2 84. (−7m4 )(2m4 − 3m3 − m + 1) 86. −xy(3xz + 2y − y 2 − 3yz) a3 b + ab2 c + a3 bc − ab3 89. −c2 d3 (−cd3 + c2 d − cd + c3 ) c3 d6 − c4 d4 + c3 d4 − c5 d3 91. (−mn4 )(2mn + m2 − 8n2 − 1) 88. (−c2 d + c − d + d3 )(cd) 94. (2k 2 m2 n)(−9kmn − 6mn + kn2 − 1) 101. − 103. 3 xy 10x + 2y 2 5 36a5 b5 − 9a2 b3 c + 3ab4 − 3a3 b3 98. −6 −4m2 − 6m 2 18w3 − 12w 9 96. −3ab2 (−12a4 b3 + 3abc − b2 + a2 b) − 20xy 3 Fractions and decimals 3 2 1 k − 6k3 − 4k 97. 8k 4 2 2 3 m+ 5 5 8 w 3 −4w3 + 6x2 y + 6 3 xy 5 5 105. − uw (12u − 6uw + 18w − 30) 6 100. 21 1 2 bc 28bc + 4b − 8c + 16c2 7b2 c3 + b2 c2 − 2bc3 + 4bc4 4 3 a a 1 2 109. −20a − + −4a5 + 10a3 − 2a2 5 2 10 107. 111. 6ab 5y 2 113. 6 c 4 115. − a b 1 + − b 3a 6ab 3y 2 10 3 + 2b − 1 2 3 3 r − 3 2 −4r3 + 9 9 3 1 x + x 7 3 27x3 + 7x a (2a2 − 20a) 4 a3 − 5a2 2 104. c cd2 + 2d 2 d c2 + 2c d 2 106. − a2 x −5a2 x − 20ax − 10x + 5 5 2a4 x2 + 8a3 x2 + 4a2 x2 − 2a2 x 3 3 k 10k 3 + 2k 2 − 24k + 12 15k6 + 3k5 − 36k4 + 18k3 2 1 3 5 3 + + 24y + 18y 2 + 15y 3 110. 24y y2 4y 8 108. 3k 2 km 5m 112. −4km − − + 4m 2 2k 5 4 3 3 y + y − 10y 2 2 4 8r 114. 3 c3 5c − 2c2 − 2 6 116. 9 + y − 12 10 −2c2 + 8c + 6a2 102. −10u2 w + 5u2 w2 − 15uw2 + 25uw a4 b5 + a5 b2 − a3 b3 + a3 b2 −18k 3 m3 n2 − 12m3 n2 k 2 + 2k 3 m2 n3 − 2k 2 m2 n 95. (3xy 2 − 7x2 − x + 4)(−5xy 3 ) −3x2 yz − 2xy 2 + xy 3 + 3xy 2 z 92. w3 xy 2 (xy + 2wx − w2 + 4wy) 30r4 t2 − 18r3 t3 + 6r2 t4 − 24r4 t3 99. −10m −14m8 + 21m7 + 7m5 − 7m4 w3 x2 y 3 + 2w4 x2 y 2 − w5 xy 2 + 4w4 xy 3 93. (5r2 − 3rt + t2 − 4r2 t)(6r2 t2 ) + 5x2 y 3 12h6 + 6h5 − 18h4 − 18n3 −c3 d2 + c2 d − cd2 + cd4 90. (ab4 + a2 b − b2 + b)(a3 b) −2m2 n5 − m3 n4 + 8mn6 + mn4 + 35x3 y 3 −5q 8 + 4q 6 + 3q 4 − 10q 2 − mnp 87. ab(a2 + bc + a2 c − b2 ) −15x2 y 5 3n5 + 6n4 − 18n3 − 21n ALG catalog ver. 2.6 – page 76 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 8ab 15 9r3 3r2 5 − + 2 8 5 2 3 a + 5ab + 6 4 3k 3 + 2k 2 m2 − 10m2 24r4 − 4r3 + 5r 3 4 3 8 2 a b + a2 b2 + ab 9 3 5 EC 117. 0.3x(10x2 − 1.5) 118. 0.8y 2 (2y + 3.5) 3x3 − 0.45x 119. −1.5ab(0.3a − 4b) −0.45a2 b − 6ab2 121. 0.7a(a2 − 0.2a + 6) 123. 1.6w(2w2 + w − 0.3) 0.7a3 − 0.14a2 + 4.2a 3.2w3 + 1.6w2 − 0.48w 125. −1.1c2 d(−0.2c2 + 8cd + 1.1d) 127. 0.2y 4 (0.7y 2 + 4.5y − 8) 0.22c4 d − 8.8c3 d2 − 1.21c2 d2 0.14y 6 + 0.9y 5 − 1.6y 4 1.6y 3 + 2.8y 2 120. 0.6n(0.7n3 − 20n) 0.42n4 − 12n2 122. 1.2s2 (5s3 − 1.2s2 + 3s) 6s5 − 1.44s4 + 3.6s3 124. 0.3k 3 (20k 2 − 3k + 0.4) 6k 5 − 0.9k 4 + 0.12k 3 126. −2.5rx2 (4rx − 0.1x + 0.6x2 ) −10r2 x3 + 0.25rx3 − 1.5rx4 128. 1.8mp3 (2m − 0.3mp + 1.5p) 3.6m2 p3 − 0.54m2 p4 + 2.7mp4 Variable exponents 129. xa (xa − x) 130. y x (y 2x + y 2 ) x2a − xa+1 131. a2n (an + a − 1) a3n + a2n+1 − a2n 133. y m−1 (y 2m + y 2 − y) 135. 3xk y(2xy + xk ) y 3m−1 + y m+1 − y m 6xk+1 y 2 + 3x2k y y 3x + y x+2 132. m3p (mp − m3 + 3) m4p − m3p−3 + 3m3p 134. an−2 (an+2 + a2n + a2 ) 136. 4an−1 b2 (ab − 2a2 bn ) ALG catalog ver. 2.6 – page 77 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. a2n + a3n−2 + an 4an b3 − 8an+1 bn+2 ED Topic: Multiplying binomials. For other muliplication problems, see categories EE (binomial squares), EF (differences of squares), and EG (polynomials). Directions: 3—Multiply. 1. (k + 5)(k − 1) k2 5. (b + 20)(b + 1) (t − 5)(t + 2) (x − 8)(x + 1) x2 + 4k − 5 b2 + 21b + 20 9. 2. 6. 3. (w + 1)(w + 6) w2 − 7x − 8 (c − 1)(c − 35) 7. 10. (x + 5)(x − 3) r2 + 24r − 25 11. (r − 3)(r − 4) t2 − 3t − 10 x2 + 2x − 15 r2 − 7r + 12 13. (c − 14)(c − 3) 14. (k + 2)(k + 17) 15. (a − 11)(a + 4) c2 − 17c + 42 17. (a + 3)(a − 16) k2 + 19k + 34 18. (b + 14)(b − 5) a2 − 13a − 48 b2 + 9b − 70 21. (w + 12)(w + 5) 22. (d − 3)(d − 25) w2 + 17w + 60 25. (d − 7)(d + 16) d2 + 9d − 112 29. (c − 11)(c − 9) c2 − 20c + 99 33. (n − 25)(n + 6) n2 − 19n − 150 37. (5 − p)(4 + p) 64 + 12y − y 2 53. (16 − r)(6 + r) 96 + 10r − r2 23. (q + 32)(q − 2) 27. (m + 17)(m + 6) w2 m2 − 16w − 57 30. (p + 6)(p + 16) 34. (q + 30)(q − 6) 36 − 13r 12. (g + 7)(g + 3) g 2 + 10g + 21 16. (d + 13)(d − 2) d2 + 11d − 26 20. (a + 4)(a + 10) a2 + 14a + 40 24. (u + 4)(u − 20) u2 − 16u − 80 28. (x − 4)(x − 18) x2 − 22x + 72 32. (t + 24)(t − 5) 36. (k − 10)(k − 20) h2 + 55h + 250 k 2 − 30k + 200 39. (2 + w)(4 + w) 40. (3 − p)(2 − p) 8 + 6w + w2 6 − 5p + p2 43. (5 + x)(6 − x) 44. (10 − r)(4 + r) 30 + x − x2 40 + 6r − r2 47. (9 + y)(7 + y) 48. (20 + w)(4 − w) 63 + 16y + y2 51. (5 − a)(13 − a) 68 + 21k + k 2 54. (17 + y)(3 − y) k 2 − 14k − 15 35. (h + 50)(h + 5) + r2 50. (4 + k)(17 + k) (k + 1)(k − 15) t2 + 19t − 120 32 + 18b + b2 46. (9 − r)(4 − r) 8. c2 − 7c − 144 q 2 + 24q − 180 38. (5 + a)(2 − a) + 23m + 102 31. (c − 16)(c + 9) p2 + 22p + 96 42. (16 + b)(2 + b) 49. (16 − y)(4 + y) h2 − 18h + 45 26. (w + 3)(w − 19) 41. (4 − m)(8 − m) 70 − 3x − x2 19. (h − 15)(h − 3) q 2 + 30q − 64 10 − 3a − a2 45. (7 − x)(10 + x) − 7a − 44 d2 − 28d + 75 20 + p − p2 32 − 12m + m2 a2 (y − 3)(y − 1) y 2 − 4y + 3 + 7w + 6 (r + 25)(r − 1) c2 − 36c + 35 4. 65 − 18a + a2 55. (8 + p)(12 + p) 51 − 14y − y 2 96 + 20p + p2 80 − 16w − w2 52. (18 − x)(3 + x) 54 + 15x − x2 56. (11 − a)(4 − a) 44 − 15a + a2 58. (2 − w)(26 − w) 59. (12 − x)(11 + x) 60. (8 − y)(12 + y) 72 + 38a + a2 52 − 28w + w2 132 + x − x2 96 − 4y − y 2 61. (13 + h)(12 − h) 62. (11 + k)(18 − k) 63. (9 − c)(13 − c) 64. (18 + z)(5 + z) 156 − h − h2 198 + 7k − k2 57. (2 + a)(36 + a) 65. (15 − n)(8 − n) 120 − 23n + n2 69. (50 + k)(5 − k) 250 − 45k − k2 66. (70 + a)(2 + a) 117 − 22c + c2 67. (26 + r)(10 − r) 140 + 72a + a2 70. (3 + w)(60 + w) 260 − 16r − r2 71. (6 − c)(20 − c) 180 + 63w + w2 ALG catalog ver. 2.6 – page 78 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 120 − 26c + c2 90 + 23z + z 2 68. (5 + a)(30 − a) 150 + 25a − a2 72. (45 − w)(8 + w) 360 + 37w − w2 ED 73. (y + 2)(5 + y) y 2 + 7y + 10 77. (a + 3)(11 − a) −a2 + 8a + 33 81. (7 − x)(x − 12) −x2 + 19x − 84 85. (21 + x)(x − 6) x2 + 15x − 126 74. (x + 3)(10 − x) 75. (u − 5)(7 − u) −x2 + 7x + 30 78. (c − 4)(14 + c) c2 −u2 + 12u − 35 79. (k + 18)(3 + k) k2 + 10c − 56 82. (6 + h)(h + 15) 83. (5 + a)(a − 16) h2 + 21h + 90 86. (9 − r)(16 + r) −r2 + 21k + 54 a2 − 11a − 80 87. (4 − w)(w − 24) −w2 − 7r + 144 + 28w − 96 76. (w − 6)(8 + w) w2 + 2w − 48 80. (y − 12)(5 − y) −y 2 + 17y − 60 84. (11 − k)(k + 8) −k 2 + 3k + 88 88. (15 + c)(c + 7) c2 + 22c + 105 89. (−y − 11)(y + 2) 90. (−a + 1)(a − 19) 91. (−m − 3)(m − 12) 92. (−r + 12)(r + 4) −y 2 − 13y − 22 −a2 + 20a − 19 −m2 + 9m + 36 −r2 + 8r + 48 93. (p − 3)(−p + 17) 94. (k − 25)(−k − 3) −p2 + 20p − 51 97. (−c − 15)(−c − 1) c2 + 16c + 15 101. (−m + 9)(−10 − m) m2 + m − 90 105. (−2 − y)(y − 19) −y 2 + 17y + 38 109. (2x + 1)(x + 1) 2x2 + 3x + 1 −k2 95. (w + 7)(−w + 8) −w2 + 22k + 75 98. (−x + 2)(−x + 12) + w + 56 99. (−a − 1)(−a − 21) x2 − 14x + 24 a2 + 22a + 21 102. (−p − 6)(7 − p) 103. (−x − 13)(5 − x) p2 x2 111. (3y + 1)(y + 8) 2c2 + 14c + 20 3y 2 + 25y + 8 114. (4y − 7)(y + 2) 115. (x + 1)(5x − 1) 4y 2 + y − 14 5x2 + 4x − 1 121. (3w + 5)(2w + 9) 6w2 + 37w + 45 125. (5c − 4)(8c + 7) 118. (t − 8)(3t − 2) 104. (−h + 1)(−11 − h) 108. (−26 − a)(a + 4) −k 2 − 5k + 36 7a2 − 5a − 2 2m2 − 15m + 28 r2 − 18r + 45 107. (−4 + k)(−k − 9) 113. (7a + 2)(a − 1) 117. (2m − 7)(m − 4) 100. (−r + 3)(−r + 15) h2 + 10h − 11 −w2 + 23w − 60 110. (c + 5)(2c + 4) −y 2 − y + 110 + 8x − 65 − p − 42 106. (−20 + w)(−w + 3) 96. (y − 10)(−y − 11) −a2 − 30a − 104 112. (d + 6)(3d + 2) 3d2 + 20d + 12 116. (h − 9)(2h + 4) 2h2 − 14h − 36 119. (2r − 5)(r − 10) 120. (z − 12)(3z + 2) 3t2 − 26t + 16 2r2 − 25r + 50 3z 2 − 34z − 24 122. (6a + 1)(4a + 1) 123. (2n + 4)(5n + 3) 124. (3u + 7)(8u + 1) 24a2 + 10a + 1 10n2 + 26n + 12 24u2 + 59u + 7 126. (2r + 1)(2r − 9) 127. (4k − 5)(10k + 3) 128. (5p + 1)(4p − 1) 40c2 + 3c − 28 4r2 − 16r − 9 40k 2 − 38k − 15 20p2 − p − 1 129. (7y − 2)(6y − 1) 130. (3p − 10)(2p − 5) 131. (8d − 1)(3d − 4) 42y 2 − 19y + 2 6p2 − 35p + 50 24d2 − 35d + 4 133. (10a + 3)(2a − 5) 134. (7t − 11)(3t − 2) 135. (6c − 11)(6c + 7) 20a2 − 44a − 15 21t2 − 47t + 22 36c2 − 24c − 77 138. (4a + 8b)(a + 5b) 139. (7h − k)(2h − 3k) 137. (c + 2d)(8c − 3d) 8c2 + 13cd − 6d2 141. (2m + 3n)(5m + 2n) 10m2 + 19mn + 6n2 145. (7kx − 6)(kx + 1) 7k2 x2 + xk − 6 4a2 + 28ab + 40b2 142. (8a − 3x)(3a + 4x) 14h2 143. (2x + 3y)(5x − 2y) 24a2 + 23ax − 12x2 146. (3 − 8pr)(6 − pr) 18 − 51pr 10x2 + 11xy − 6y 2 147. (cd − 12)(2cd + 3) + 8p2 r2 149. (k 2 − 5)(k 2 − 2) 150. (2 + c4 )(11 − c4 ) k 4 − 7k 2 + 10 22 + 9c4 − c8 − 23hk + 3k 2 2c2 d2 − 21cd − 36 151. (6 + r3 )(4 + r3 ) ALG catalog ver. 2.6 – page 79 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 24 + 10r3 + r6 132. (2a − 5)(4a − 11) 8a2 − 42a + 55 136. (2y + 9)(5y − 8) 10y 2 + 29y − 72 140. (4w − 11z)(3w + z) 12w2 − 29wz − 11z 2 144. (5p − 7r)(4p − 3r) 20p2 − 43pr + 21r2 148. (6 + ab)(1 + 6ab) 6 + 37ab + 6a2 b2 152. (h6 + 10)(h6 − 7) h12 + 3h6 − 70 ED 153. (1 − u3 )(12 + u3 ) 12 − 11u3 154. (x5 + 8)(x5 + 3) − u6 x10 + 11x5 155. (a10 − 3)(a10 + 11) a20 + 24 157. (4 + 9m4 )(3 − m4 ) 158. (3u8 − 1)(u8 + 7) 12 + 23m4 − 9m8 3u16 + 20u8 − 7 161. (12a + c2 )(a + 3c2 ) 162. (b3 − 3d)(5b3 − 2d) 12a2 + 37ac2 + 3c4 5b6 Fractions and decimals 2 1 165. y + y+ 3 3 y2 + y + 169. 4 r− 5 r2 − 166. 2 9 177. 2 r+ 5 170. 2 8 r− 5 25 a2 − 181. 3k + 6k2 + 189. 178. 1 5c + 3 182. 2 9 2k + 8h4 3 2 167. 1 2 186. 1 3y + 2 190. 1 6 r− 1 m− 3 171. 2 2 1 1 p + p− 9 6 4 194. 1 3 179. 3 3n − 4 1 3 2 3 1 x+ 4 1 2x − 5 195. 1 2 1 2 h − h− 4 6 9 3 2 180. 2 k− 5 1 2 k− 5 25 184. 7 w−2 3 p− p2 − 1 (p − 1) 6 7 1 p+ 6 6 2 p+ 5 3p2 + 2p + 188. 4 3p + 5 8 25 3 3 x− 2 8 1 1 192. 3a − 6a + 4 2 18a2 − 196. m 4 + 1 8 n 3m 2n − 3 4 3 3m2 mn 2n2 + − 16 12 9 197. (m − 4)(m + 0.5) 198. (y + 2)(y − 0.5) 199. (w − 0.5)(w − 2) 200. (k + 0.5)(k + 4) m2 − 3.5m − 2 y 2 + 1.5y − 1 w2 − 2.5w + 1 k 2 + 4.5k + 2 201. (a − 0.2)(a − 0.8) 202. (c + 0.4)(c + 0.6) 203. (y + 0.9)(y + 0.1) a2 − a − 0.16 c2 y2 + c + 0.24 + y + 0.09 3 1 3x − 4x + 4 2 12x2 − 1 18 x2 2y 2 xy − − 4 6 9 1 2 a− 2 176. (w − 3) w + 3 1 2 a− 3 15 x 2y x y − + 2 3 2 3 3 4 1 k+ 5 k2 − 1 4 1 1 191. 4r + 2r − 3 6 8r2 − 1 1 h+ 2 3 172. 3 8 x+ 5 5 1 1 10a − 4a + 3 5 1 10 a+ w2 − 3 (x + 1) 5 x+ a2 + a − 1 1 k− 183. 5k + 2 2 187. 168. 3 c−1 2 40a2 + w+ 4r2 − 19p4 r + 12p8 4 9 5k 2 − 2k − 5y + 164. (4r − 3p4 )(r − 4p4 ) − 3m6 1 3 x− 2 16 x2 + 3 16 1 2 h− 2 3 4 3 3 x− 4 c2 + 18 + 13y 3 + 2y 6 1 175. (c + 2) c − 2 1 2 y− 3 9 1 5x + 2 1 4 r− 5 5 2y − w− x− 1 (r + 1) 5 1 3n − 4 − 23h2 m3 w2 − w − 9 r+2 2 10x2 − 2 1 p− 3 2 2 1 m− 3 9 10y 2 − c− 160. (9 + 2y 3 )(2 + y 3 ) 163. (8h2 + m3 )(h2 − 3m3 ) 3 4 9n2 − 3n + 1 1 p+ 3 2 r2 + 5 1 k+ 2 4 1 2y − 3 6y 2 − 193. 1 2 2 m+ 3 r2 + 3 1 a− 4 4 20c2 − 2c − 185. 45 − 18n2 + n4 2k 14 − 19k 7 + 35 1 174. (r + 4) r + 2 1 (a − 1) 4 2 4c − 3 m2 + 5 y+1 2 a+ 1 2 c− 156. (3 − n2 )(15 − n2 ) − 33 159. (k 7 − 7)(2k 7 − 5) − 17b3 d + 6d2 c2 − 2c + 1 173. (y − 2) y − 2 y2 − + 8a10 204. (r − 0.3)(r − 0.7) r2 − r + 0.21 205. (x + 0.7)(x − 0.3) 206. (m − 0.6)(m + 0.4) 207. (k − 0.4)(k − 0.8) 208. (w + 0.3)(w + 0.2) x2 + 0.4x − 0.21 m2 − 0.2m − 0.24 k 2 − 1.2k + 0.32 w2 + 0.5w + 0.06 209. (k + 0.6)(k − 1.5) 210. (x − 1.5)(x − 0.4) 211. (a + 0.5)(a + 0.8) 212. (c − 0.6)(c + 0.5) k 2 − 0.9k − 0.9 x2 − 1.9x + 0.6 a2 + 1.3a + 0.4 c2 − 0.1c − 0.3 ALG catalog ver. 2.6 – page 80 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ED 213. (2k + 0.1)(5k − 0.3) 214. (3n + 0.8)(2n + 0.7) 215. (4p − 0.3)(5p + 0.5) 216. (10y − 0.6)(3y − 0.2) 10k 2 − 0.1k − 0.03 6n2 + 3.7n + 0.56 20p2 + 0.5p − 0.15 30y 2 − 3.8y + 0.12 219. (0.6w + 7)(0.3w + 4) 220. (0.2k + 3)(0.4k − 5) 217. (0.5a − 3)(0.8a − 6) 0.4a2 218. (0.8x − 5)(0.3x + 11) 0.2.4x2 − 5.4a + 18 0.18w2 + 7.3x − 55 0.08k 2 + 0.2k − 15 + 4.5w + 28 221. (0.1c + 0.4d)(0.3c − 0.2d) 0.03c2 + 0.1cd − 0.08d2 222. (0.7r + 0.2s)(0.4r + 0.6s) 223. (1.2p − 0.3q)(0.2p + 0.3q) 0.24p2 + 0.3pq − 0.09q 2 224. (0.5w − 1.1y)(0.5w − 0.7y) 0.28r2 + 0.5rs + 0.12s2 0.25w2 − 0.9wy + 0.77y 2 Variable exponents 225. (rn − 4)(rn + 1) r2n − 3rn − 4 227. (y 2a + 8)(y 2a + 3) y 4a + 11y 2a + 24 229. (c4x − 7d)(c4x − d) c8x − 8c4x d + 7d2 231. (an + b2 )(7an − 6b2 ) 233. (2pm − rn )(3pm + rn ) 235. (ab + ac )(ab + ac ) 7a2n + an b2 − 6b4 6p2m − pm rn − r2n a2b + 2ab+c + a2c 226. (2 − y x )(10 − y x ) 20 − 12y x + y 2x 228. (6 + c3k )(5 − c3k ) 30 − c3k − c6k 230. (11d − m3k )(6d + m3k ) 232. (2xa + 3y b )(xa + 5y b ) 234. (ay − 2y )(ay − 2y ) 236. (x2 + xy )(2x2 − xy ) ALG catalog ver. 2.6 – page 81 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 66d2 + 5dm3k − m6k 2x2a + 13xa y b + 15y 2b a2y − 2y+1 ay + 4y 2x4 + xy+2 − x2y EE Topic: Binomial squares. For other multiplication problems, see categories ED (binomials), EF (differences of squares), and EG (polynomials). Directions: 3—Multiply. 1. (p + 3)(p + 3) p2 5. 2. m2 + 6p + 9 (k − 20)(k − 20) k 2 − 40k + 400 9. (m − 7)(m − 7) 6. 3. (x + 10)(x + 10) x2 − 14m + 49 (c + 12)(c + 12) 7. (6 + x)(6 + x) r2 − 30r + 225 10. (5 − d)(5 − d) 11. (9 + m)(9 + m) 8. (y + 25)(y + 25) y 2 + 50y + 625 12. (4 − p)(4 − p) 36 + 12x + x2 25 − 10d + d2 13. (11 − h)(11 − h) 14. (30 + y)(30 + y) 15. (13 − a)(13 − a) 16. (16 + k)(16 + k) 121 − 22h + h2 900 + 60y + y 2 169 − 26a + a2 256 + 32k + k 2 17. (5x + y)(5x + y) 25x2 + 10xy + y 2 21. (2a − 7b)(2a − 7b) 4a2 − 28ab + 49b2 25. (m − 8)2 18. (2c − d)(2c − d) 19. (m − 3n)(m − 3n) 4c2 − 4cd + d2 m2 − 6mn + 9n2 22. (8x + 3y)(8x + 3y) 1 − 2x + x2 26. (x + 1)2 h2 + 22h + 121 x2 + 2x + 1 30. (10 − w)2 100 − 20w 33. (h + 11)2 23. (5c + 4d)(5c + 4d) 64x2 + 48xy + 9y 2 m2 − 16m + 64 29. (1 − x)2 81 + 18m + m2 (a − 1)(a − 1) a2 − 2a + 1 + 20x + 100 (r − 15)(r − 15) c2 + 24c + 144 4. 25c2 + 40cd + 16d2 16 − 8p + p2 20. (p + 4r)(p + 4r) p2 + 8pr + 16r2 24. (11h − 2k)(11h − 2k) 121h2 − 44hk + 4k2 27. (r − 5)2 r2 − 10r + 25 28. (p + 9)2 p2 + 18p + 81 31. (y + 3)2 y 2 + 6y + 9 32. (a + 7)2 a2 + 14a + 49 + w2 34. (k + 14)2 k2 + 28k + 196 35. (m − 30)2 m2 37. (15 + d)2 225 + 30d + d2 38. (12 − p)2 41. (3w + 2)2 9w2 + 12w + 4 42. (9h − 5)2 144 − 24p + p2 36. (c − 16)2 c2 − 32c + 256 − 60m + 900 39. (18 − r)2 324 − 36r + r2 40. (20 + x)2 400 + 40x + x2 43. (2u + 7)2 4u2 + 28u + 49 44. (6y − 1)2 36y 2 − 12y + 1 47. (1 + 9k)2 1 + 18k + 81k 2 48. (10 − 3c)2 81h2 − 90h + 25 45. (7 − 4m)2 46. (2 + 15a)2 4 + 60a + 225 49 − 56m + 16m2 49. (4a + b)2 100 − 60c + 9c2 16a2 + 8ab + b2 50. (10x − y)2 100x2 53. (3w − 10x)2 9w2 − 60wx + 100x2 57. (h + 6k)2 h2 + 12hk − 20xy 51. (k − 6m)2 + y2 k2 54. (6a + 5y)2 55. (12c + 2d)2 36a2 144c2 + 60ay + 25y 2 58. (x − 2y)2 x2 − 4xy + 4y 2 + 48cd + 4d2 59. (8a − b)2 + 36k 2 64a2 p4 − 2p2 + 1 62. (1 + x2 )2 1 + 2x2 + x4 63. (c2 + 5)2 65. (6 + r3 )2 36 + 12r3 + r6 66. (y 4 − 7)2 y 8 − 14y 4 + 49 67. (10 − x4 )2 100 − 20x4 25k 4 − 20k2 70. (3 + 4w3 )2 9 + 24w3 +4 73. (10c3 − 7ad2 )2 100c6 − 140ac3 d2 + 49a2 d4 74. (8rt2 + 3s3 )2 64r2 t4 c4 + 10c2 + 25 36p6 + 12p3 +1 75. (3b3 c4 + 11x)2 + 48rs3 t + 9s6 ALG catalog ver. 2.6 – page 82 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 9b6 c8 56. (9c − 7w)2 81c2 − 126cw + 49w2 121w2 + 22wy + y 2 64. (4 − k 2 )2 16 − 8k 2 + k 4 68. (a3 + 2)2 a6 + 4a3 + 4 + x8 71. (6p3 + 1)2 + 16w6 n2 + 16np + 64p2 60. (11w + y)2 − 16ab + b2 61. (p2 − 1)2 69. (5k 2 − 2)2 52. (n + 8p)2 − 12km + 36m2 + 66b3 c4 x + 121x2 72. (2 − 9y 4 )2 4 − 36y 4 + 81y 8 76. (5ax2 − 8y 4 )2 25a2 x4 − 80ax2 y 4 + 64y 8 EE Fractions and decimals 2 1 x+y 77. 2 78. 1 2 x + xy + y 2 4 81. 3 8m − r 4 85. 2 a+b 5 82. 9 2 r 16 2 3 2 c− 5 5 2 9 2 12 4 c − c+ 25 25 25 93. (m2 + 1.1)2 m4 + 2.2m + 1.21 97. (2.1 − 3rs)2 4.41 − 12.6rs + 9r2 s2 101. (3b + 2.5c)2 9b2 + 15bc + 6.25c2 105. (3.6r2 − 1.1p2 )2 12.96r4 − 7.92r2 p2 + 1.21p4 79. 1 2 a 16 4 k − 10 5 2 86. 2 y− z 3 y2 − 90. 2 3 c − 2p 4 2 2 2 6b − n 80. 3 9 2 c − 3cp + 4p2 16 36b2 − 8bn + 5 2 2 83. 12w + x 6 16 2 k − 16k + 100 25 4 2 4 a + ab + b2 25 5 89. 1 2 2+ a 4 4+a+ 2 64m2 − 12mr + 144w2 + 20wx2 + 87. 1 + 3r 2 2 84. 2 4n2 − 91. 1 2 1 1 p + pr + r2 16 6 9 94. (0.9 − wx)2 2 2 3 w − 3 4 2 4 4 9 w − w2 + 9 16 95. (y + 0.5)2 y 2 + y + 0.25 0.81 − 1.8wx + w2 x2 98. (1.2d2 + 5)2 99. (8kn + 0.3)2 64k 2 n2 + 4.8kn + 0.09 103. (0.4p − 1.1)2 0.49 + 0.42a + 0.09a2 106. (2.4x3 − 1.5y)2 92. 16 16 2 nk + k 3 9 1 3 1 a + 2 5 2 1 6 1 3 1 a + a + 4 5 25 96. (0.4r3 + 1)2 0.16r6 + 0.8r3 + 1 1.44d4 + 12d2 + 25 102. (0.7 + 0.3a)2 2 4 2 2n − k 88. 3 4 4 yz + z 2 3 9 1 1 p+ r 4 3 1 + 9p 3 1 + 6p + 81p2 9 25 4 x 36 1 + 3r + 9r2 4 4 2 n 9 0.16p2 − 0.88p + 1.21 107. (0.2km3 + 0.3)2 5.76x6 − 7.2x3 y + 2.25y 2 0.04k 2 m6 + 0.12km3 + 0.09 100. (0.7 + 6y)2 0.49 + 8.4y + 36y 2 104. (6r − 0.25s)2 36r2 − 3rs + 0.625s2 108. (0.9a2 + 0.4x3 )2 0.81a4 + 0.72a2 x3 + 0.16x6 Variable exponents 109. (x2a − y 3a )2 x4a − 2x2a y 3a + y 6a 113. (an + bn )2 a2n + 2an bn + b2n 110. (a3x + bx )2 111. (ma − n2a )2 a6x + 2a3x bx + b2x 114. (xn+1 − x)2 m2a − 2ma n2a + n4a 115. (ax+1 + ax )2 x2n+2 − 2xn+2 + x2 ALG catalog ver. 2.6 – page 83 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. a2x+2 + 2a2x+1 + a2x 112. (x5n + y 2n )2 x10n + 2x5n y 2n + y 4n 116. (m2a − ma−1 )2 m4a − 2m3a−1 + m2a−2 EF Topic: Differences of squares. For other multiplication problems, see categories ED (binomials), EE (binomial squares), and EG (polynomials). Directions: 3—Multiply. 1. (c + 1)(c − 1) c2 − 1 2. (x − 5)(x + 5) x2 − 25 3. (m + 6)(m − 6) m2 5. (p − 10)(p + 10) p2 9. 6. (r + 14)(r − 14) r2 − 100 (8 + k)(8 − k) 64 − k 2 7. − 196 10. (2 − y)(2 + y) 4 − y2 (d − 3)(d + 3) 8. (p + 20)(p − 20) d2 − 9 − 36 (a − 11)(a + 11) a2 4. p2 − 400 − 121 11. (9 + m)(9 − m) 12. (1 − x)(1 + x) 1 − x2 81 − m2 13. (12 − u)(12 + u) 14. (16 + p)(16 − p) 144 − u2 17. (6c − 5)(6c + 5) w2 33. (4x + 7y)(4x − 7y) h2 a2 − 100c2 38. (9a − 8y)(9a + 8y) 49r2 − 81u2 39. (4x + 15z)(4x − 15z) 81a2 − 64y 2 16x2 − 225z 2 41. (x2 + 1)(x2 − 1) 42. (a2 − 5)(a2 + 5) 43. (3 − p2 )(3 + p2 ) 36x4 50. (b − c3 )(b + c3 ) b2 − c6 54. (x2 + 8y)(x2 − 8y) − 81m6 x4 57. (11ax3 − 2by)(11ax3 + 2by) 59. (10k + 3m5 x2 )(10k − 3m5 x2 ) Fractions and decimals 1 1 61. a+ a− 2 2 c2 16 62. 1 4 −7 − 49 16k 4 − 25 − 49 52. (a3 + d4 )(a3 − d4 ) r10 − p4 53. (2k − 9m3 )(2k + 9m3 ) 4 44. (8 + y 2 )(8 − y 2 ) 48. (4k 2 − 5)(4k 2 + 5) 51. (r5 − p2 )(r5 + p2 ) x4 − y 2 65. 9 − p4 47. (6x2 + 7)(6x2 − 7) 1 − 81r4 49. (x2 + y)(x2 − y) c 144c2 − 25k 2 64 − y 4 46. (1 + 9r2 )(1 − 9r2 ) 16 − 9m4 a2 − 40. (12c + 5k)(12c − 5k) a4 − 25 45. (4 − 3m2 )(4 + 3m2 ) 4k2 36. (7r + 9u)(7r − 9u) 9m2 − 64p2 121h2 − 9k 2 x4 − 1 32. (a − 10c)(a + 10c) − 49m2 35. (3m − 8p)(3m + 8p) 25c2 − 4d2 37. (11h − 3k)(11h + 3k) 36k 2 − n2 31. (h + 7m)(h − 7m) − 16y 2 34. (5c − 2d)(5c + 2d) 16x2 − 49y 2 28. (6k + n)(6k − n) 169a2 − x2 30. (w + 4y)(w − 4y) − 225d2 16 − 25p2 27. (13a − x)(13a + x) 81p2 − r2 29. (c − 15d)(c + 15d) 24. (4 − 5p)(4 + 5p) 1 − 64a2 26. (9p − r)(9p + r) 4x2 − y 2 49h2 − 121 23. (1 − 8a)(1 + 8a) 25 − 144j 2 25. (2x + y)(2x − y) 20. (7h + 11)(7h − 11) 4x2 − 81 22. (5 + 12j)(5 − 12j) 100 − 9m2 225 − r2 19. (2x + 9)(2x − 9) 9k 2 − 1 21. (10 + 3m)(10 − 3m) 16. (15 + r)(15 − r) 900 − a2 18. (3k − 1)(3k + 1) 36c2 − 25 c2 15. (30 − a)(30 + a) 256 − p2 55. (7a4 + 4c)(7a4 − 4c) − 64y 2 49a8 2 k+1 3 63. 4 2 k −1 9 c 4 +7 66. n n 12 + 12 − 6 6 144 − 36w2 − z 4 60. (2h2 − 6c3 x)(2h2 + 6c3 x) 100k 2 − 9m10 x4 2 k−1 3 56. (6w − z 2 )(6w + z 2 ) − 16c2 58. (8r2 x5 + 3y 6 )(8r2 x5 − 3y 6 ) 121a2 x6 − 4b2 y 2 a6 − d8 1 y − a2 5 y2 − 67. n2 36 ALG catalog ver. 2.6 – page 84 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 y + a2 5 1 4 a 25 2 h − 3k 3 4 2 h − 9k 2 9 64r4 x10 − 9y 12 4h4 − 36c6 x2 64. 4 w − z2 3 4 w + z2 3 16 2 w − z4 9 2 h + 3k 3 1 1 8pr + 8pr − 68. 4 4 64p2 r2 − 1 16 EF 69. 2 3 rx − 3 5 2 3 rx + 3 5 70. 4 2 2 9 r x − 9 25 4 2 1 c + d 5 2 4 2 1 c − d 5 2 71. x 74. (h3 + 0.6k)(h3 − 0.6k) − y2 h6 77. (0.4x2 + 0.3)(0.4x2 − 0.3) 79. (1.1x2 + 0.7z)(1.1x2 − 0.7z) 1.21x4 − 0.49z 2 72. a b − 6 2 83. (xn−1 − xn )(xn−1 + xn ) 85. (x2a − y a )(x2a + y a ) 87. (wa + y b )(wa − y b ) 9y 2a+4 − y 2 6.25p2 − w2 78. (0.1 − 1.2ay)(0.1 + 1.2ay) 0.01 − 1.44a2 y 2 80. (0.2mn + 0.5y 3 )(0.2mn − 0.5y 3 ) x2n−2 − x2n x4a − y 2a w2a − y 2b 82. (xa − 4x)(xa + 4x) 0.04m2 n2 − 0.25y 6 x2a − 16x2 84. (4xa + 7x2a )(4xa − 7x2a ) 86. (a3x + b5x )(a3x − b5x ) 88. (an+1 − bn )(an+1 + bn ) ALG catalog ver. 2.6 – page 85 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. a b + 6 2 76. (2.5p − w)(2.5p + w) 0.0081 − a2 Variable exponents 81. (3y a+2 − y)(3y a+2 + y) b2 a2 − 36 4 75. (0.09 + a)(0.09 − a) − 0.36k 2 0.16x4 − 0.09 y x y + − 4 9 4 9 x2 y2 − 16 81 16 1 − d2 25c4 4 73. (1.5x − y)(1.5x + y) 2.25x2 16x2a − 49x4a a6x − b10x a2n+2 − b2n EG Topic: Multiplying polynomials. Directions: 3—Multiply. 1. (a + 3)(b − 7) (x + w)(y + z) 2. ab − 7a + 3b − 21 5. (u + 7)(u2 − u) u3 9. + 6u2 − y3 (m2 − m)(m − 4) 6. m3 − 7u (y 2 − y)(y 2 + 2) y4 + 2y 2 − 5m2 (d2 − 4)(d − 3) 25t3 − 2y 7. x2 + p2 r2 − pr2 k 4 + 9k 3 − k 2 − 9k − 4d + 12 p4 + 3p3 + 2p2 −x + x2 y − xy 12. (6a − 3)(a − 2c) − xy 2 6a2 − 12ac − 3a + 6c a2 b4 − ab3 + ab4 16. (5c2 d − 3)(cd − d2 ) − b3 5c3 d2 − 5c2 d3 − 3cd + 3d2 17. (y + 3)(y 2 + 5y − 4) 18. (a − 2)(a2 + 3a − 8) 19. (w2 − 2w − 7)(w + 5) y 3 + 8y 2 + 11y − 12 a3 + a2 − 14a + 16 w3 + 3w2 − 17w − 35 21. (c2 + 2c + 8)(3c − 2) 3c3 + 4c2 22. (n2 − 4n − 8)(7n + 1) 7n3 + 20c − 16 25. (w + z)(w + x − z) − 2y 2 30. (n − r)(n2 + nr − r2 ) n3 −x+y 33. (3n − p)(5n2 + 3np − 2p2 ) 35. (5c − 2d)(5c + 2d − 2) 37. (a + b + c)(a + b) 39. (m − r − 2)(m − r) 6y 3 − 2nr2 25c2 − 4d2 − 10c + 4d a2 + b2 + 2ab + ac + bc m2 − 2mr − 2m + r2 + 2r 41. (y 2 − 4y)(5y 2 − 2y − 8) 5y 4 − 22y 3 + 32y 43. (6x3 − 2x2 − x)(x3 − 7x2 ) 45. (2w − 9)(3w + 5 − 2w2 ) 47. (5x − x2 + 6)(3 − 7x) 6x6 − 44x5 + 13x4 + 7x3 −4w3 + 24w2 − 17w − 45 7x3 − 38x2 − 27x + 18 − 25y 2 24. (4k + 3)(k 2 + k − 9) 4k 3 + 7k 2 − 33k − 27 − 3y + 28 28. (m − 4)(m − r + 4) y 2 + xy + 3x − 9 m2 − mr + 4r − 16 31. (a + 2b)(a2 − ab + 2b2 ) + r3 15n3 + 4n2 p − 9np2 + 2p3 r3 − 10r2 + 29r − 30 27. (y + 3)(x + y − 3) a2 − k 2 − ap + kp 29. (x − y)(2x + 2y − 1) 20. (r2 − 4r + 5)(r − 6) 23. (6y − 7)(y 2 − 3y − 4) − 60n − 8 26. (a − k)(a + k − p) w2 − z 2 + wx + xz 2x2 − 27n2 a3 32. (p + r2 )(p2 − pr2 − r4 ) + a2 b + 4b3 p3 − 2pr4 − r6 34. (2a + 3b)(4a − 6b + 1) 8a2 − 18b2 + 2a + 3b 36. (x + 2y)(2x2 − xy − y 2 ) 38. (x − y)(x − y + z) 40. (c + d)(c + d − 1) 2x3 − 2y 3 + 3x2 y − 3xy 2 x2 + y 2 − 2xy + xz − yz c2 + d2 + 2cd − c − d 42. (2x4 + 3x2 + 4)(x2 + 11) 2x6 + 25x4 + 37x2 + 44 44. (r + 1)(3r3 + 9r2 − 5r) 3r4 + 12r3 + 4r2 − 5r 46. (4 − 2a + 3a2 )(5a + 4) 15a3 + 2a2 + 12a + 16 48. (2 − 5c)(c − 4 + 3c2 ) −15c3 + c2 + 22c − 8 49. (a + 3)(a3 − 2a2 + 5a − 2) a4 + x3 − a2 + 13a − 6 50. (w3 + 3w2 − 7w − 5)(w + 8) 51. (y − 5)(y 3 − 4y 2 − 6y + 3) y 4 − 9y 3 + 14y 2 + 33y − 15 52. (p3 + 3p2 + 8p − 2)(p − 3) 53. (d3 + 5d2 − 3d + 7)(2d − 9) 55. (y 3 + 9y 2 − y + 4)(5y + 6) 2d4 + d3 − 51d2 + 41d − 63 5y 4 + 51y 3 + 49y 2 + 14y + 24 57. (a + b)(2a2 + 3a − 4ab − 4b) (p2 + 2p)(p2 + p) 8. 15. (ab + b)(ab3 − b2 ) −r (k + 9)(k 3 − k) 4. 11. (x + xy)(x − y) −t p3 r3 − 3d2 (x3 − x)(x2 + 1) + 4m 14. (p2 r − 1)(pr2 + r) + t5 d3 x5 10. (5t + 1)(5t2 − t) 13. (st − t3 )(s − t2 ) s2 t − 2st3 3. xy + xz + wy + wz w4 + 11w3 + 17w2 − 61w − 40 p4 − p2 − 26p + 6 54. (3k − 8)(k 3 − 2k 2 − 7k + 10) 56. (2n + 7)(n3 + n2 + n + 1) 3k 4 − 14k 3 − 5k 2 + 86k − 80 2n4 + 9n3 + 9n2 + 9n + 7 58. (x − y)(3x2 + 2xy − 5y + 2y) 3x3 − x2 y − 2xy 2 + 3y 2 − 3xy 2a3 − 2a2 b − 4ab2 + 3a2 − 4b2 − ab 59. (2a − 3b)(5a + 3b + ab − 4b2 ) 60. (4x + y)(2x + y − 3xy − 8y 2 ) 12b3 + 2a2 b − 11ab2 + 10a2 − 9b2 − 9ab 61. (x2 + 5x − 1)(x2 + 3x + 2) x4 + 8x3 + 16x2 + 7x − 2 −8y 3 − 12x2 y − 35xy 2 + 8x2 + y 2 + 6xy 62. (m2 − 8m − 4)(m2 + 3m − 5) m4 − 5m3 − 33m2 + 28m + 20 63. (u2 − 7u + 3)(u2 + 5u + 6) u4 − 2u3 − 26u2 − 27u + 18 64. (w2 + w − 9)(w2 − 4w − 5) ALG catalog ver. 2.6 – page 86 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. w4 − 3w3 − 18w2 + 31w + 45 EG 65. (5c2 + 2c − 1)(c2 + 3c + 7) 5c4 + 17c3 + 40c2 + 11c − 7 67. (y 2 + 8y + 11)(11y 2 − 8y − 1) 11y 4 + 80y3 + 56y 2 66. (3a2 − a − 9)(a2 + 2a − 7) 68. (x2 − 3x + 7)(4x2 − 9x + 2) w4 + 3w − 2 71. (r2 − 4r + 12)(r2 + 4r + 4) 73. (a + b + c)(a − b + c) 77. (x2 + 3x + 2)2 r4 + 32r + 48 a2 − b2 + c2 + 2ac 75. (m + p − 3)(m + p + 3) m2 + p2 + 2mp − 9 s4 + 6x3 + 13x2 + 12x + 4 79. (4m2 − m + 7)2 16m4 − 8m3 + 57m2 − 14m + 49 81. (8w + 2w2 − 3)(−6w − 2 + 5w2 ) 70. (a2 + 2a + 1)(a2 − 2a + 3) 2p4 − 7p3 − 13p2 + 29p − 12 85. (a2 + 2ab + b2 )(3a2 − 4ab − b2 ) 74. (a2 − 2a − 1)(a2 + 2a + 4) a4 − a2 − 10a − 4 76. (x2 − 3x + 2)(x2 + 3x − 1) x4 − 8x2 + 9x − 2 78. (2y 2 + 5y − 3)2 4y 4 + 20y 3 + 13y 2 − 30y + 9 80. (5h2 − 3h − 1)2 25h4 − 30h3 − h2 + 6h + 1 82. (7 + 4x2 − 2x)(4x + 3x2 − 6) 84. (2y − 1 + 3y 2 )(−9 + 2y 2 − y) 6x4 + x3 y − 20x2 y 2 + 17xy 3 − 4y 4 87. (x2 − 8xy − 3y 2 )(5x2 + 2xy + 3y 2 ) − 30xy 3 6y 4 + y 3 − 31y 2 − 17y + 9 86. (2x2 − 3xy + y 2 )(3x2 + 5xy − 4y 2 ) 3a4 + 2a3 b − 6a2 b2 − 6ab3 − b4 89. (2c − 1)(c + 3)(c − 2) n4 + 3n + 20 12x4 + 10x3 − 11x2 + 40x − 42 83. (3 − 5p + p2 )(3p − 4 + 2p2 ) − 28x2 y 2 a4 + 4a + 3 72. (n2 + 3n + 4)(n2 − 3n + 5) 10w4 + 28w3 − 67w2 + 2w + 6 − 38x3 y 4x4 − 21x3 + 57x2 − 69x + 14 − 96y − 11 69. (w2 − w + 2)(w2 + w − 1) 5x4 3a4 + 5a3 − 32a − 11a + 63 88. (6a2 + 4ab − b2 )(2a2 + 3ab + 5b2 ) − 9y 4 2c3 + c2 − 13c + 6 91. (3y − 5)(y − 1)(y + 3) 3y 3 + y 2 − 19y + 15 93. (r + 5)(2r − 7)(3r + 2) 6r3 + 13r2 − 99r − 70 95. (n − 6)(4n − 9)(2n − 3) 8n3 − 78n2 + 207n − 162 12a4 + 26a3 b + 40a2 b2 + 17ab3 − 5b4 90. (x + 4)(2x − 3)(x + 2) 2x3 + 9x2 − 2x − 24 92. (a + 6)(a − 4)(2a + 3) 2a3 + 7a2 − 42a − 72 94. (3a + 8)(3a + 1)(a + 5) 9a3 + 72a2 + 143a + 40 96. (4x − 1)(5x − 2)(x + 4) 20x3 + 67x2 − 50x + 8 97. (3y − 2)2 (y + 4) 9y 3 + 24y 2 − 44y + 16 98. (2k − 3)(k + 6)2 2k 3 + 21k 2 + 36k − 108 99. (x − 4)2 (3x − 1) 3x3 − 25x2 + 56x − 16 100. (r + 2)(2r + 5)2 4r3 + 28r2 + 65r + 50 Binomial cubes 101. (x + 3)(x + 3)(x + 3) x3 + 9x2 + 27x + 27 102. (y − 1)(y − 1)(y − 1) y 3 − 3y 2 + 3y − 1 103. (5 + a)(5 + a)(5 + a) 125 + 75a + 15a2 + a3 104. (4 − n)(4 − n)(4 − n) 64 − 48n + 12n2 − n3 105. (a + b)(a + b)(a + b) a3 + 3a2 b + 3ab2 + b3 106. (x + 2y)(x + 2y)(x + 2y) x3 + 6x2 y + 12xy 2 + 8y 3 108. (c + 5d)(c + 5d)(c + 5d) c3 + 15c2 d + 75cd2 + 125d3 107. (3p + r)(3p + r)(3p + r) 27p3 + 27p2 r + 9pr2 + r3 109. (2 − k)3 8 − 12k + 6k 2 − k3 110. (x + 1)3 x3 + 3x2 + 3x + 1 111. (c − 4)3 c3 − 12c2 + 48c − 64 112. (3 + y)3 27 + 27y + 9y 2 + y 3 113. (1 + w)3 1 + 3w + 3w2 + w3 114. (4 − h)3 64 − 48h + 12h2 − h3 115. (x + 5)3 x3 + 15x2 + 75x + 125 116. (a − 2)3 a3 − 6a2 + 12a − 8 117. (3x + y)3 27x3 + 27x2 y + 9xy 2 + y 3 118. (m − 4r)3 119. (2h − k)3 8h3 − 12h2 k + 6hk 2 − k 3 120. (x + y)3 ALG catalog ver. 2.6 – page 87 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. m3 − 12m2 r + 48mr2 − 64r3 x3 + 3x2 y + 3xy 2 + y 3 EG 121. (r − 2w)3 r3 − 6r2 w + 12rw2 − 8w3 122. (3c − d)3 123. (x + 4y)3 x3 + 12x2 y + 48xy 2 + 64y 3 124. (5m + n)3 125. (y 2 + 1)3 y 6 + 3y 4 + 3y 2 + 1 126. (2 + x2 )3 8 + 12x2 + 6x4 + x6 127. (1 − c2 )3 1 − 3c2 + 3c4 − c6 128. (n2 − 3)3 n6 − 9n4 + 27n2 − 27 27c3 − 27c2 d + 9cd2 − d3 125m3 + 75m2 n + 15mn2 + n3 129. (3w − 5)3 27w3 − 135w2 + 225w − 125 130. (5a + 2)3 125a3 + 150a2 + 60a + 8 131. (4 + 3h)3 64 + 144h + 14h2 + 27h3 132. (2 − 3y)3 8 − 36y + 54y 2 − 27y 3 Sums and differences of cubes 133. (a + 1)(a2 − a + 1) 135. (w + 7)(w2 − 7w + 49) 137. (2 − y)(4 + 2y + y 2 ) 139. (1 − x)(1 + x + x2 ) 134. (x − 3)(x2 + 3x + 9) a3 − 1 w3 + 343 8 − y2 1 − x3 141. (x + y)(x2 − xy + y 2 ) 8c3 − d3 145. (a2 − 5)(a4 + 5a2 + 25) 147. (y 3 − 3)(y 6 + 3y 3 + 9) a6 − 125 y 9 − 27 149. (a + 4b2 )(a2 − 4ab2 + 16b4 ) 151. (w2 − x)(w4 + w2 x + x2 ) a3 + 64b6 w6 − x3 n3 − 125 138. (6 + c)(36 − 6c + c2 ) 216 + c3 140. (4 + k)(16 + 4k + k 2 ) 64 + k 3 142. (a − b)(a2 + ab + b2 ) x3 + y 3 143. (2c − d)(4c2 + 2cd + d2 ) 136. (n − 5)(n2 + 5n + 25) x3 − 27 a3 − b3 144. (m + 3r)(m2 − 3mr + 9r2 ) 146. (1 + x2 )(1 + x2 + x4 ) 1 + x6 148. (r3 − 2)(r6 + 2r3 + 4) r9 − 8 150. (3x − y 4 )(9x2 + 3xy 4 + y 8 ) 152. (c2 + d2 )(c4 − c2 d2 + d4 ) ALG catalog ver. 2.6 – page 88 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. m3 + 27r3 27x3 − y 12 c6 + d6 EH Topic: Dividing monomials and polynomials. Directions: 6—Simplify. 9—Simplify (assume no denominator equals zero). 76—Find the quotient. 52—Write as a mixed expression. 1. 3a − 12 3 5. 30k 2 + 15k 15 9. 14m − 28mr + 7r −7 a−4 2k2 + k 2. 20x + 5 5 6. 42y 2 − 56 −14 10. −8c + 24d + 72 8 13. n2 + n n 17. −ay 3 − by 2 −y 2 21. 48m2 − 60m 12m 25. 5ab2 + a2 b2 ab2 29. 24n2 p3 − 8n2 p −4n2 p n+1 ay + b 4m − 5 5+a cx − cy −c 18. 4k 4 + k 2 k2 22. 32x2 − 40xy −8x 26. 9w2 y 2 − 18w2 3w2 30. −2a4 b2 + 5a2 b3 −ab2 7. −20xy + 40x −20 11. 33x2 − 11x + 11 11 5ac + 7a2 c − a3 c ac 34. 38. 5 + 2b − 6x 42. −3r + 6p + 1 45. (14c − 42) ÷ (7) 6m + 32 2 8. 55a − 11b 11 12. −18y 3 + 6y 2 − 24y −6 −x2 − x 20. 6a2 c − a2 −a2 3z + 1 24. 8x6 + 12x4 4x3 28. −3cd + 42cd2 −3cd 32. 2r3 w4 − 4r3 w3 2r2 w3 23. 15z 3 + 5z 2 5z 2 3y 2 − 6 27. k 2 m2 − k 3 m −km 31. 26xy 3 + 65x2 y 2 13xy 2 6u6 − 24u4 − 10u2 −2u2 8x2 y + 24x2 y 2 + 8xy 2 8xy 46. (10w + 28) ÷ (2) −3b + 2 −km + k 2 −4a2 + 12ab − 4ab2 −4a 36. a − 3b + b2 39. 15b2 y 2 − 20by 2 − 5by 5by 2x2 + 3x 1 − 14d 2xy + x2 y − xy 2 xy 40. 8cd − 4cd2 − 4d2 −4d −2c + cd + d 27x3 z − 9x2 z 2 + 45x2 z 3 9x2 z 44. 3x − z + 5z 2 47. (12x − 9) ÷ (3) −6c + 1 2+x−y 3by − 4y − 1 43. 2u + 3w rw − 2r 2y + 5x 35. 5a − b 2uw + 3w2 w −4x + 5y 14n2 − 7n + 28nx 7n 3m + 16 16. −x5 − x4 x3 x + 3xy + y 2c − 6 4. 3y 3 − y 2 + 4y 19. 4k 2 + 1 −3u4 + 12u2 + 5 18pr3 − 36p2 r2 − 6pr2 −6pr2 xy − 2 3ab − 2a −a 2n − 1 + 4x 35bx + 14b2 x − 42bx2 7bx 3y − 2 15. −x + y 2a3 − 5ab 5 + 7a − a2 41. 24y − 16 8 3x2 − x + 1 14. −6p2 + 2 37. −3y + 4 3. −c + 3d + 9 −2m + 4mr − r 33. 4x + 1 4—Divide. n4 p3 + 2n3 p3 − 3n2 p4 n 2 p2 n2 p + 2np − 3p2 4x − 3 48. (25a + 5) ÷ (5) 5a + 1 5w + 14 49. (20yz − 80y) ÷ (20) 50. (−11b + 88c) ÷ (−11) yz − 4y b − 8c 53. (72a2 − 12a + 12) ÷ (12) 6a2 − a + 1 55. (14w − 35wz + 7z) ÷ (−7) 57. (2xy − 5x) ÷ (−x) −2y + 5 61. (−a5 − a4 ) ÷ (a3 ) −a2 − a 65. (45n3 + 15n2 ) ÷ (15n2 ) 3n + 1 51. (48n2 + 16n) ÷ (16) −2w + 5wz − z 58. (7mr + 3r2 ) ÷ (r) 3n2 −3x + 4 +n 54. (−24k 3 + 6k 2 − 18k) ÷ (−6) 56. (−9c + 36d + 72) ÷ (9) 59. (k 2 + k) ÷ (k) k+1 63. (−uw3 − xw2 ) ÷ (−w2 ) −2c + 1 66. (4a6 + 16a4 ) ÷ (4a3 ) 4k3 − k 2 + 3k −c + 4d + 8 60. (ab − ac) ÷ (−a) −b + c 7m + 3r 62. (2x2 y − x2 ) ÷ (−x2 ) 52. (45x2 − 60) ÷ (−15) uw + x 67. (42w2 − 98w) ÷ (14w) a3 + 4a ALG catalog ver. 2.6 – page 89 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3w − 7 64. (5e5 + e2 ) ÷ (e2 ) 5e3 + 1 68. (72a2 − 54ab) ÷ (−6a) −12a + 9b EH 69. (u2 w2 − u3 w) ÷ (−uw) 71. (6xy 2 + x2 y 2 ) ÷ (xy 2 ) −uw + u2 6+x 70. (−7cd + 49cd2 ) ÷ (−7cd) 1 − 7d 72. (9m2 p2 − 18m2 ) ÷ (3m2 ) 3p2 − 6 73. (22ab3 + 66a2 b2 ) ÷ (11ab2 ) 2b + 6a 74. (3k 3 m4 − 9k 3 m3 ) ÷ (3k 2 m3 ) km − 3k 75. (28p2 r3 − 8p2 r) ÷ (−4p2 r) −7r2 + 2 76. (−2x4 y 2 + 5x2 y 3 ) ÷ (−xy 2 ) 2x3 − 5xy 77. (−5x2 + 15xy − 5xy 2 ) ÷ (−5x) 79. (2cx + 7c2 x − c3 x) ÷ (cx) 78. (4ab + a2 b − ab2 ) ÷ (ab) x − 3y + y 2 80. (63k 2 − 7k + 21kn) ÷ (7k) 2 + 7c − c2 81. (15p2 s2 − 21ps2 − 3ps) ÷ (3ps) 5ps − 7s − 1 83. (32mr + 16m2 r − 48mr2 ) ÷ (8mr) 85. (9a3 c − 36a2 c2 + 81a2 c3 ) ÷ (9a2 c) 4+a−b 4 + 2m − 6r 82. (5xy − 45xy 2 − 5y 2 ) ÷ (−5y) −x + 9xy + y 84. (8s6 − 20s4 − 14s2 ) ÷ (−2s2 ) −4s4 + 10s2 + 7 86. (4u4 w3 + u3 w3 − 2u2 w4 ) ÷ (u2 w2 ) a − 4c + 9c2 87. (24w3 z 2 − 44w2 z 2 − 4wz 2 ) ÷ (−4wz 2 ) 9k − 1 + 3n −6w2 + 11w + 1 88. (8p2 r + 56p2 r2 + 8pr2 ) ÷ (8pr) 1 − c+1 2 91. 15r2 − 21 15 4u2 w + uw − 2uw2 p + 7pr + r Mixed expressions 90. 4c − 8 −8 94. 3x2 + 35 15 1 2 7 x + 5 3 95. −16a + 33 −12 98. −ab2 + b −b3 a 1 − 2 b b 99. y 3 − 3y −y 3 102. 15y 3 + 12 6y 5y 2 2 + 2 y 103. km + 2m km 106. cx2 − c2 x c2 x2 1 1 − c x 107. 5 −1 x4 110. −3a5 + 8a2 −4a7 1 1 + 14a 7b 114. 8p2 s4 + 4p4 s2 12p2 s4 89. 12x + 4y 6 93. 7w − 20 −14 1 10 − w+ 2 7 97. 5x2 − x x2 5− 101. −8a2 b − 10b −4a 105. 4s3 + 9s 6s3 109. 25x2 + 5x6 −5x6 113. a3 b2 + 2a4 b 14a4 b2 2x + 2 y 3 1 x 2ab + 5b 2a 2 3 + 2 3 2s − 3 2 − 5 4a2 a 2 p2 + 2 3 3s 12u3 − 15u2 − 3u 6u2 2u − 118. x2 y + xy 2 − xy 3 x2 y 2 5 1 − 2 2u 121. −5c2 d2 − 2c2 d + 10cd2 −10c2 d 123. 92. 14m + 16 −4 7 − m−4 2 11 4 a− 3 4 96. 8y 3 − 15y 10 4 3 3 y − y 5 2 −1 + 3 y2 100. 4c3 + 9c c2 4c + 1+ 2 k 104. 2p − pr2 −pr − −ab2 − a3 −a2 b a b + a b 108. 20uw + 4w2 8w2 111. 4c2 − 6c5 12c5 1 1 − 3c3 2 112. 7y 4 + 2y 7 3y 6 115. 10x5 y 2 − x2 y 6 5x5 y 2 116. h2 k 5 − 5h4 k 3 −5h4 k 3 2− 117. 7 5 r2 − 119. y4 5x3 −16c4 + 12c3 − 3c −12c 120. 1 4c3 − c2 + 3 4 1 1 y + − y x x d 1 d + − 2 5 c 122. 12m2 r2 − 16mr + 32r −16mr 12a3 b2 − 9a4 b − 15ab 9ab 4a2 b 5 − a3 − 3 3 124. 14x4 y 2 + 7x2 y 4 − 21xy 3 14xy 2 125. 20w4 − 10w2 z 2 + 8z 4 −4w2 z 2 − 126. 14c3 d + 35c2 d3 − 7c2 d4 21c3 d3 127. x3 y 2 − xyz 2 + x2 y 3 z x2 y 2 z x z +y − z xy 128. k 3 mp2 + k 2 p3 + kmp2 k 2 mp2 5w2 5 2z 2 + − 2 2 z 2 w − ALG catalog ver. 2.6 – page 90 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. p t +1+ t p xy 2 3y − 2 2 2 5 d + − 3d2 3c 3c k+ 5u 1 + 2w 2 2y 7 + 3y 2 3 k2 +1 5h2 3mr 2 +1− 4 m x3 + 2 +r r p3 t2 − p2 t3 − pt4 −p2 t3 − − 9 c p 1 + m k EH 129. (18n + 16) ÷ (−8) 130. (12a + 4b) ÷ (6) 9 − n−2 4 2 2a + b 3 10 2 x− 3 7 5e + 2 m − 145. (−xy 2 − x3 ) ÷ (−x2 y) 2 +s s 4xy + − 140. (−xy 2 + y) ÷ (−y 3 ) 144. (15a3 + 12) ÷ (9a) 5y x 5a2 4 + 3 3a 147. (9c3 + 4c) ÷ (6c3 ) 148. (by 2 − b2 y) ÷ (b2 y 2 ) 1 1 − b y 150. (2d4 + 5d7 ) ÷ (3d6 ) 7 −1 a4 2 5d + 3d2 3 3 4 − 5 5x2 x 152. (−3x5 + 20x2 ) ÷ (−5x7 ) b4 5a3 153. (15a5 b2 − a2 b6 ) ÷ (5a5 b2 ) 3− 155. (x3 y 2 + 2x4 y) ÷ (16x4 y 2 ) 1 1 + 16x 8y 157. (−12h4 + 16h3 − 3h) ÷ (−12h) 159. (12m3 − 15m2 − 3m) ÷ (6m2 ) 1 a 3 2 + 2 2 3c 1 3 − 4n3 8 151. (35a2 + 5a6 ) ÷ (−5a6 ) 7− 143. (−8x2 y − 10y) ÷ (−2x) 1 7k + 2n 2 149. (4n2 − 6n5 ) ÷ (16n5 ) 1 2 11 a + 3 5 x 1 − 2 y y 146. (28kn + 4n2 ) ÷ (8n2 ) y x + x y 139. (7a2 − a) ÷ (a2 ) 154. (u2 w5 − 5u4 w3 ) ÷ (−5u4 w3 ) h3 − 2m − 161. (12x3 y 2 − 9x4 y − 15xy) ÷ (9xy) 156. (4p2 r4 + 6p4 r2 ) ÷ (12p2 r4 ) 5 1 − 2 2m 160. (a2 b + ab2 − ab3 ) ÷ (a2 b2 ) 1 r 2r + − 2 5 m a z − + b2 z ab − 7u2 7 2w2 + − 2 w2 2 u w2 +1 5u2 1 p2 + 2 3 2r 158. (c3 d2 − c2 d3 − cd4 ) ÷ (−c2 d3 ) 4x2 y 5 − x3 − 3 3 167. (28u4 − 14u2 w2 + 8w4 ) ÷ (−4u2 w2 ) − 4h2 1 + 3 4 163. (−5m2 r2 − 2m2 r + 20mr2 ) ÷ (−10m2 r) 165. (a3 b2 − abz 2 + a2 b4 z) ÷ (a2 b2 z) w 4 + 2 5 136. (5a2 + 33) ÷ (15) 3 e 142. (2p − ps2 ) ÷ (−ps) 141. (mr + 2r) ÷ (mr) − 1 3 − w+ 4 2 138. (5e3 + 3e) ÷ (e2 ) 3 c2 132. (5w − 8) ÷ (−10) 7 − 3 135. (4u − 24) ÷ (−16) 4 3 5 b − b 9 6 137. (c3 − 3c) ÷ (−c3 ) 1+ h2 134. (8b3 − 15b) ÷ (18) 133. (−14x + 30) ÷ (−21) −1 + 131. (12h2 − 28) ÷ (12) − d c +1+ d c b 1 1 + − b a a 162. (14a4 b2 + 7a2 b4 − 21ab3 ) ÷ (14ab2 ) 164. (32y 2 z 2 − 16yz + 12z) ÷ (−16yz) 166. (c3 dh2 + c2 h3 + cdh2 ) ÷ (c2 dh2 ) a3 + −2yz + 1 − c+ 168. (14b3 y + 56b2 y 3 − 7b2 y 4 ) ÷ (21b3 y 3 ) Variable exponents 169. x3n − x2n + xn+1 xn 171. a4x+1 + a3x+1 − a2x+3 a2x+1 173. a5x + a3x+1 − a2x+3 a2x+2 175. y 4k − y 3k+3 − y k+1 y 3k+1 170. y a+3 + y 2a + y a ya a2x + ax − a2 172. mk+5 + m2k+1 + mk+2 mk+1 a3x−2 + ax−1 − a 174. k 3n−1 + k 2n + k n+4 k n+2 176. x3n+5 + x4n + x2n+1 x3n+1 x2n − xn + x y k−1 − y 2 − 1 k2 ALG catalog ver. 2.6 – page 91 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. y3 + ya + 1 m4 + mk + m k 2n−3 + k n−2 + k 2 x4 + xn−1 + ab2 3b − 2 2 1 xn 3 4y h 1 + d c 2 8 y + − 3y 2 3b 3b EI Topic: Dividing polynomials. Directions: 6—Simplify. 9—Simplify (assume no denominator equals zero). 76—Find the quotient. 52—Write as a mixed expression. 4—Divide. 1. (5a + 20) ÷ (a + 4) 5 2. (9x − 6) ÷ (3x − 2) 3. (6y − 42) ÷ (y − 7) 6 4. (21n + 7) ÷ (3n + 1) 5. (7w2 − 8w) ÷ (7w − 8) w 6. (2a3 + a2 ) ÷ (2a + 1) 7. (5c4 − 3c2 ) ÷ (5c2 − 3) c2 8. (9x3 − 7x) ÷ (9x2 − 7) 9. (3y 3 + 15y 2 ) ÷ (y + 5) 3y 2 10. (8m3 − 8m2 ) ÷ (2m2 − m) 3 7 a2 x 4m 11. (20k 4 + 5k 3 ) ÷ (4k + 1) 5k 3 12. (4u3 + 12u2 ) ÷ (2u + 6) 2u2 13. (x2 − 3x − 4) ÷ (x + 1) x−4 14. (a2 + 9a − 22) ÷ (a − 2) a + 11 15. (p2 − 17p + 60) ÷ (p − 5) p − 12 16. (w2 + 12w + 27) ÷ (w + 3) 17. (2y 2 − y − 21) ÷ (2y − 7) y+3 18. (5x2 − 59x + 44) ÷ (5x − 4) 19. (7c2 − 26c − 45) ÷ (7c + 9) 20. (8h2 + 19h + 6) ÷ (8h + 3) c−5 w+9 x − 11 h+2 21. (3m2 + 7m − 20) ÷ (m + 4) 3m − 5 22. (4x2 + 47x + 120) ÷ (x + 8) 4x + 15 23. (5w2 − 38w + 21) ÷ (w − 7) 5w − 3 24. (12a2 − 67a − 30) ÷ (a − 6) 12a + 5 25. (8p2 + 10p + 3) ÷ (2p + 1) 4p + 3 26. (20m2 + 3m − 2) ÷ (5m + 2) 27. (24y 2 − 7y − 6) ÷ (3y − 2) 8y + 3 28. (20x2 − 64x + 35) ÷ (10x − 7) 29. (x3 + 5x2 + 5x − 3) ÷ (x + 3) 30. (a3 + 4a2 − a + 20) ÷ (a + 5) x2 + 2x − 1 31. (k 3 − 5k 2 − 2k + 16) ÷ (k − 2) 32. (y 3 − 2y 2 − 25y + 6) ÷ (y − 6) k 2 − 3k − 8 33. (2w3 + 11w2 + 19w + 10) ÷ (2w + 5) w2 + 3w + 2 4m − 1 2x − 5 a2 − a + 4 y 2 + 4y − 1 34. (3m3 − 5m2 − 26m − 8) ÷ (3m + 1) 35. (6p3 + p2 + 25p − 25) ÷ (6p − 5) p2 + p + 5 36. (4x3 − 17x2 + 30x − 27) ÷ (4x − 9) 37. (5a3 + 19a2 + 5a + 36) ÷ (a + 4) 5a2 − a + 9 38. (2y 3 + 17y 2 + 15y − 42) ÷ (y + 7) 39. (8x3 − 50x2 + 17x − 30) ÷ (x − 6) 8x2 − 2x + 5 40. (7w3 − 17w2 − 10w − 6) ÷ (w − 3) m2 − 2m − 8 x2 − 2x + 3 2y 2 + 3y − 6 7w2 + 4w + 2 41. (6x3 + 11x2 − 14x − 10) ÷ (2x + 5) 3x2 − 2x − 2 42. (15m3 + 53m2 + 13m + 10) ÷ (3m + 10) 43. (32a3 + 4a2 − 62a + 21) ÷ (8a − 3) 4a2 + 2a − 7 44. (15y 3 − 7y 2 − 26y − 18) ÷ (5y − 9) 45. (p4 + 5p3 + p2 + 20p − 12) ÷ (p2 + 4) p2 + 5p − 3 47. (3k 4 + 2k 3 + 4k 2 + 6k − 15) ÷ (k 2 + 3) 3k 2 + 2k − 5 49. (25a4 − 5a3 − 5a2 − 3a − 12) ÷ (5a2 + 3) 5a2 − a − 4 46. (x4 + x3 + 6x2 − 2x − 16) ÷ (x2 − 2) 5m2 + m + 1 3y 2 + 4y + 2 x2 + x + 8 48. (2c4 − 6c3 − 25c2 + 48c + 72) ÷ (c2 − 8) 2c2 − 6c − 9 50. (24w4 + 12w3 − 22w2 − 21w − 35) ÷ (4w2 − 7) 6w2 + 3w + 5 51. (6y 4 − 4y 3 + 31y 2 − 18y + 18) ÷ (2y 2 + 9) 3y 2 − 2y + 2 52. (15m4 − 6m3 − 29m2 + 2m + 8) ÷ (3m2 − 1) 5m2 − 2m − 8 53. (x3 − 7x2 + 10x + 8) ÷ (x2 − 3x − 2) x−4 55. (2w4 − 7w3 − 13w2 + 29w − 12) ÷ (w2 − 5w + 3) 54. (p3 − 4p2 − p + 10) ÷ (p2 − 2p − 5) p−2 56. (6a4 + a3 − 31a2 − 17a + 9) ÷ (3a2 + 2a − 1) 2w2 + 3w − 4 ALG catalog ver. 2.6 – page 92 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 2a2 − a − 9 EI Mixed order 57. (5c − 52 + 2c2 ) ÷ (c − 4) 2c + 13 59. (3x2 − 40 − 19x) ÷ (3x + 5) x−8 58. (43y − 10 + 9y 2 ) ÷ (y + 5) 9y − 2 60. (6k 2 − 3 + 17k) ÷ (6k − 1) k+3 61. (28 + 71x + 18x2 ) ÷ (2x + 7) 9x + 4 62. (−90 + 7m + 6m2 ) ÷ (3m − 10) 63. (35 + 32y 2 − 76y) ÷ (8y − 5) 4y − 7 64. (−7 + 30w2 − 29w) ÷ (5w + 1) 65. (2a2 − 17a + a3 + 6) ÷ (a − 3) p2 + 3p − 3 69. (3x3 − 32 − 14x2 − 48x) ÷ (3x + 4) x2 − 6x − 8 71. (9m − 5m2 + 3m3 − 24 + m4 ) ÷ (m2 + 3) 6w − 7 66. (−2x2 − 24 + x3 − 14x) ÷ (x + 4) a2 + 5a − 2 67. (9p + 2p3 − 15 + 11p2 ) ÷ (2p + 5) 2m + 9 m2 + 3m − 8 68. (−2 − 3y + 4y 3 + y 2 ) ÷ (y − 1) x2 − 2x − 6 4y 2 + 5y − 2 70. (17w2 + 2 + 13w + 10w3 ) ÷ (5w + 1) 2w2 + 3w + 2 72. (18a − 21a2 + 4a4 − 8a3 + 27) ÷ (4a2 − 9) a2 − 2a − 3 Missing terms 73. (y 2 − 4) ÷ (y − 2) 75. (9h2 − 16) ÷ (3h + 4) 77. (x3 − 27) ÷ (x − 3) 74. (x2 − 25) ÷ (x + 5) y+2 76. (4d2 − 121) ÷ (2d − 11) 3h − 4 78. (m3 + 125) ÷ (m + 5) x2 + 3x + 9 79. (8w3 − 343) ÷ (2w − 7) 80. (27y 3 + 64) ÷ (3y + 4) 4w2 + 14w + 49 81. (10a4 + 3a3 + 4a − 3) ÷ (5a2 − a + 3) 83. (3d3 − 5d2 + 16) ÷ (3d + 4) 2a2 + a − 1 d2 − 3d + 4 85. (2w3 − 100w + 14) ÷ (w − 7) 87. (y 3 + 5y 2 − 18) ÷ (y + 3) x−5 2w2 + 14w − 2 2d + 11 m2 − 5m + 25 9y 2 − 12y + 16 82. (2p3 − 30p − 8) ÷ (2p − 8) 84. (5x3 + 3x − 8) ÷ (x − 1) 86. (a3 + 7a2 − 50) ÷ (a + 5) p2 + 4p + 1 5x2 + 5x + 8 a2 + 2a − 10 88. (4m3 − 7m + 3) ÷ (2m − 1) y 2 + 2y − 6 2m2 + m − 3 Remainders 89. (x2 + x − 2) ÷ (x + 3) 90. (w2 + 6w + 2) ÷ (w + 5) x − 2, r: 4 91. (c2 + 4c − 37) ÷ (c − 4) c + 8, r: −5 93. (2y 2 − y + 1) ÷ (2y + 3) y − 1, r: 4 92. (u2 − 5u − 3) ÷ (u − 7) 94. (4a2 + 3a − 7) ÷ (4a − 5) w + 1, r: −3 u + 2, r: 11 a + 2, r: 3 95. (6p2 + 25p + 13) ÷ (6p + 7) p + 3, r: −8 96. (5m2 − 29m + 26) ÷ (5m − 9) m − 4, r: −10 97. (18x2 + 43x − 2) ÷ (9x − 1) 2x + 5, r: 3 98. (12w2 − 13w − 47) ÷ (3w + 5) 4w − 11, r: 8 99. (40y 2 − 17y − 6) ÷ (5y + 1) 8y − 5, r: −1 100. (42a2 − 17a − 11) ÷ (7a + 3) 101. (c3 − 2c2 − 9c + 9) ÷ (c − 4) c2 + 2c − 1, r: 5 103. (x3 + 9x2 + 20x + 1) ÷ (x + 6) x2 + 3x + 2, r: −11 105. (2w3 − 2w2 − 17w + 21) ÷ (w − 3) 107. (3a3 + 9a2 − 38a − 42) ÷ (a + 5) 2w2 + 4w − 5, r: 6 3a2 − 6a − 8, r: −2 109. (6x3 + 13x2 − 38x − 27) ÷ (2x + 7) 111. (9y 3 + 36y 2 + 35y + 2) ÷ (3y + 8) 6a − 5, r: 4 102. (k 3 + 3k 2 − 33k − 29) ÷ (k + 7) 104. (y 3 − 8y 2 + 7y + 30) ÷ (y − 5) k 2 − 4k − 5, r: 6 y 2 − 3y − 8, r: −10 106. (5m3 − 13m2 + 15m − 14) ÷ (m − 2) 108. (4p3 + 7p2 + 2p + 10) ÷ (p + 1) 5m2 − 3m + 9, r: 4 4p2 + 3p − 1, r: 11 3x2 − 4x − 5, r: 8 110. (8n3 − 2n2 + 29n − 20) ÷ (4n − 3) 2n2 + n + 8, r: 4 3y 2 + 4y + 1, r: −6 112. (18a3 − 40a2 + 53a − 7) ÷ (9a − 2) 2a2 − 4a + 5, r: 3 ALG catalog ver. 2.6 – page 93 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. EI 113. (w4 + 5w3 − 2w2 + 10w + 7) ÷ (w2 + 2) w2 114. (x4 + 8x3 − 10x2 − 48x − 17) ÷ (x2 − 6) x2 + 8x − 4, r: −7 + 5w − 4, r: 15 115. (2h4 − 14h3 + 6h2 − 77h − 21) ÷ (2h2 + 11) h2 116. (6m4 + 12m3 − 13m2 − 20m + 10) ÷ (3m2 − 5) 2m2 + 4m − 1, r: 5 − 7h − 3, r: 12 117. (7y + 6y 2 − 14) ÷ (2y + 5) 118. (20p − 8 + 32p2 ) ÷ (4p − 1) 3y − 4, r: 6 119. (29w2 − 4 + 8w3 − 14w) ÷ (w + 4) 8w2 − 3w − 2, r: 4 121. (5x2 + 2 − 16x + 2x3 ) ÷ (4x − 2 + x2 ) 2x − 3, r: −4 123. (10m − 7m2 + 9 + m3 ) ÷ (m2 − 3m − 2) 125. (y 3 − 9) ÷ (y − 2) m − 4, r: 1 127. (3w3 − 5w2 + 20) ÷ (w2 − 3w + 4) 129. (9a3 − 5a + 3) ÷ (3a2 + a − 1) 3w + 4, r: 4 3a − 1, r: −a + 2 131. (4w3 − 51w − 48) ÷ (2w2 − 6w − 8) 120. (18a + 2a3 − 2 + 13a2 ) ÷ (2a + 5) 2w + 6, r: w a2 + 4a − 1, r: 3 122. (10b − 5b2 − 5 + 12b3 ) ÷ (3b2 − 2b + 3) 124. (10c − 9c2 + 5 + 2c3 ) ÷ (c2 + 3 − 4c) 126. (a3 + 65) ÷ (a + 4) y 2 + 2y + 4, r: −1 8p + 7, r: −1 2c − 1, r: 8 a2 − 4a + 16, r: 1 128. (6p3 − 22p + 2) ÷ (2p − 4) 3p2 + 6p + 1, r: 6 130. (4x3 − 8x − 1) ÷ (2x2 + x − 3) 132. (16y 3 + y) ÷ (4y 2 − 2y + 1) ALG catalog ver. 2.6 – page 94 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 4b + 1, r: −8 2x − 1, r: −x − 4 4y + 2, r: y − 2 EJ Topic: Combined methods (polynomials). Directions: 6—Simplify. 98—Perform the indicated operation(s). 1. 24 − (6 + 7c) + 5c 3. 2x − (−8x + 12) − 18 5. −x − (5 − x) + 17 − (−x) 7. −13 + 5a − (7 − a) − (−6a) 9. (4k − 7) − (k + 3) + (3k + 8) −2c + 18 10x − 30 x + 12 12a − 20 −6r + 9 − (1 − 10r) 4. −15 + 4p − (8 + 11p) 6. 4c − (−20) − (−3c + 2) − 8c 8. 2y − (−10y) + 17 − (3y − 12) 4r + 8 −7p − 23 −c + 18 9y + 29 10. −(−14 + 2y) + (3 − 8y) − (1 + 6y) 6k − 2 11. −(11p − 20) + (−2p − 1) − (9p + 4) 2. −22p + 15 12. (7 − a) − (−12a + 3) + (6 − 5a) −16y + 16 6a + 10 14. (2x2 − 8) + (−x − 10) − (−x2 ) − (4x2 − 5x) 13. −13ab − (14a + 4b) + (−2b + 6a) − (−6ab) −7ab − 8a − 6b −x2 + 4x − 18 15. (y 3 − 2y) − (−5y 2 ) + (−2y 3 + y 2 ) − (−8y) 16. −(9m − r) + (4m + 8) − (−2r) − (−6r + 3) −5m + 9r + 5 −y 3 + 6y 2 + 6y 17. (3xy − 4xy 2 ) − (2x2 y − xy) + (5x2 y + xy 2 ) 18. (−2a + 3b) − (−4ab + 2a − 12b) + (21ab − 15a) −19a + 15b + 25ab 3x2 y − 3xy 2 + 4xy 19. (14c2 − 2cd) + (8cd + 14) − (−7c2 + cd − 17) 20. (x4 − 5x2 ) − (2x3 − x2 ) + (−x4 − 2x3 + x2 ) 21c2 + 5cd + 31 −4x3 − 3x2 21. − [3 − 6n − (−n + 2)] 22. − −7 + 6p2 − (8p2 − 3) 5n − 1 23. − [5ax − (−3 + 2ax) + 12] −3ax − 15 25. 2r2 − −8r2 − (−5r + r2 ) + 3r 11r2 − 8r 27. 11m3 − 10m3 + 8m2 − (m2 − m3 ) − 2m 2 24. − [−3c − (5 − 10c) − 8] 2p2 + 4 −7c + 13 26. 8xy − [9y − (8xy − 6y) − 2y + xy ] −5m2 29. [−(2cd − d) − (−5d)] − [5cd + (−3d) − (3cd + 7d)] −4cd + 16d 15xy − 13y 28. 18 − 14 − 6y 2 − (−y 2 − 5) + 6 − 2y 2 30. 7y 2 − 7 −r3 + 2r − (−2r3 ) + 3r − −4r − (4r3 + r) 5r3 + 10r 31. − [−6y − (y + 15) − (−22)] + [6 − (−10 + 3y) + 4y ] 32. − [4k + 3p − (8k − 2p)] + [−(3k − 4p) + 7k − (−p)] 8y + 9 8k 33. −(x2 + 12) − −3x − (−4x2 + 2) + (7x2 − 4x) 34. 8km + 16k − [3m + 24k − (9km − 8k)] − (−2km + 7m) 35. 4c − (−5d + 9) + 2d − [−3d − (7c + 6) − 2d] + 11 36. −2a3 − −(−a2 + 3a) + 5a + 4a2 − (3a3 − 2a2 ) 19km − 16k − 10m 2x2 − x − 10 11c + 12d + 8 37. −2(3y − 5) + 12 39. 9a − 7(4 − 7a) −5a3 − 5a2 − 2a 38. −6(−x + 9) − 6x −6y + 22 40. 6w − 5(1 + 2w) 58a − 28 41. 8(a − b) − 4(a − b) 43. −2(h − k) − (h + k) 4a − 4b −3h + k −54 −4w − 5 42. −7(c + 4) + 2(c − 18) 44. 5(x + 3) − 8(x − 2) −5c − 64 −3x + 31 45. 5(c2 − 4c) − (3c2 − 10c) 2c2 − 10c 46. 12(2a + b) − 8(3a − b) 47. −3(5y 3 + 4) + 9(y 3 − 2) −6y 3 − 30 48. −(6kn − n) − 2(3kn + n) −12kn − n 50. 4y 2 − 14y + 5(−3y 2 + y) −11y 2 − 9y 49. 14p + 2(r − 7p) − 6r −4r ALG catalog ver. 2.6 – page 95 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 20b EJ 51. 8(3w − 4wz) + 25wz − 12w 52. 2(6a + 15) − 11a + 33 12w − 7wz 53. −7(k 2 m − km + 2) + 2(3k 2 m − km + 7) 55. 2(7a − 3b + 2) − (10a − 6b + 5) 57. 6(p − 4) − (p − 4) − 7(p − 4) −k 2 m + 5km 58. −(a + 4) − 7(a − 2) + 3(a − 5) −2p + 8 61. 29 − (−5y 3 ) − 2(3y 3 − 8) − 35 6c + 10k −19x2 + 3x 65. −3ab − 5(a + 3b) − 7a + 2(6b − ab) 67. 14r − 2(r + 2s) + 6rs + 5(rs + 3r) −5ab − 12a − 3b 27r − 4s + 11rs 69. 12(2xy 2 − x + 2y 2 ) − 9(xy 2 + 2x − 3y 2 ) −5a − 5 23u + x 5d 3r − 6q − 4 66. −8x2 − 7x + 4(4x − 3) − (x2 − 14) −9x2 + 9x + 2 68. 2x2 y + 11(x2 − y) − (x2 y + 8y) − 9x2 x2 y + 2x2 − 19y 70. −7(3mr − 8m + 4) + 4(10mr + 2m − 5) 19mr + 64m − 48 71. −3(k 2 + 11k − 10) + 5(2k 2 + 5k − 6) 73. −6(x2 − 2) − 2x(3x + 5) 7k 2 − 8k 76. −3p(5p − 4) + 7(p2 − 2) y 2 − 18y + 5 78. c3 (4c − 1) − 4c2 (c2 − 6c) 3y 3 + y 2 + 4y 79. −x2 (x3 − 3x) + x3 (4x − 3) 81. −p(4p2 − 2p − 5) + 4(p3 + 3p2 − p + 1) 83. −7(x4 − 3x2 + x) + 4x(2x3 + 3x − 3) 14p2 + p + 4 x4 + 33x2 − 19x 87. −5y(4y 2 + y) + 2y 2 (2y 2 + 10y − 3) −8p2 + 12p − 14 −25c3 4y 4 − 11y 2 89. 5a2 (a + 4) − 2a(6a2 − 3a + 7) + 7(a3 − 2) 2m4 + 7m3 + 6m 82. 2y(2y 2 − 7y + 3) − 6(y 3 + 4y 2 − 2y) 84. 2(a3 + 6a + 5) − 4a(2a2 − a + 5) 86. 2p2 (2p − 4) − 4p(p2 − 2p + 3) 3x3 + 9x −8c2 + 50c − 22 10a2 − 21a + 6 80. 6m(2m2 + 1) + m2 (2m2 − 5m) −x5 + 4x4 85. 3x(x2 + 2x − 5) − 6x(x − 4) 72. 10(c2 + 2c − 1) − 6(3c2 − 5c + 2) 74. 3(a2 − 4a + 2) + a(7a − 9) −12x2 − 10x + 12 75. y(6y − 8) − 5(y 2 + 2y − 1) 26a2 −14y 2 + y + 13 64. −13 − (−5r) − 16q − 2(r − 5q) + 9 15xy 2 − 30x + 51y 2 77. y 2 (3y − 1) + 2y(y + 2) 14rs + 21r + 38s 60. 10(u − x) − (−u + x) + 12(u + x) 62. 32d − 4(c + 8d) − (−4c) + 5d −y 3 + 10 63. −3x2 − 3(6x2 + x) + 6x − (−2x2 ) 54. 9(2rs + r + 2s) − 4(rs − 3r − 5s) 56. −5(2y 2 − y − 1) − 4(y 2 + y − 2) 4a − 1 59. −2(c − k) + 5(c + k) − 3(−c − k) a + 63 −2y 3 − 38y 2 + 18y −6a3 + 4a2 − 8a + 10 −12p 88. −8a(a2 − a + 3) + 6(−3a2 + 5a) −8a3 − 10a2 + 6a 90. 6x2 (3x − 4) + 5x(3x2 + 6x − 5) − 6(x2 − 4x) 33x3 − x − 14a − 14 91. 3m2 (m − 4) + 6m(3m2 − m + 2) − 4(3m − 7) 92. 8s2 (s + 5) − 2s(4s2 − 11) − 9(3s2 − 2s + 1) 21m3 − 18m2 + 28 13s2 + 40s − 9 93. a2 b2 (2a2 − 3ab + b) + ab(a3 b + 3a2 b2 − 2ab2 ) 3a4 b2 94. 2c2 d(cd − 3d + d2 ) − cd2 (c2 − 6c + 2cd) c3 d2 − a2 b3 95. xy 3 (x2 y + 2xy 2 + 2y) + 2x2 y(xy 3 − y 4 + xy) 96. mr2 (3m3 r + 6r3 − 2mr4 ) − 3mr(mr3 + 2r4 − mr5 ) 3x3 y 4 + 2xy 4 + 2x3 y 2 3m4 r3 + m2 r6 97. a(b − 3) − b(a + 3) + 3(a + b) 98. −w(w + 4) + 2(w2 − 3) − w(w3 − w) 0 −w4 + 2w2 − 4w − 6 99. c2 (c2 − c) − 5(c3 − c2 ) + c(c2 + c) 2 3 101. 5(2r − ) − 8(r − ) 5 4 c4 − 5c3 + 6c2 1 1 102. 3(4a2 + ) − 2(5a2 − ) 6 4 2r + 4 5 2 103. −9( y 2 − y) + 10(y 2 − y) 3 2 100. −x(xy + y) + y(x − y) − xy(x + 2) 4y 2 − 16y 3 1 104. −4(3k + ) + 6(2k + ) 8 12 ALG catalog ver. 2.6 – page 96 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 2a2 + 1 −1 −2x2 y − 2xy − y 2 EJ 1 5 105. − (y + 18) + (y − 12) 6 6 2 3y 107. 2 7 (cd + 20) − (cd + 5) 5 5 109. 1 1 (9m3 − 6r) + 10( m3 − r) 3 5 111. 1 1 (18r2 − 3) + 4(r2 + ) 6 8 3 1 106. − (x − 6y) + (x + 18y) 2 2 − 13 108. −cd + 1 5m3 − 12r 7r2 2 4 113. − (9ab − 21a − 3b) − a(10b + 30) 3 5 115. 1 3 1 (2k 2 + ) + (50k 2 + 10k − 5) 2 3 10 117. 0.25(16x − 48) − 0.1(10x − 20) −14ab − 10a + 2b 8k2 + k 3a + 4 121. 2.5(m2 − 6) + 0.25(2m2 + 4m + 50) 3m2 + m − 2.5 123. 0.5(a2 b − 2ab + 8b) − 0.2a(7.5ab − 5b) 125. (4a + 1)(3a − 2) + (a − 2)(a + 2) 127. (c + 4)2 + (2c + 1)(c − 5) 129. (2p − 5)2 − (p + 4)2 133. 3x(x − y) − (x + y)2 −a2 b + 4b 13a2 − 5a − 6 3c2 − c + 11 3p2 − 28p + 9 131. (2x − 1)(2x + 1) − (2x + 3)2 −12x − 10 2x2 − 5xy − y 2 135. (4a − b)(a + 4b) − (2a + b)2 137. 5y(2y − 4) + (y − 2)(4y + 7) 7 139. 3(5b2 + 7ab) − 5b(7ab + 3b) 7b 11ab − 5b2 2y 2 − 3y − 2 3a − 5ab 2 2 4 (n − 15n) + (n2 + 9n) 3 3 2n2 + 2n 2 5 110. 5(2p − ) − (12p − 4) 5 4 −5p + 3 1 3 112. 6( n + 2) − (6n + 10) 2 2 −6n − 3 114. 1 3 3 (6x2 − 20x + 1) − (3x2 + ) 4 2 2 116. 5 1 (x + 6y) + (x2 − 18xy + 24y) 6 6 118. −0.5(7y − 2z) + 1.5(3y − 5z) 3x − 10 119. 0.2(30a2 + 50a) − 0.3(10a2 + 20a) −x + 18y 3x2 − 15x x2 + 2xy + 4y y − 6.5z 120. −1.5(12wx − 3) + 0.25(8wx − 2) 16wx + 3 122. −1.1c(2d + 20) + 0.4(10c2 − 2cd + 15c) 124. 1.6(5r2 + 50r − 3) − 2.1(5r2 − 8) −1.5r2 + 80r + 12 126. (w − 6)(w + 6) + (5w − 1)(2w + 3) 128. (y + 8)(3y − 2) + (y − 4)2 130. (a − 10)2 − (4a + 5)2 11w2 + 13w − 39 4y 2 + 14y −15a2 − 60a + 75 132. (3r + 4)2 − (4r + 5)(4r − 5) 134. (c + d)(c − d) + (c + 2d)2 −7r2 + 24r + 41 2c2 + 4cd + 3d2 136. 4s(p + s) + (p − 2s)(p + 2s) p2 + 4ps 138. (2x − 3)(x + 4) + 3x(6x − 7) 4 140. 6r(4m − 5r) − 3m(8r − 11mr) 3r ALG catalog ver. 2.6 – page 97 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −3cd + 4c2 − 16c 5x2 − 4x − 3 −10r + 11m2 EK Topic: Applications of polynomials. See also category DN (monomials). Directions: 0—(No explicit directions.) 49—Write each answer as a polynomial in simplest form. 1 4 x − 5. 1. The side of a square is 3n − 2r. What is the perimeter? 12n − 8r 2. The side of a square is perimeter? x − 20 3. The length and width of a rectangle are 3k + 1 and k + 12 . What is the perimeter? 8k + 3 4. The length and width of a rectangle are and 32 c + d. What is the perimeter? 4c 5. The side of a square is 7y − 1. What is the area? 6. The side of a square is 49y 2 − 14y + 1 1 2 4x + xy 1 2 x + y. What is the 4 3c − d What is the area? + y2 7. Find the area of a rectangle whose dimensions are k − 2 and k − 3. k2 − 5k + 6 8. Find the area of a rectangle whose dimensions are 3x + 5 and 2x − 1. 6x2 + 7x − 5 9. The length and width of a rectangle are a + b and a − b. What is the area and perimeter? 10. The length and width of a rectangle are 2n − 3 and 2n + 3. What is the area and perimeter? a2 − b2 ; 4a 4n2 − 9; 16n 11. The length and width of a rectangle are 3a − b and a − 3b. What is the area and perimeter? 12. The length and width of a rectangle are x + 2y and x + y. What is the area and perimeter? 3a2 − 10ab + 3b2 ; 8a − 8b x2 + 3xy + 2y 2 ; 4x + 6y 13. The perimeter of a rectangle is 4c + 10d and the width is 5d. What is the length? 2c 14. The perimeter of a rectangle is 8k + 12 and the length is 4k − 1. What is the width? 7 15. The perimeter of a rectangle is 3x + 3y and the width is x + 12 y. What is the length? 1 x + y 16. The perimeter of a rectangle is 12w + 8 and the length is 4w − 5. What is the width? 2w + 9 17. The area of a rectangle is 3y 2 + 6y and the length is 3y. What is the width? y + 2 18. The area of a rectangle is 8a2 + 4a and the width is 4a. What is the length? 2a + 1 19. The area of a rectangle is c2 − 3c − 18 and the length is c + 3. What is the width? c − 6 20. The area of a rectangle is n2 + 5n − 14 and the width is n − 2. What is the length? n + 7 21. The area of a rectangle is 3x2 + 13x + 4 and the length is 3x + 1. What is the width? x + 4 22. The area of a rectangle is 2y 2 − 13y + 6 and the width is y − 6. What is the length? 2y + 1 23. The area of a rectangle is 2a2 + 11a − 21 and the length is 2a − 3. What is the width? a + 7 24. The area of a rectangle is 5n2 + 34n − 7 and the width is n + 7. What is the length? 5n − 1 25. The sides of a triangle are 5, 2k − 3 and 4k. What is the perimeter? 6k + 2 26. The sides of a triangle are 2a, a − 2 and a − 1. What is the perimeter? 4a − 3 27. The sides of a triangle are 2x + 5, x − 4 and x − 1. What is the perimeter? 4x 28. The sides of a triangle are y + 3, 3y + 1 and y − 6. What is the perimeter? 5y − 3 29. The perimeter of a triangle is 6a + 1. Two sides are 3a and a + 5. What is the other side? 2a − 4 30. The perimeter of a triangle is 7y − 3z. Two sides are 4y + 2z and 7z. What is the other side? 3y − 12z 31. The perimeter of a triangle is 6x + 5. Two sides are 2x − 1 and 4x. What is the other side? 6 32. The perimeter of a triangle is 5k + 4m. Two sides are k and 3k + 4m. What is the other side? k 33. The perimeter of an isosceles triangle is 9y − 15, and the base is 5y + 1. What is the length of each side? 34. The perimeter of an isosceles triangle is 12a + 8b, and the base is 2a − 4b. What is the length of each side? 5a + 6b 2 2y − 8 ALG catalog ver. 2.6 – page 98 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. EK 35. The perimeter of an isosceles triangle is 7w − 20, and each side is 2w − 10. What is the length of the base? 36. The perimeter of an isosceles triangle is 10x + 9, and each side is 5x − 3. What is the length of the base? 3w 12 37. The first side of a triangle is 8 less than the second. The third side is 9 more than the second side. What is the perimeter? 3x + 1, where x is second side 38. The second side of a triangle is 15 more than the first. The third side is twice the first side. What is the perimeter? 4x + 15, where x is first side 39. The first side of a triangle is twice the second. The second is 1 less than the third side. What is the perimeter? 4x − 3, where x is third side 40. The second side of a triangle is 10 less than the first. The first is 6 more than the third side. What is the perimeter? 3x + 2, where x is third side 41. The third side of a triangle is 5 less than twice the second. The second is 3 more than the first side. What is the perimeter? 4x + 4, where x is first side 42. The third side of a triangle is four times the second. The second is 1 less than twice the first side. What is the perimeter? 11x − 5, where x is first side 43. The third side of a triangle is 12 more than the first, and five times longer than the second side. What is the perimeter? 11x − 12, where x is second side 44. The third side of a triangle is half of the second, and 6 more than the first side. What is the perimeter? 45. Find the volume of a rectangular solid whose dimensions are y − 4, 3y, and y + 4. 3y3 − 48y 46. Find the volume of a rectangular solid whose dimensions are 2x, 5x, and 2x + 1. 20x3 + 10x 47. Find the volume of a rectangular solid whose dimensions are r − 2, r + 1, and r + 2. r3 + r2 − 4r − 4 48. Find the volume of a rectangular solid whose dimensions are 3k, k + 6, and k − 2. 3k3 + 12k2 − 36k 49. In a rectangle, the width is half of the length. A 4 mm wide strip is cut from all sides. What is the new perimeter? 3` − 32 50. The width of a rectangle is 8 cm less than the length. A strip that is 3 cm wide is cut from two adjacent sides. What is the new perimeter? 4` − 28 51. In a rectangle, the length is three times the width. A 2 cm wide strip is cut from all sides. What is the new area? 3w2 − 16w + 16 52. The length of a rectangle is 10 mm more than the width. A strip that is 5 mm wide is cut from two adjacent sides. What is the new area? w2 − 25 53. The side of a square is 8. A strip of uniform width is cut from opposite sides. What is the new area and perimeter? 64 − 8w; 32 − 2w 54. The side of a square is 12. A strip of uniform width is added to three sides. What is the new area and perimeter? 144 + 36w + 2w2 ; 48 + 6w 55. A rectangular piece of carpet is 8 m × 5 m. A strip of uniform width is cut from two adjacent sides. What is the new area and perimeter? 40 − 13w + w2 ; 26 − 4w 56. A rectangular photograph is 10 cm × 8 cm. A border of uniform width is added to all sides. What is the new area and perimeter? 80 + 36w + 4w2 ; 36 + 8w 57. The length of a rectangle is 5 more than twice the width. It is made into a box by cutting out four squares from the corners. The side of each square is 2. What is the volume of the box? 4w2 − 14w − 8 58. The length of a rectangle is 3 less than twice the width. It is made into a box by cutting out four squares from the corners. The side of each square is 1. What is the volume of the box? 4w2 − 18w + 20 59. A rectangular piece of cardboard has dimensions 12 × 5 cm. The cardboard is folded into box by cutting squares from the corners. The side of each square is p. What is the volume of the box? 60. A rectangular piece of cardboard has dimensions 10 × 8 cm. The cardboard is folded into box by cutting squares from the corners. The side of each square is r. What is the volume of the box? 2x − 6, where x is second side 60p − 34p2 + 4p3 ALG catalog ver. 2.6 – page 99 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 80r − 36r2 + 4r3 EL Topic: Mixed practice with polynomials. Directions: 0—(No explicit directions.) The expression 2x3 − 5x2 + x − 1 has how many terms? 4 2. 3. Tell how many terms are in the expression 4a(bc)2 − abc. 2 4. Tell how many terms are in the expression 8n5 − 4n3 . 1 2 5. Give the degree of the polynomial 5x3 y − xy 5 . 6. Give the degree of the polynomial 3r8 − 2r4 + 1. 7. The polynomial (3x2 y 3 − 7x5 y 2 + 8y 6 ) is what degree? 6 8. The polynomial (2a − 3ab − 5b + 6) is what degree? Find the sum of 11x + y − 3z and 8y + 4z − 10x. 10. Find the sum of 3c3 − c + 4 and −2c2 + c − 10. 1. 9. 5 The expression 5xy + x + 2 has how many terms? 3 8 1 3c3 − 2c2 − 6 x + 9y + z 11. Find the sum of 8x2 − 5x4 − 3 and −x2 − x + 4x4 + 7. 12. Find the sum of 2r3 + r + 9 and r3 + 4r2 − r. −x4 + 7x2 − x + 4 3r3 + 4r2 + 9 13. Add: (2 − a3 − 3a) + (4a2 + a − 3) −a3 + 4a2 − 2a − 1 15. Add: (−n2 + 7n3 − 3) + (6n4 + 3n2 − 7) 14. Add: (−yz − 4z) + (4y − 3yz + 5z) −4yz + 4y + z 16. Add: (xyz − yz + 2xz) + (xy − xyz + 3yz) 2yz + 3xz 6n4 + 7n3 + 2n2 − 10 17. Subtract 2a2 − 3 from a2 − 3. 18. Subtract −n + 3p from 4n + p. −a2 19. Subtract x2 + 2x − 3 from −3x2 − x + 5. −4x2 5n − 2p 20. Subtract 4y 3 + 2y 2 + y from 5y 3 − y. y 3 − 2y 2 − 2y − 3x + 8 21. Subtract: (−4wz + 6w − z) − (4w + 6wz + z) 22. Subtract: (4a − b + c) − (a + b + 3c) 3a − 2b − 2c −10wz + 2w − 2z 23. Subtract: (3k 3 + 2k + 1) − (2k 3 + 2k − 1) k3 + 2 25. Find the product of f + 1 and f 2 + 4f − 2. f3 + 5f 2 24. Subtract: (n3 + 3n2 − 5n) − (3n2 − 5) n3 26. Find the product of m − 3 and m2 − 3m + 4. m3 − 6m2 + 13m − 12 + 2f − 2 27. Find the product of a + b and a2 − ab + b2 . a3 + b3 28. Find the product of 6h − k and 6h + k + 3. 36h2 − k2 + 18h − 3k 29. Multiply: (4p − 3r)(4p + 3r) 31. Multiply: (x + y)(4x + 1) 30. Multiply: (2k 2 + 5)(2k 2 − 5) 16p2 − 9r2 32. Multiply: (2x + 5)(3x − 7) 4x2 + 4xy + x + y 33. Divide: (m3 − 6m2 + 13m − 12) ÷ (m − 3) m2 4k 4 − 25 6x2 + x − 35 34. Divide: (y 5 + 1) ÷ (y + 1) y4 − y3 + y2 − y + 1 36. Divide: 4x − 7 16x2 − 49 4x + 7 − 3m + 4 35. Divide: 3n − 2 3n2 − 8n + 4 n−2 37. Find the remainder of (2n3 − 5n2 − n) ÷ (n − 4). 38. Find the remainder of (r2 − 5r − 7) ÷ (r + 1). −1 44 39. Find the remainder of (8y 3 − 27) ÷ (2y − 3). 0 40. Find the remainder of (2x2 + 11x − 18) ÷ (2x − 3). 3 ALG catalog ver. 2.6 – page 100 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. EM Topic: 3 dimensional figures (see also category HI). Directions: 171—Write a polynomial for the volume of the figure. 172—Write a polynomial for the surface area of the figure. 173—Write polynomials for the volume and surface area of the figure. 1. 2. 4. 3DFIG02.PCX 3DFIG01.PCX 7. 6. 3DFIG04.PCX 3DFIG03.PCX A = 22x + 144, V = 28x + 112 A = 36x + 18, V = 36x − 18 A = 24x + 70, V = 35x A = 48x + 24, V = 36x 5. 3. 8. 3DFIG07.PCX 3DFIG06.PCX 3DFIG05.PCX A = 4x2 + 10x − 12, V = 6x2 − 12x A = 14x2 + 16x, V = 3x3 + 6x2 10. 9. 3DFIG08.PCX A = 6x2 + 8x − 6, V = x3 + 2x2 − 3x 11. A = 2x2 + 24x + 6, V = 5x2 + 10x + 5 12. 3DFIG10.PCX 3DFIG09.PCX 3DFIG11.PCX A = 6x + 52, V = 2x + 24 A = 36x + 60, V = 40x 13. 14. 15. 3DFIG16.PCX 3DFIG15.PCX A = 26x + 168, V = 24x + 32 18. A = 40x + 94, V = 55x + 35 16. 3DFIG14.PCX 3DFIG13.PCX A = 20x + 94, V = 25x + 60 17. 3DFIG12.PCX A = 24x + 160, V = 32x + 112 A = 26x + 156, V = 30x + 80 A = 26x + 204, V = 36x + 108 19. 20. 3DFIG20.PCX 3DFIG17.PCX A = 42x + 36, V = 36x 3DFIG19.PCX A = 32x + 82, V = 30x + 30 3DFIG18.PCX A = 24x + 12, V = 12x A = 22x + 216, V = 24x + 160 21. 22. 24. 23. 3DFIG24.PCX 3DFIG21.PCX A = 2x2 + 40x + 96, V = 6x2 + 33x + 45 A = 2x2 + 30x + 42, V = 7x2 + 7x 3DFIG22.PCX A = 2x2 + 36x + 120, V = 6x2 + 36x + 72 3DFIG23.PCX A = 4x2 + 36x + 30, V = 10x2 + 15x ALG catalog ver. 2.6 – page 101 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FA Topic: Averages. Directions: 67—Find the average. 1. −8, 22 5. −10, −25, 6 9. −8, −31, 0, −3 7 −9 23 2. 0, −9 6. −12, 21, −9 −4 12 0 10. −6, 6, 12, −20 −10 12 13. −17, 17, −15, 9, −9 −21, −13 7. −4, 28, 0 −17 8 11. −34, −16, 25, 25 −2 14. 34, −13, 6, −7, 0 3. 3 −3 17. 8 35 , 5 52 8. −8, −12, −15 0 11 23 1 4 16. 11, −25, 9, −13, −12 −6 7 3 21. − 19 5 , 10 1 43 25. 4, − 12 , −6 12 29. 16, −16 12. 19, −5, 8, −21 0 15. −50, 17, 13, 15, 20 4 4. 1 12 19. − 43 , − 10 3 22. − 34 , − 58 − 11 16 23. 3 12 , −8 26. −1 3 1 7 4 , − 2 , 4 , −2 18. −4 12 , 7 21 4 1 1 3, −5, −3 27. − 92 , 0, 3 4 − 15 30. −3 12 , − 23 , 3 12 , 16 0 20. −3 14 , 1 14 −2 13 24. 0, −6 32 2 14 −3 13 28. − 23 , −6, −5 13 − 12 31. 5 13 , −8 13 , −2 21 , − 12 1 8 −1 32. 5, 35 , − 12 , −5 −4 1 40 −1 12 33. −6.4, 4.0 34. −2.9, 8.1 −1.2 37. 0.02, −0.8, −0.42 −0.4 35. −3.6, −7.4 2.6 38. 4.1, −7.6, −3.1 −2.2 −5.5 39. −0.05, −0.15, −0.4 −0.2 41. −3.5, −0.5, 1.9, 2.1 0 42. −0.06, 0.1, 0.9, −0.34 0.15 45. a2 , 5a2 49. −3y, 8y 46. −x, 3x 3a2 50. −4c3 , −7c3 5 2y 53. −9c, 2c, −5c −4c 43. 3.5, −0.11, −2.5, −0.09 51. x, −10x 54. 4w, 18w, −4w −6u2 44. −3.2, −8, 3.6, −2.4 48. 3p, −11p 52. 5ab, 2ab − 92 x 55. 2k, −11k, −15k, 4k 6w 40. −2.01, 2.02, −0.1 −2.5 47. −2u2 , −10u2 3 − 11 2 c 1.9 −0.03 0.2 x 36. 4.3, −0.5 −4p 7 2 ab 56. −10r, −14r, 25r, −r 0 −5k 57. 4p − 10, 6p 5p − 5 61. −4n, 2n + 1, 2n − 7 −2 58. −3y + 5z, 9y − 5z 62. 8, p2 − 5, 2p2 − 6 p2 − 1 3y 59. −7a, −a + 4 −4a + 2 63. m + 3n, −4m − n, −8n −m − 2n ALG catalog ver. 2.6 – page 102 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 60. −5x2 + 8, 5x2 − 2 3 64. x − y, x + y, −5x −x FB Topic: Percents I. Directions: 0—(No explicit directions.) 1. What is 50% of 24? 2. 12 5. Find 10% of 10. What is 50% of 90? 3. Find 25% of 204. 7. What is 75% of 56? 51 6. 1 Find 10% of 500. 50 42 9. What is 33 31 % of 48? 16 10. What is 33 13 % of 195? 11. Find 66 23 % of 78. 52 32.5 17. What is 75% of 94? 70.5 14. Find 25% of 70. 17.5 18. What is 75% of 250? 22. Find 66 23 % of 8. 5 13 13 13 15. What is 50% of 5? 30 26.5 19. Find 10% of 145. 14.5 23. What is 33 13 % of 52? 450 33. What is 12 21 % of 160? 20 26. What is 20% of 115? 27. Find 60% of 45. 27 30. Find 70% of 30. 21 31. What is 30% of 330? 24. What is 33 13 % of 74? 28. Find 80% of 205. 164 34. What is 62 12 % of 72? 45 3 38. Find 55% of 240. 41. What is 400% of 8? 32 32. What is 30% of 90? 27 35. Find 37 12 % of 800. 36. Find 87 12 % of 104. 91 300 132 39. What is 45% of 120? 54 42. What is 1000% of 14? 40. What is 85% of 60? 51 43. Find 500% of 19. 95 44. Find 300% of 6. 18 140 45. Find 150% of 102. 46. Find 125% of 44. 55 153 47. What is 110% of 60? 66 49. What is 4% of 700? 28 50. What is 1% of 1200? 48. What is 250% of 300? 750 51. Find 2% of 3000. 60 52. Find 8% of 650. 52 12 47 54. Find 18% of 150. 27 55. What is 72% of 75? 54 57. What is 37.5% of 88? 33 58. What is 87.5% of 16? 14 61. What is 40% of 2.5? 1 62. What is 500% of 1.6? 8 4.5 66. Find 25% of 3.24. 0.81 3 70. What is 10.5% of 400? 42 73. What is 0.05% of 600? 26.84 0.8 24 23 99 77. Find 88% of 30.5. 20. Find 10% of 8. 23 29. Find 90% of 500. 0.3 12. Find 66 23 % of 150. 16. What is 50% of 53? 17 13 25. What is 40% of 75? 69. Find 7.5% of 40. What is 75% of 16? 187.5 21. Find 66 23 % of 20. 65. Find 150% of 3. 8. 8 100 2.5 53. Find 94% of 50. Find 25% of 32. 12 65 13. Find 25% of 130. 37. Find 15% of 20. 4. 45 74. What is 6.5% of 900? 56. What is 56% of 125? 70 59. Find 12.5% of 120. 60. Find 62.5% of 48. 63. What is 800% of 4.5? 36 64. What is 80% of 12.5? 10 67. Find 75% of 50.8. 68. Find 125% of 6. 13.64 7.5 38.1 71. What is 0.3% of 2000? 6 75. Find 2.5% of 90. 72. Find 0.04% of 2500. 1 2.25 76. Find 0.6% of 60. 58.5 78. Find 110% of 12.4. 30 15 79. What is 88% of 4.75? 4.18 ALG catalog ver. 2.6 – page 103 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 80. What is 124% of 19.25? 23.87 0.36 FC Topic: Percents II. Directions: 0—(No explicit directions.) 1. 50% of what number is 26? 52 2. 50% of what number is 85? 170 3. 25% of what number is 14? 56 4. 25% of what number is 110? 440 5. 10% of what number is 12? 120 6. 10% of what number is 101? 1010 7. 75% of what number is 33? 44 8. 75% of what number is 90? 120 9. 33 31 % of what number is 240? 720 10. 33 13 % of what number is 15? 45 11. 66 23 % of what number is 82? 123 12. 66 32 % of what number is 48? 72 13. 40% of what number is 60? 150 14. 20% of what number is 24? 120 15. 60% of what number is 207? 345 16. 80% of what number is 300? 375 17. 90% of what number is 81? 90 18. 70% of what number is 350? 500 19. 30% of what number is 9? 30 20. 30% of what number is 21? 70 21. 12 21 % of what number is 11? 88 22. 37 12 % of what number is 30? 80 23. 67 23 % of what number is 76? 114 24. 87 21 % of what number is 105? 120 25. 400% of what number is 20? 5 26. 1000% of what number is 140? 14 27. 500% of what number is 95? 19 28. 300% of what number is 63? 21 29. 15% of what number is 6? 40 30. 55% of what number is 22? 40 31. 45% of what number is 27? 60 32. 85% of what number is 102? 120 33. 150% of what number is 210? 140 34. 125% of what number is 190? 152 35. 110% of what number is 121? 110 36. 250% of what number is 80? 32 37. 4% of what number is 8? 200 38. 1% of what number is 16? 1600 39. 2% of what number is 1? 50 40. 8% of what number is 22? 275 41. 25% of what number is 6.5? 26 42. 50% of what number is 20.5? 41 43. 75% of what number is 22.5? 30 44. 75% of what number is 16.5? 22 45. 75% of what number is 6.3? 8.4 46. 25% of what number is 0.01? 0.04 47. 50% of what number is 1.8? 3.6 48. 10% of what number is 0.55? 5.5 49. 66 32 % of what number is 5? 7.5 50. 66 23 % of what number is 0.2? 0.3 51. 33 13 % of what number is 0.05? 0.15 52. 33 31 % of what number is 2.1? 6.3 53. 3% of what number is 5.4? 180 54. 6% of what number is 0.36? 6 55. 5% of what number is 0.6? 12 56. 9% of what number is 1.71? 19 57. 800% of what number is 1000? 125 58. 200% of what number is 146? 73 59. 250% of what number is 50? 20 60. 125% of what number is 7.5? 6 61. 12 12 % of what number is 7.2? 57.6 62. 37 12 % of what number is 13.2? 35.2 63. 62 12 % of what number is 0.4? 0.64 64. 87 12 % of what number is 1.4? 1.6 65. 7.5% of what number is 4.5? 60 66. 2.5% of what number is 18? 720 67. 10.5% of what number is 21? 200 68. 6.5% of what number is 0.78? 12 69. 0.3% of what number is 9? 3000 70. 0.05% of what number is 0.01? 20 71. 0.6% of what number is 0.3? 50 72. 0.04% of what number is 3.2? 8000 ALG catalog ver. 2.6 – page 104 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FD Topic: Percents III. Directions: 0—(No explicit directions.) 1. What percent of 140 is 70? 50% 2. What percent of 90 is 45? 50% 3. What percent of 50 is 35? 70% 4. What percent of 200 is 120? 60% 5. What percent of 60 is 45? 75% 6. What percent of 80 is 60? 75% 7. What percent of 56 is 14? 25% 8. What percent of 252 is 63? 25% 9. What percent of 90 is 27? 30% 10. What percent of 80 is 72? 90% 11. What percent of 80 is 52? 65% 12. What percent of 600 is 330? 55% 13. What percent of 84 is 56? 66 2 % 14. What percent of 66 is 44? 66 2 % 15. What percent of 246 is 82? 33 1 % 16. What percent of 501 is 167? 33 1 % 17. What percent of 56 is 21? 37.5% 18. What percent of 96 is 60? 62.5% 19. What percent of 210 is 134.4? 64% 20. What percent of 140 is 134.4? 96% 21. What percent of 125 is 60? 48% 22. What percent of 75 is 33? 44% 23. What percent of 12 is 30? 250% 24. What percent of 16 is 20? 125% 25. What percent of 11 is 110? 1000% 26. What percent of 5 is 100? 2000% 27. What percent of 150 is 6? 4% 28. What percent of 150 is 9? 6% 29. What percent of 12 is 7.2? 60% 30. What percent of 18 is 13.5? 75% 31. What percent of 40 is 1.2? 3% 32. What percent of 30 is 0.3? 1% 33. What percent of 1000 is 2? 0.2% 34. What percent of 200 is 5? 2.5% 35. What percent of 20 is 0.7? 3.5% 36. What percent of 24 is 0.06? 0.25% 37. 30 is what percent of 120? 25% 38. 55 is what percent of 220? 25% 39. 6 is what percent of 30? 20% 40. 11 is what percent of 110? 10% 41. 18 is what percent of 36? 50% 42. 62 is what percent of 124? 50% 43. 144 is what percent of 192? 75% 44. 66 is what percent of 88? 75% 45. 45 is what percent of 300? 15% 46. 133 is what percent of 140? 95% 47. 32 is what percent of 40? 80% 48. 48 is what percent of 120? 40% 49. 24 is what percent of 72? 33 1 % 50. 36 is what percent of 108? 33 1 % 51. 168 is what percent of 252? 66 2 % 52. 274 is what percent of 411? 66 2 % 53. 49.6 is what percent of 310? 16% 54. 46.8 is what percent of 130? 36% 55. 13 is what percent of 104? 12.5% 56. 77 is what percent of 88? 87.5% 57. 25 is what percent of 5? 500% 58. 30 is what percent of 10? 300% 59. 198 is what percent of 275? 72% 60. 132 is what percent of 550? 24% 61. 1 is what percent of 50? 2% 62. 4 is what percent of 80? 5% 63. 95 is what percent of 20? 475% 64. 60 is what percent of 8? 750% 65. 1.4 is what percent of 35? 4% 66. 1.8 is what percent of 30? 6% 67. 1.2 is what percent of 6? 20% 68. 6.3 is what percent of 42? 15% 69. 0.09 is what percent of 75? 0.12% 70. 0.4 is what percent of 25? 1.6% 71. 8 is what percent of 500? 1.6% 72. 12 is what percent of 3000? 0.4% 3 3 3 3 3 3 ALG catalog ver. 2.6 – page 105 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3 3 FE Topic: Applications of averages. Directions: 0—(No explicit directions.) 1. In the games so far this season, a soccer team has scored 3, 0, 5, 3, 2, 4, 1 and 2 goals. What is the average number of goals per game? 2.5 2. At a regional basketball tournament, the team scored 48, 59, 54, 43 and 48 points in its games. On average, what were the team’s points per game? 50.4 3. The members of the varsity wrestling team weigh 75.3, 81, 58.2, 64.4, and 85.6 kg. What is the average weight of the wrestlers? 72.9 kg 4. There are several bike paths at Balboa Park. Their distances are 24, 21.9, 14.5 and 8 kilometers. What is the average distance? 17.1 km 5. On the girl’s basketball team, the starting players are 6 ft-1 in., 6 ft, 5 ft-8 in., 5 ft-7 in., and 5 ft-5 in. What is their average height? 5 ft-9 in. 6. When shopping, Martin weighed some 5-pound bags of potatoes, and found their actual weights to be 5 lb-4 oz, 5 lb-9 oz, 6 lb, and 5 lb-3 oz. What was the average weight? 5.5 lb or 5 lb-8 oz 7. A pair of blue jeans costs $23.70 at Men’s Fashion Store, $29.45 at Pants Emporium and $34.99 at Clothes-n-More. What is the average price of jeans at those stores? $29.38 8. One liter of soda costs $1.15 at John’s Grocery, $1.19 at Midtown Market, $1.39 at the convenience store, and $0.99 at the Warehouse Supermarket. What is the average price of the soda? $1.18 9. In a football game, the fullback gained 8 yards, 22 yards, 2 yards, 6 yards, and 10 yards on various running plays. He also had 0 yards (no gain) on a play, and losses of 3 yards and 1 yard. What was his average per play? 5.5 yds 10. The stock market can be highly volatile. In one week, the market closed up 22 points, down 3 12 points, down 18 14 points, up 11 points, and up 5 43 points. What was the average close during that week? up 3.4 points 11. U.S. Foreign Assistance is measured in millions of dollars of new credits. These were the changes in recent years: up 302 in 1986, down 2,657 in 1987, up 195 in 1988, and down 296 in 1989. What was the average change during those years? −614 12. New home construction tends to go in cycles. Construction once fell by 298,000 (1970–1975), rose by 142,000 (1975–1980), rose by 432,000 (1980–1985), and fell by 136,000 (1985–1990). What was the average change? +35, 000 13. During the week in Nome, Alaska, the low temperatures were 2, −16, −28, −21, −10, 3, and 7 degrees Fahrenheit. What was the average low temperature? −9 14. During the week in Goose Bay, Newfoundland, the high temperatures were 1, 3, −4, 3, −7, −11, and −6 degrees. What was the average high temperature? 15. A saleswoman drove her car 562 km one week. During the next two weeks, she drove a total of 1220 km. The week after that she drove 316 km. On average, how much did she drive per week? 524.5 km 16. 485 people went to the theater on opening night, and 441 the second night. Then a total of 730 people went on the next two nights. What was the average attendance per night? 414 17. When selling newspaper subscriptions, Jaime earned $45 the first week, $80 the next two weeks, nothing the following week, and then $55 the last week of the subscription drive. On average, how much did he earn per week? $36 18. The Serv-U-Rite Computer Store, in its opening month, sold $35,000 worth of computers. It sold $58,000 in the next two months, and $78,000 in the three months after that. On average, how much did the store sell per month? $28,500 19. In Mr. Wilkes’ history class, eight students scored a 92 on the last test, ten students scored an 86, four students scored an 82, and three students scored a 72. What was the average score in the class? 85.6 20. According to company records, one employee missed 6 days of work in April, eight missed 2 days, twelve missed 1 day, and four missed no days. What was the average number of days missed by an employee during April? 1.36 −3 ALG catalog ver. 2.6 – page 106 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FF Topic: Applications of percent. See also category FJ (interest and investment). Directions: 0—(No explicit directions.) 1. In a survey of 1240 people, 12 21 % of them expressed no opinion. How many people expressed no opinion? In an election, the winner received 62% of the 850 votes that were cast. How many votes did the winner receive? 527 2. 3. There are 26,000 employees at a large corporation, and 0.75% of them deal with quality control. How many employees deal with quality control? 195 4. Of the 45,360 commuters who go across a bridge each day, only 2 21 % are in car pools. Find out how many commuters are in the car pools. 1134 5. In one month, a stereo store sold $17,500 worth of VCR’s, which was 28% of its total sales. Find the total sales for the month. $62,500 6. A movie theater makes 65% of its profit from the snack bar. What was the total profit during a month when $3510 was made from the snack bar? $5400 7. In a recent survey, 63% of the people said they support the new governor. Find out how many people were surveyed, if 252 of them expressed support. 400 8. In a class election, the second place finisher got 129, or 32%, of the votes. Find out how many people voted. 403 (rounded) 9. Last week Tony spent $41.15 on compact discs. That was 55% of what he earned on his part-time job. What did he earn? $74.82 (rounded) 10. The Torres’ food budget each month is $540, which is 15% of their household income. What is their household income? $3,600/month 11. A bowl of Mega-brand Cereal provides 2.6 g of protein, which is 4% of the recommended daily allowance (RDA). What is the RDA of protein? 65 g 155 12. An 8-oz. serving of Flavortime Ice Cream contains 176 mg, or 22%, of the recommended daily allowance (RDA) of calcium. What is the RDA of calcium? 800 mg 13. During the softball season, Jeane reached first base 45 times. If she had 144 “at bats,” what percent of the time did she reach first base? 31.25% 14. During the baseketball season, Guy Johnson made 119 free throws out of 136 opportunities. What percent of his free throws were made? 87.5% 15. On 51 of the last 75 business days, the stock market either went down or did not change. What percent of the time did the market go up? 32% 16. In the last 90 days, the high temperature was normal or above normal 63 times. What percent of the time was the temperature below normal? 30 17. 32 men and 50 women are enrolled in the afternoon swimming class. What percent of the total are women? ≈ 61% 18. The police department in small town employs 45 men and 19 women. What percent of the total are men? 19. A gumball machine contains 93 blue, 51 green and 128 red gum balls. Find the percent of the gum balls that are green. 18.75% 20. An airplane has 18 first class, 52 business class, and 170 economy class seats. What percent of the seats are first class? 7.5% 21. The speedometer in a car may be inaccurate by as much as 5%. If a speedometer reads 70 km/hr, by how many kilometers per hour could it be wrong? 22. A 2 × 4 piece of wood may be off by as much as 0.5% from its specified length. If a 2 × 4 is labeled as being 10 feet long, by how many inches could it be off? 0.6 in. 3.5 km/hr ≈ 70% 23. Carl made 325 tee shirts for the baseball world series. The first week he sold 48% of them. The next week he sold 25% of the remainder. How many did he sell in the two-week period? 198 24. Darlene’s Donut Shop made 850 glazed donuts on Monday. 80% of them were sold that day. 60% of the remainder were sold on Tuesday. How many donuts were left after Tuesday? 68 25. Last year Francis spent 32% of his income on rent. What was his rent per month if his yearly income was $28,500? $760 26. Last year Julia used 8% of her income to make car payments. What was her car payment each month if her yearly income was $35,850? $239 ALG catalog ver. 2.6 – page 107 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FF 27. “Ice-man” Dan scored 35% of the points on his hockey team. What was his average per game if the team scored 110 times in a 24-game season? 1.75 28. “Super” Mario scored 25% of the points on his water polo team. What was his average per game if the team scored 243 points in a 30-game season? 2.025 29. In one week, Ms. Sanders drove her car 416 miles, and 75% of those miles came from her daily commute (between her home and office). Find the approximate distance between her home and office, assuming she went back and forth 5 times during the week. 30. In the 30 shopping days before Christmas, a toy store does about 60% of its yearly business. What is the average amount of business the store does on each of those days, if its total sales for the year is $472,000? $9440 31.2 mi Sales and commission 31. The regular price of a tool kit is $49.99. If the tool kit is marked “15% off,” what is the selling price? 32. A car stereo that normally goes for $199 is on sale for 25% off. What is the sale price? $149.25 $42.50 (rounded) 33. Mr. Koch spent $6.99 on a can of paint that was on sale for 30% off. What would the paint have cost if it were not on sale? $9.98 (rounded) 34. Consuelo paid $16.72 for an item which was discounted 24%. What was the price of the item before it was discounted? $22 35. Melanie bought a coat that was marked down 20%. What was the original cost of the coat, if she saved $8.00? $40 36. Mr. Sheridan bought a new suit that was on sale for 35% off. As a result, he saved $79. What was the original price of the suit? $220 37. One night at Mel’s Diner, Alice received $31.50 in tips. If her customers’ bills totaled $226, what percent did she receive in tips? ≈ 14% 38. A certain microwave oven sells for $405. The store will charge an additional $25.30 for sales tax. What percent of the selling price is the sales tax? ≈ 6.25% 39. A furniture set that was originally priced at $850 is now selling for $748. By what percent was the price reduced? 12% 40. A carton of eggs costs $1.09 without a coupon and 79/ c with a coupon. By what percent does the coupon lower the price? ≈ 27.5% 41. At the appliance store, a saleswoman gets 5% commission on everything she sells. How much would she have to sell to get $750 in commission? $15,000 42. At the shoe store, the employees earn 4.5% commission on their sales. What amount of sales would be needed for an employee to earn $180 in commission? $4,000 43. The publisher of Maria’s book is giving her $18,000, plus 0.5% of sales. How much will have to be made in sales, in order for Maria to get a total of $25,000? 44. Mrs. Kim is a real estate broker. Her salary is $1650 per month, plus 0.25% of sales. To earn $4000 in a month, how much does she need to sell? $940,000 $1.4 million 45. Assume you are the manager of a convenience store, and the local sales tax is 5.5%. At the end of the day, you find receipts totalling $2310. What amount of that is sales tax? $120.43 (rounded) 46. At a local bank, the service charge on traveler’s checks is 0.75%. On a very busy day, sales of traveler’s checks totalled $34,758.75. What amount of that was service charges? $258.75 “Facts and figures” 47. Alaska has 31.7 million acres of national park land. The total national park land in the United States is 47.4 million acres. What percent is in Alaska? ≈ 67% 49. The land area of the the U.S. is 3.6 million sq mi, or 6.2% of the total land area on earth. What is the total land area on earth? ≈ 58 million sq mi 48. New Hampshire has 13 miles of coastline, the least amount of any state that borders an ocean. If the U.S. has 12,383 miles of coastline, what percent is in New Hampshire? ≈ 0.1% 50. 15.4 million sq km, or 41%, of the moon’s surface can be never seen from earth. What is the total surface area of the moon? ≈ 37.6 million sq km ALG catalog ver. 2.6 – page 108 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FF 51. In the U.S., 118,000 women and 534,000 men are employed as lawyers and judges. What percent of the total are women? ≈ 18.1% 52. Each day, the average American throws away 0.35 lbs of garbage that are eventually recycled and 2.93 lbs that are not. What percent of the total is recycled? ≈ 10.7% 53. North America has 5.2 percent of the world’s population. If there are 5,320 million people in the world, how many live in North America? ≈ 277 million 54. Of the 10.6 million cars sold in the U.S. in 1988, 29.2% were imported. What was the number of imported cars sold that year? ≈ 3.1 million 55. In 1988, airplanes handled only 0.3% of all domestic freight in the U.S. If the total amount of freight (measured in ton-miles) was 3,100 billion, how much was handled by airplanes? 9.3 billion ton-miles 56. In 1989, women in executive and managerial positions earned 70.4% as much as men in similar positions. If the average weekly pay for men was $488, what was the average pay for women? $343.55 (rounded) 57. New York City is about 44% further from Honolulu, Hawaii, than it is from London, England. If the air distance between New York and London is 3450 mi, what is it between New York and Honolulu? ≈ 4968 mi 58. O’Hare Airport in Chicago is the world’s busiest. In 1989, it handled 59.1 million passengers—24% more than the second busiest airport, Dallas/Ft. Worth. How many passengers were handled at the second busiest airport? ≈ 47.7 million 59. Between the years 1850 and 1950, the world’s population grew by 130 percent. If the population was 1.1 billion in 1850, what was it a hundred years later? 2.53 billion 60. In the U.S., total passenger car mileage increased 30% between 1980 and 1988. If 1,110 billion miles were driven in 1980, what was the total mileage in 1988? 1,433 billion 61. World oil production increased by 5.5 percent between 1989 and 1990. If 22.6 billion barrels were produced in 1990, how much oil was produced the previous year? ≈ 21.4 bb 62. Monthly automobile production increased by 40% in the U.S. between 1982 and 1988. 592,000 automobiles were made each month in 1988. How many were made each month in 1982? ≈ 425,000 63. In 1950, the gross national product of the U.S. was 288.3 billion dollars. In 1989, it was 5,234 billion dollars. Ignoring inflation, what was the percent increase? ≈ 1715% 64. When measured in constant dollars, the gross national product of the U.S. was 1,204 billion in 1950 and 4,144 billion in 1989. What was the percent increase? ≈ 244% 65. 3.43 billion barrels of oil were produced in the U.S. and Canada in 1989, and 3.24 billion barrels in 1990. What was the percent decrease in oil production? 66. Per capita energy consumption in the U.S. was equivalent to 10,386 kg of coal in 1980 and 9,542 kg in 1987. What was the percent decrease in energy consumption? ≈ 8.1% ≈ 5.5% 67. The average person watched television for 6 34 hours per day in 1980 and 7 hours in 1990. What percent change does that represent? ≈ 3.7% 68. World population increased from about 4.48 billion in 1980 to 5.32 billion in 1990. What percent change does that represent? ≈ 18.75% ALG catalog ver. 2.6 – page 109 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FG Topic: Explicit formulas. See also categories MK (square roots) and NH (quadratic formula). Directions: 0—(No explicit directions.) 1. Use the formula P = 2(` + w) to find the perimeter of a rectangle whose length ` = 9 14 ft and width w = 5 12 ft. 29 1 ft 2. Use the formula P = 2(` + w) to find the perimeter of a rectangle whose length ` = 20.2 mm and width w = 13.6 mm. 66.6 mm2 The perimeter of a rectangle is given by the formula P = 2` + 2w. Find the perimeter if the length ` = 32 in. and the width w = 49 in. 2 2 sq in. 4. The perimeter of a rectangle is given by the formula P = 2` + 2w. Find the perimeter if the length ` = 1.4 m and the width w = 0.35 m. 3.5 m2 The formula S = 6d 2 gives the surface area of a cube (d is the length of an edge). Find S when d = 4.5 cm. 121.5 cm2 6. The formula S = 6d 2 gives the surface area of a cube (d is the length of an edge). Find S when d = 10 12 inches. 661 1 sq in. The formula A = πr2 gives the area of a circle (r is radius and π ≈ 3.14). Find the area if r = 0.5 km. 8. 2 3. 9 5. 7. 0.785 sq km 9. The area of a triangle is given by the formula A = 21 bh. Find the area if the base b = 12.4 and the height h = 7.5. 46.5 2 The formula A = πr2 gives the area of a circle (r is 4 radius and π ≈ 22 7 ). Find the area if r = 2 5 mi. 431 15 sq mi 10. The area of a triangle is given by the formula A = 21 bh. Find the area if the base b = 5 34 and the height h = 3 32 . 7 2 3 11. The area of a trapezoid is given by the formula A = 21 (a + b)h. Find the area if the height h = 16, base a = 13.5, and base b = 22.5. 288 12. The area of a trapezoid is given by the formula A = 21 (a + b)h. Find the area if the height h = 5, base a = 6.4, and base b = 8. 36 13. The area of a pentagon can be approximated by the formula A = 1.720s2 , where s is the length of a side. Find the area of a pentagon whose side is 15 cm. 14. The area of a pentagon can be approximated by the formula A = 1.720s2 , where s is the length of a side. Find the area of a pentagon whose side is 8 inches. 387 cm2 110.08 sq in. 15. The formula A = 2.598s2 gives the approximate area of a hexagon (s is the length of a side). If s = 2 ft, what is the area? 10.392 sq ft 16. The formula A = 2.598s2 gives the approximate area of a hexagon (s is the length of a side). If s = 5 m, what is the area? 64.95 m2 17. The formula A = 4.828s2 gives the approximate area of an octagon (s is the length of a side). Find the area of an octagon whose side is 20 cm. 1931.2 cm2 18. The formula A = 4.828s2 gives the approximate area of an octagon (s is the length of a side). Find the area of an octagon whose side is 100 inches. 48280 sq in. 19. In a regular n-sided polygon, the measure of each angle (in degrees) is given by the formula: 180(n − 2) . n What is the measure of each angle in an octagon? d= 135 ◦ 20. In a regular n-sided polygon, the measure of each angle (in degrees) is given by the formula: 180(n − 2) . n What is the measure of each angle in a 12-sided polygon? 150 ◦ d= 21. The surface area of a rectangular solid is given by the formula S = 2(`w + d` + wd). Find the surface area if the length ` = 6, the width w = 2, and the depth d = 3. 72 22. The surface area of a rectangular solid is given by the formula S = 2(`w + d` + wd). Find the surface area if the length ` = 5, the width w = 10, and the depth d = 3.2. 196 23. The formula V = πr2 ` is used to find the volume of a cylinder. What is the volume, if the length ` = 1 m and the radius r = 7 cm? ≈ 15386 cm3 24. The formula V = πr2 ` is used to find the volume of a cylinder. What is the volume, if the length ` = 2 feet and the radius r = 4 inches? ≈ 1206 cu in. ALG catalog ver. 2.6 – page 110 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FG 25. The volume of a cone is given by the formula V = 13 πr2 h (r is radius and h is height). What is the volume of a cone whose radius is 15 cm and height is 18 cm? ≈ 4239 cm3 26. The volume of a cone is given by the formula V = 13 πr2 h (r is radius and h is height). What is the volume of a cone whose radius is 4 inches and height is 6 inches? ≈ 100.5 cu in. 27. Use the formula V = 34 πr3 to find the volume of sphere whose radius r = 10 inches. ≈ 4187 cu in. 28. Use the formula V = 34 πr3 to find the volume of sphere whose radius r = 2.6 m. ≈ 73.6 m3 Interest rates 29. The formula I = prt is used to calculate simple interest (p is the principal amount deposited, r is the annual rate, and t is the time in years). Find the interest on $1000 deposited for 3 years at an annual rate of 5.5%. $165 30. The formula I = prt is used to calculate simple interest (p is the principal amount deposited, r is the annual rate, and t is the time in years). Find the interest on $15,000 deposited for 1 21 years at an annual rate of 8%. $1880 31. The formula A = p (1 + rt) gives the total amount of an investment (or loan) with simple interest. Find the amount A if the principal p is $12,500, the annual rate r is 7.5%, and the time t is 4 years. 32. The formula A = p (1 + rt) gives the total amount of an investment (or loan) with simple interest. Find the amount A if the principal p is $800, the annual rate r is 4.75%, and the time t is 10 years. $1180 $16250 33. The amount of an investment or loan after one year is given by the formula: 34. The amount of an investment or loan after one year is given by the formula: A = p (1 + rt )t , A = p (1 + rt )t , where p is the original amount of money, r is the annual interest rate, and t is the number of times interest is compounded during the year. Find A if p = 2000, r = 0.055 and t = 4. $2112.29 where p is the original amount of money, r is the annual interest rate, and t is the number of times interest is compounded during the year. Find A if p = 20000, r = 0.18 and t = 12. $23912.36 35. When interest is compounded quarterly, the total amount of an investment (or loan) is given by the formula: 36. When interest is compounded weekly, the total amount of an investment (or loan) is given by the formula: A = p (1 + 4r )4t . Find the total amount A if the principal p is 1200 dollars, the annual interest rate r is 10 percent, and the time t is 3 years. $1613.87 37. Assume the interest on a certificate of deposit is compounded monthly. Use the formula A = p (1 + A = p (1 + Find the total amount A if the principal p is 500 dollars, the annual interest rate r is 12 percent, and the time t is 12 year. $530.88 38. Assume the interest on a credit card is compounded daily. Use the formula r t 12 ) to find the amount that the certificate is worth after two years, if the principal p is $10,000, the annual interest rate r is 8.5%, and the time t is 24 (the number of months the certificate is held). $11,845.95 r 52t 52 ) . A = p (1 + r t 365 ) to find the total amount owed after ten weeks, if the principal p is $2000, the annual interest rate r is 18%, and the time t is 70 (the number of days the money is owed). $2070.23 Science and engineering 39. The formula C = 95 (F − 32) is used to convert temperatures from Fahrenheit to Celsius. How many degrees Celsius is 167 ◦ F ? 75 ◦ C 40. The formula C = 95 (F − 32) is used to convert temperatures from Celsius to Fahrenheit. How many degrees Fahrenheit is −25 ◦ C ? −13 ◦ F 41. Use the formula C = 95 (F − 32) to convert −4 degrees Fahrenheit to Celsius. −20 ◦ C 42. Use the formula F = 95 C + 32 to convert 70 degrees Celsius to Fahrenheit. 158 ◦ F ALG catalog ver. 2.6 – page 111 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FG 43. Air temperature affects the speed of sound. The relationship is shown in the formula S = 331.5 + 0.61t , where t is measured in degrees Celsius, and S in meters/sec. Find the speed of sound when t = 10 ◦, then convert your answer to km/hr (1 m/s ≈ 3.6 km/hr). 337.6 m/s; ≈ 1216 km/hr 44. Air temperature affects the speed of sound. The relationship is shown in the formula S = 1053.5 + 1.14t , where t is measured in degrees Fahrenheit, and S in ft/sec. Find the speed of sound when t = 60 ◦, then convert your answer to miles per hour (1 ft/sec ≈ 0.68 mph). 1121.9 ft/sec; ≈ 763 mph 45. In an electrical circuit, the total resistance of two separate, parallel resistors can be calculated using the formula: 46. In an electrical circuit, the total resistance of two separate, parallel resistors can be calculated using the formula: RT = R1 · R2 . R1 + R2 Find RT , if R1 = 1.5 ohms and R2 = 4.5 ohms. 1.125 ohms 47. The current in an electrical circuit is given by the formula: V , R + 2r where I is current (amperes), V is potential energy (volts), R is circuit resistance (ohms), and r is cell or battery resistance. Find I if V = 22, R = 1.3 and r = 0.05. ≈ 15.7 amps I= 49. Air friction is related to an object’s speed as well as its shape. For a reasonably aerodynamic object, such as a baseball, air friction can be calculated with the formula F = 0.0064cv 2 , where F is the amount of friction in pounds, v is velocity in mph, and c is the “drag” coefficient (about 1 for a baseball). Use the formula to find the air friction on a tennis ball, if its velocity is 110 mph and its drag coefficient is 1.2. ≈ 93 lbs RT = R1 · R2 . R1 + R2 Find RT , if R1 = 11 ohms and R2 = 5.5 ohms. 3.67 ohms (rounded) 48. The current in an electrical circuit is given by the formula: V , R + 2r where I is current (amperes), V is potential energy (volts), R is circuit resistance (ohms), and r is cell or battery resistance. Find I if V = 12.6, R = 1.05 and r = 0.35. 7.2 amps I= 50. Air friction is related to an object’s speed as well as its shape. For a reasonably aerodynamic object, such as a baseball, air friction can be calculated with the formula F = 0.0064cv 2 , where F is the amount of friction in pounds, v is velocity in mph, and c is the “drag” coefficient (about 1 for a baseball). Use the formula to find the air friction on a golf ball, if its velocity is 80 mph and its drag coefficient is 1.15. ≈ 47 lbs 51. Air friction is related to an object’s speed as well as its shape. For an object whose front end is somewhat flat, air friction can be calculated with the formula F = 0.1008Av 2 , where F is the amount of friction in pounds, A is the cross-sectional area in sq ft, and v is velocity in mph. Use the formula to find the air friction on a car, if its velocity is 50 mph and its front area is 20 sq ft. 5040 lbs 52. Air friction is related to an object’s speed as well as its shape. For an object whose front end is somewhat flat, air friction can be calculated with the formula F = 0.1008Av 2 , where F is the amount of friction in pounds, A is the cross-sectional area in sq ft, and v is velocity in mph. Use the formula to find the air friction on a school bus, if its velocity is 45 mph and its front area is 40 sq ft. ≈ 8165 lbs 53. The formula h = v 2 /2g can be used to find the maximum height of an object that is shot upward (if air friction is ignored). In the formula, h is the maximum height in feet, v is the initial velocity in ft/sec, and g is the “deceleration” due to gravity (g = 32 ft/sec2 on earth). Find the maximum height of a bullet shot upward at 800 ft/sec. 10,000 ft 54. The formula h = v 2 /2g can be used to find the maximum height of an object that is shot upward (if air friction is ignored). In the formula, h is the maximum height in meters, v is the initial velocity in m/sec, and g is the “deceleration” due to gravity (g = 9.8 m/sec2 on earth). Find the maximum height of an arrow shot upward at 65 m/sec. ≈ 216 m 55. The resistance of a wire (measured in ohms) can be calculated with the formula R = ρ`/A, where ` is the length (cm), A is the cross-sectional area (cm2 ), and ρ is a constant based on the type of metal. Find the resistance of 5 m of copper wire, if A = 0.0007 sq cm and ρ = 1.7 × 10−6 . ≈ 1.2 ohms 56. The resistance of a wire (measured in ohms) can be calculated with the formula R = ρ`/A, where ` is the length (cm), A is the cross-sectional area (cm2 ), and ρ is a constant based on the type of metal. Find the resistance of 1 m of aluminum wire, if A = 0.0013 sq cm and ρ = 2.1 × 10−5 . ≈ 1.6 ohms ALG catalog ver. 2.6 – page 112 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FG 57. The horse power of an automobile can be approximated by the formula P = d 2 N/f , where N is the number of cylinders, d is the diameter of each (inches), and f is an efficiency rating, usually between 0.35 and 0.65. Find the horse power when N = 6, d = 3.5 and f = 0.505. ≈ 145 h.p. 58. The horse power of an automobile can be approximated by the formula P = d 2 N/f , where N is the number of cylinders, d is the diameter of each (inches), and f is an efficiency rating, usually between 0.35 and 0.65. Find the horse power when N = 4, d = 2.5 and f = 0.48. ≈ 52 h.p. 59. When a heavy object is suspended by a metal wire, the wire stretches a little bit. The amount of stretching can be approximated by the formula: 60. When a heavy object is suspended by a metal wire, the wire stretches a little bit. The amount of stretching can be approximated by the formula: 4w` , πd 2 E where w is the weight of the object, ` is the original length of wire, d is the diameter of the wire, and E is a coefficient which depends on the type of metal. Find out how much 10 inches of steel wire will stretch if it is holding up 75 pounds, its diameter is 0.03 in., and E = 1.5 × 107 . ≈ 0.07 in. 4w` , πd 2 E where w is the weight of the object, ` is the original length of wire, d is the diameter of the wire, and E is a coefficient which depends on the type of metal. Find out how much 60 cm. of copper wire will stretch if it is holding up 100 kg, its diameter is 0.04 cm, and E = 2.5 × 107 . ≈ 0.2 cm 61. The efficiency of an automobile drops rapidly at higher speeds. According to the formula F = N/e0.15k , an automobile with normal efficiency N at 50 mph will have efficiency F at higher speeds. In the formula, e is 2.72 and k is the number of multiples of 10 mph above 50 (for example, when a car is going 70 mph, k = 2). Find the efficiency of an automobile going 80 mph, if N = 24 miles/gal. 62. The efficiency of an automobile drops rapidly at higher speeds. According to the formula F = N/e0.094k , an automobile with normal efficiency N at 80 km/hr will have efficiency F at higher speeds. In the formula, e is 2.72 and k is the number of multiples of 10 km/hr above 80 (for example, when a car is going 90 km/hr, k = 1). Find the efficiency of an automobile going 120 km/hr, if N = 11 km/liter. ≈ 7.6 km/` s= ≈ 15.3 mpg 63. Heat transfer, which is the flow of heat from a warmer object to a cooler object, is represented by the formula: k(t2 − t1 ) . d In the formula, Q is the rate of transfer (measured in calories per second), d is the thickness of the wall or space separating the objects, t1 and t2 are the two temperatures, and k, which is called “specific heat,” depends on the materials involved. Find the heat transfer between two liquids whose temperatures are 25 ◦ and 15 ◦, if k = 0.65 and d = 0.1 cm. Q= 65 cal./sec s= 64. Heat transfer, which is the flow of heat from a warmer object to a cooler object, is represented by the formula: k(t2 − t1 ) . d In the formula, Q is the rate of transfer (measured in calories per second), d is the thickness of the wall or space separating the objects, t1 and t2 are the two temperatures, and k, which is called “specific heat,” depends on the materials involved. Find the heat transfer between two metal plates whose temperatures are 102 ◦ and 77 ◦, if k = 0.32 and d = 0.05 cm. 160 cal./sec ALG catalog ver. 2.6 – page 113 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. Q= FH Topic: Area, perimeter and volume. See also categories DN and EK (applications of monomials and polynomials), and HI (word problems for first degree equations). Directions: 0—(No explicit directions.) 1. The side of a square is 14 12 m. What is the perimeter? 58 m 2. The side of a square is 7.5 inches. What is the perimeter? 30 in. 3. What is the perimeter of a square building whose sides are 81.6 feet? 326.2 ft 4. What is the perimeter of a square table whose sides are 1 34 meters? 7 m 5. The side of a square is 1.8 inches. What is the area? 6. The side of a square is 5 12 feet. What is the area? 3.24 sq in. 30 14 sq ft 7. What is the area of a city block (assuming it is square), if one side is 210 m? 44100 m2 9. The side of a square is and area? 3 1 ft; 25 sq ft 3 5 6 foot. What is the perimeter 36 11. Mr. Ramirez is going to re-seed his lawn and put a fence around it. The lawn is square and one side is 22 feet. What is the perimeter and area of the lawn? 88 ft; 484 sq ft 8. What is the area of a square picture frame, if one side measures 7.5 cm? 56.25 cm2 10. The side of a square is 1.5 km. What is the perimeter and area? 6 km; 2.25 km2 12. A woman needs to carpet the floor and put trim around the walls of her office. The office is square and one side is 8.5 m. What is the perimeter and floor area? 34 m; 72.25 m2 13. Find the perimeter of a rectangle whose dimensions are 5.7 × 9.3 cm. 30 cm 14. Find the perimeter of a rectangle whose dimensions are 3 14 00 × 2 14 00 . 11 in. 15. A rectangular horse stable is 10 12 by 12 meters. What is the perimeter? 45 m 16. A rectangular piece of property is 108 by 128 feet. What is the perimeter? 472 ft 17. What is the area of a rectangle which is 3 13 by 2 12 inches? 8 1 sq in. 18. What is the area of a rectangle which is 7.5 by 5.4 centimeters? 40.5 cm2 19. Maureen is going to hang up a sign inside the school auditorium. The sign is rectangular and measures 4 12 × 12 ft. What is its area? 54 sq ft 20. Mrs. Flecher wants more ceiling insulation in her house. What is the area of her attic, if it is rectangular and measures 18.5 × 24.4 m? 451.4 m2 21. The length and width of a rectangle are 1.4 m and 0.8 m. What is its perimeter and area? 22. The length and width of a rectangle are 6 ft and 9 34 ft. What is its perimeter and area? 3 4.4 m; 1.12 m2 31 12 ft; 58 21 sq ft 23. The health club is getting a new swimming pool, with colored tiles along the edges. The pool is rectangular and measures 35 0 × 75 0 . What is the area of the pool, and what is the distance around the edges? 2625 sq ft; 220 ft 24. Katie’s grandmother is going to make a quilt bedspread with lace trim around the edges. The quilt will be rectangular and measure 255 cm by 300 cm. What is the area of the quilt, and how much trim is required? 1110 cm; 67500 cm2 25. The perimeter of a rectangle is 22 m and the width is 3.5 m. What is the length? 7.5 m 26. The perimeter of a rectangle is 155 inches and the length is 50 inches. What is the width? 27.5 in. 27. The perimeter of a rectangle is 0.72 cm. Find the width if the length is 0.3 cm. 0.06 cm 28. The perimeter of a rectangle is 32 ft. Find the length if the width is 7.9 ft. 8.1 ft 29. The area of a rectangle is 4.2 cm2 . Find the length if the width is 1.5 cm. 2.8 cm 30. The area of a rectangle is 97.5 sq. inches. Find the width if the length is 15 inches. 6.5 in. 31. What is the length of a rectangle, if the area is 306 sq. feet and the width is 15 feet? 20.4 ft 32. What is the width of a rectangle, if the area is 0.4 m2 and the length is 0.8 m? 0.5 m ALG catalog ver. 2.6 – page 114 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FH 33. Ms. Giraudo wants to plant new grass in the front and back of her house. The grassy areas are rectangular, and measure 14 × 12 m and 8 × 8 m. The grass sod is $2.35/sq. m. What is the total cost of the sod? $545.20 34. Two walls in a building need to be re-plastered and painted. The walls are 130 × 95 ft and 75 × 95 ft (there are no doors or windows). The materials cost $0.40/sq. ft. What is the total cost of the materials? 35. Robert is going to put new carpet in two rooms of his house. The dimensions of the rooms are 12 0 × 18 0 and 21 0 × 15 0 , and the carpet costs $6.70 per square yard. What is Robert going to have to spend on the carpet? $395.30 36. Mr. and Mrs. Boyd have decided to make new curtains for their living room. They need two pieces of fabric, 260 × 180 cm and 220 × 160 cm. The fabric costs $3.95 per square meter. What will the Boyds spend on fabric? $32.39 37. Find the volume of a sugar cube whose edge is 1 2 inch. 1 cu in. 38. Find the volume of a milk crate whose edge is 0.3 m (assume it is a cube). 0.027 m3 or 27000 cm3 39. Find the surface area of a cube whose edge is 1 13 ft. 40. Find the surface area of a cube whose edge is 0.5 m. 8 $7790 1.5 m2 32 sq ft 41. The edge of a cube is 0.6 m. What is the volume and surface area? 0.216 m3 ; 2.16 m2 42. The edge of a cube is 41 ft. What is the volume and surface area? 1 cu ft or 27 cu in.; 3 sq ft 43. The edge of a block of ice is 10 cm (assume it is a cube). What is the surface area and volume of ice? 44. The edge of an ice cube is 1 41 inches. What is the surface area and volume of ice? 9 3 sq in.; 1 61 cu in. 64 8 8 600 cm2 ; 1000 cm3 64 45. The base of a triangle is 220 mm and the height is 180 mm. Find the area. 19800 mm2 46. The base of a triangle is 75 inches and the height is 162 inches. Find the area. 6075 sq in. 47. What is the area of a triangle whose base is 6.8 cm and height is 10.5 cm? 35.7 cm2 48. What is the area of a triangle whose base is 10 12 inches and height is 6 32 inches? 35 sq in. 49. Find the circumference of a bicycle wheel whose diameter is 700 mm. ≈ 2198 mm 50. Find the circumference of a circle whose diameter is 3 12 inches. ≈ 11 in. 51. The diameter of a large truck wheel is 1.2 m. What is the circumference? ≈ 3.768 m 52. The diameter of a circle is 35 ft. What is the circumference? ≈ 110 ft 53. What is the circumference of a circle whose radius is 2 13 ft? ≈ 14 2 ft 54. What is the circumference of a “hula-hoop” whose radius is 0.5 m? ≈ 1.57 m 55. Find the circumference of a circle whose radius is 210 inches. ≈ 1320 in. 56. Find the circumference of a “frisbee” whose radius is 20 cm. ≈ 62.8 cm 57. Find the area of a circle whose radius is 0.1 km. 58. Find the area of a circle whose radius is 1.4 ft. 3 ≈ 0.0314 km2 ≈ 616 sq ft 59. The radius of a paper plate is 12 cm (assume it is flat). What is the area? ≈ 452.16 cm2 60. The radius of a small speaker is 2 45 inches (assume it is flat). What is the area? ≈ 24 16 sq in. 61. The diameter of a circle is 14 inches. What is the area? ≈ 154 sq in. 62. The diameter of a circle is 400 cm. What is the area? 63. Find the area of a circle whose diameter is 1 ft. 64. Find the area of a circle whose diameter is 0.14 m. ≈ 11 14 sq ft 65. The circumference of a circle is 96π. What is its radius? 48 25 ≈ 125600 cm2 ≈ 0.061544 m2 66. The circumference of a circle is 50π. What is its radius? 25 ALG catalog ver. 2.6 – page 115 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FH 67. Find the radius of a circle whose circumference is 12 5 π. 6 68. Find the radius of a circle whose circumference is 69. Find the volume of a rectangular solid whose dimensions are 2.5 × 4 × 6.5 cm. 65 cm3 70. Find the volume of a rectangular solid whose dimensions are 3 × 4 12 × 8 ft. 108 cu ft 5 71. The dimensions of a rectangular solid are 1 × What is the surface area? 16 sq in. 1 2 × 5 in. 73. The dimensions of a rectangular solid are 4 × 5 × 6 in. What is the volume and surface area? 120 cu in.; 148 sq in. 2 3 π. 1 3 72. The dimensions of a rectangular solid are 1.5 × 3 × 0.4 m. What is the surface area? 12.6 m2 74. The dimensions of a rectangular solid are 5 × 10 × 8 mm. What is the volume and surface area? 400 mm3 ; 340 mm2 75. A rectangular solid is 1 × 3 × 12 cm. What is the volume and surface area? 36 cm3 ; 102 cm2 76. A rectangular solid is 2 × 2 × 1 21 ft. What is the volume and surface area? 6 cu ft; 20 sq ft 77. The dimensions of a milk carton are 4 × 4 × 8 in. What is its volume (ignore the triangular part at the top)? 128 cu in. 78. The dimensions of a shoe box are 14 × 28 × 9.5 cm. What is the volume of the shoe box? 3724 cm3 79. A rectangular swimming pool is 8 × 12 × 3 m. What is its volume (assume its depth is the same everywhere)? 288 m3 80. A rectangular closet is 1.5 × 2 × 2.5 m. What is the volume of the closet? 7.5 m3 81. A can of orange juice concentrate is 12 cm in length and 4.8 cm in diameter. What is the volume of juice concentrate? ≈ 217 cm3 82. A can of soup can is 4 inches tall and 3 inches in diameter. What is the volume of soup in the can? 83. The length of a drinking straw is 20 cm and the diameter is 4 mm. How much liquid can the entire straw hold? ≈ 2.512 cm3 84. The inner diameter of a lead pipe is 1 inch. How much water could you hold in 2 feet of the pipe? ≈ 28.26 cu in. ≈ 18.84 cu in. ALG catalog ver. 2.6 – page 116 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FI Topic: Time, distance, rate. See also category HE (word problems for first degree equations). Directions: 0—(No explicit directions.) 1. If Melissa walks at a rate of 5 12 km/hr, how far will she walk in 4 hours? 22 km 2. An airplane flies for 2 13 hours at an average speed of 348 mph. How far does it go? 812 mi 3. If a woman walks at a rate of 3 12 mph, how far will she go in 1 21 hours? 5 1 mi 4. Gerard runs at a rate of 10.8 km/hr. How far can he run in three-quarters of an hour? 8.1 km 5. A boat travels at an average speed of 40 km/hr. How far will it go in 5 hours and 24 minutes? 216 km 6. If a race car travels at a speed of 150 mph, how far will it go in 1 hour and 18 minutes? 195 mi 7. A bicyclist rides for 40 minutes at 22 12 mph. How far does she ride? 15 mi 8. Mr. Sornees runs for 36 minutes at 13.75 km/hr. How far does he run? 8.25 km 9. One day Morris went on a hike 7:00 am to 4:30 pm. His average speed during the hike was 3.2 km/hr. What was his total distance? 30.4 km 10. Jean left on a bicycle trip at 1:00 pm and returned at 3:45 pm. Her average speed on the trip was 16 mph. What was her total distance? 44 mi 4 11. An airplane flies non-stop from San Francisco to Montreal at a rate of 765 km/hr. If the airplane leaves at 3:25 pm and arrives at 8: 45 pm, what is the distance between the cities? 4080 km 12. A freight train left the station at 8:30 am and arrived at its destination at 2:00 pm on the same day. If the train’s average speed was 120 km/hr, how far did it go? 660 km 13. An airplane travels 4110 km in 5 hours. What is the airplane’s speed? 822 km/hr 14. What is the average speed of a bicyclist who goes 54 miles in 3 hours? 18 mph 15. In 10 21 hours of hiking, Mrs. Sornees covered a distance of 28 km. How fast did she walk? 2 2 km/hr 16. In a half-hour workout, Michael swam three-quarters of a mile. What was his speed in the water? 1.5 mph 17. Find the speed of a truck (in mph) that goes 28 miles in 35 minutes. 48 mph 18. Find the speed of a jogger (in km/hr) who goes 8 km in 36 minutes. 13 1 km/hr 19. What is the speed of a race horse (in mph) that goes around a 1 12 mile track in 2 12 minutes? 36 mph 20. A satellite orbits the earth every 112 minutes, and follows a path of 84,000 km. How fast is it moving (in km/hr)? 45000 km/hr 21. A race car went 328 miles in 2 hours and 8 minutes. What was the car’s average speed? 153.75 mph 22. A fishing boat travels 144 km in 6 hours and 45 minutes. What is the boat’s average speed? 3 3 21 13 km/hr 23. An airplane left Chicago at 10:30 am and arrived in Cleveland at 11:20 am. If the cities are 340 miles apart, what was the average speed of the plane? 24. A train left Calgary at 9:45 am and arrived in Regina at 5:45 pm on the same day. If the cities are 760 km apart, what was the train’s average speed? 95 km/hr 408 mph 25. What is a bullet’s speed in miles per hour, if it travels 1760 feet in 1.5 seconds? 800 mph 26. What is a rocket’s speed in km/hr, if it goes 9500 meters in 10 seconds? 3420 km/hr 27. In the 1988 Olympics, Florence Griffith-Joyner won the 200 meter dash in 21.34 seconds. What was her speed in km/hr? ≈ 33.7 km/hr 28. In the 1980 Winter Olympics, Eric Heiden won the 1000 meter speed skating event in 75.18 seconds. What was his speed in km/hr? ≈ 47.9 km/hr 29. A man drove his car 180 km at an average speed of 75 km/hr. How much time did he spend driving? 30. A woman ran a marathon at an average speed of 8.8 mph. The marathon course is 26.4 miles. How long did it take her to finish? 3 hr 2.4 hr 31. How long (in minutes) does it take someone to run a 7.5 mile race whose average speed is 9 mph? 50 min 32. How long (in minutes) does it take someone to run a 10 km race whose average speed is 15 km/hr? 40 min ALG catalog ver. 2.6 – page 117 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FI 33. In 1990, the Lockheed SR-71 set a new record for transcontinental flight. It went 2404 miles at an average speed of 2124 mph. How long did the flight last? (Round your answer to the nearest minute.) 34. At the Kentucky Derby, a horse ran the 1 41 mile race at an average speed of 36 mph. How long did it take the horse to finish? (Round your answer to the nearest second.) 2 min 5 sec 1 hr 8 min 35. The planet Mars is approximately 78.3 million miles from Earth. If you could fly straight to Mars at a speed of 10,000 mph, how long would it take to get there? (Express your answer in days and hours.) 326 days, 6 hours 37. How long (in seconds) does it take a bullet traveling at 600 mph to reach a target that is 220 feet away? 0.25 sec 36. In 1986, the Voyager aircraft circled the Earth without stopping or refueling. It went about 24,940 mi at an average speed of 116 mph. How long did the flight last? (Express your answer in days and hours.) 8 days, 23 hours 38. How long (in seconds) does it take a baseball pitched at 90 mph to reach home plate (a distance of 60 feet)? 2 sec 3 39. A truck needs to go back and forth between Chicago and Peoria. The distance between the cities is 168 miles, and the truck can go no faster than 48 mph. What is the least amount of time required for the round-trip? 7 hr 40. A sailboat can travel at a maximum rate of 18 km/hr. It is entering a race from the harbor to a lighthouse 31.5 km away, and then back again. What is the least amount of time required for the round-trip? 41. In the first 2 hours of a trip, a backpacker walked 4 12 miles uphill, and in the last 3 hours, he walked 8 miles downhill. What was his average speed for the trip? 2.5 mph 42. A truck went 55 km in the first 30 minutes of a trip, and 62 km in the last 1 hour and 45 minutes. What was the truck’s average speed for the trip? 52 km/hr 43. Two cars, going in opposite directions, pass each other at 2:30 pm. Their speeds are 65 and 80 km/hr. How far apart are they at 5:15 that same afternoon? 44. Two trains, going in opposite directions, pass each other at 11:15 am. Their speeds are 45 and 33 mph. How far apart are they at 2:45 in the afternoon? 385 km 3.5 hr 273 mi 45. An automobile, traveling at 55 mph, passes a truck going in the same direction at 40 mph. How far ahead will the car be 40 minutes later? 10 mi 46. A motorcycle, traveling at 90 km/hr, passes a tractor-trailer going in the same direction at 48 km/hr. How far ahead will the motorcyle be 50 minutes later? 35 km 47. It takes a boat 1 21 hours to go 7.5 miles up river. If the boat’s stillwater speed is 9 mph, what must be the speed of the river current? 4 mph 48. It takes an airplane 2 14 hours to go 414 km against the wind. What is the wind’s speed, if the airplane’s speed in still air is 200 km/hr? 16 km/hr ALG catalog ver. 2.6 – page 118 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FJ Topic: Interest and investment. See also category HG (word problems for first degree equations). Directions: 0—(No explicit directions.) 1. Suppose a savings account pays 5 12 % annual interest. How much would you earn in interest if you put $650 into the account for one year? $35.75 2. Suppose the annual interest on savings bonds is 8%. If you bought $1500 worth of bonds, how much interest would you get the first year? $120 3. Maurice took out an auto loan of $3200 for 3 years. The simple annual rate was 18%. How much interest did he pay on his loan? $1728 4. Maria got a home improvement loan of $10,000 for 4 years. The simple annual rate was 14%. How much interest did she pay on her loan? $5600 5. Find the simple interest on a business loan of $26,000, if the annual rate is 12% and the money is borrowed for 3 21 years. $10,920 6. Find the simple interest on a home equity loan of $1500, if the annual rate is 17% and the money is borrowed for 2 12 years. $637.50 7. Rex borrowed $4200 at an annual rate of 13.8%. If he repaid the money after 3 months, how much interest did he owe? $144.90 8. Mr. Ellis repaid a loan of $2800 after 6 months. How much interest did he owe if the annual rate was 12.75%? $178.50 9. Mrs. Sinclair invested $5000 at a simple annual rate of 7%. How much was her investment worth after 10 years? $8500 10. Mr. Guerrero invested $800 at a simple annual rate of 6 12 %. How much was his investment worth after 8 years? $1216 11. Sandy receives a $3000 student loan for five years. He is charged 6% simple annual interest on the entire loan, and he has to repay it in equal monthly installments. What will be the amount of each installment? $65 12. To buy a sailboard, Nina borrowed $1200 for two years. She was charged 11% simple annual interest on the entire loan, and had to repay it in equal monthly installments. What was the amount of each installment? $61 13. Ms. De’angelo bought a new truck for $7800. The dealer gave her $2000 on a trade-in, and she financed the rest over a four year period at a simple annual rate of 11%. What were her monthly payments, if the total amount she owed was divided up equally? 14. Manfred bought a synthesizer for $1300. He paid $550 in cash and financed the rest over a two year period at a simple annual rate of 14%. What did he have to repay each month, if the total amount he owed was divided up equally? $40 $174 15. A municipal bond pays 8.5% annual interest. Find the amount invested if the interest after one year is $74.80. $880 16. A saving bond pays 7.2% annual interest. Find the amount invested if the interest after one year is $91.80. $1275 17. Richard’s savings certificate was worth $1602 after one year. If the interest rate was 6.8% per year, how much did he originally invest? $1500 18. Jennifer’s certificate of deposit was worth $3723 after one year. If the interest rate was 9.5% per year, how much did she originally invest? $3400 19. After 6 years, the total amount to be paid back on a loan is $13,125. The simple annual rate was 12 12 %. How much was originally borrowed? $7500 20. After 8 years, the total amount to be paid back on a loan is $10,800. The simple annual rate was 14 21 %. How much was originally borrowed? $5000 21. Alfred bought some silver coins as an investment. He kept them for one year and then sold them for $1239. His profit on the original investment was 18%. What was the original investment? $1050 22. Mr. Phelan bought a painting as an investment. He kept it for one year and then sold it for $6270. His profit on the original investment was 4.5%. What was the original investment? $6000 23. Roberto put $2500 into a savings account for one year. He earned $220 in interest. What was the rate of return? 8.8% 24. Ms. Garin invested $2000 in savings bonds for one year. She earned $140 in interest. What was the rate of return? 7% 25. The interest charged on a 5-year, $3600 loan is $2475. What is the simple annual rate for the loan? 26. The interest charged on 6-year, $12,000 loan is $10,512. What is the simple annual rate for the loan? 14.6% 13.75% ALG catalog ver. 2.6 – page 119 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. FJ 27. At what simple annual rate can you earn $900 on a 2-year, $6000 investment? 7.5% 28. At what simple annual rate can you earn $396 on a 4-year, $1200 investment? 8.25% 29. Find the simple annual rate on a loan of $16,000, if the total amount paid back after 3 years is $24,160. 30. Find the simple annual rate on a loan of $1400, if the total amount paid back after 4 years is $2324. 17% 16.5% 31. Mr. Barnes got a loan of $2800, and repaid it after 6 months. If he was charged $220.50 in interest, what was the annual rate? 15.75% 32. Claire invested $5000 in a 6 month certificate of deposit. If she earned $255 in interest, what was the annual rate? 10.2% 33. A credit union will lend you $2000 for 3 months, but charge you $65 in interest. What is the annual rate for the loan? 13% 34. If you owe your credit card company $600 for one month, you will be charged $8.75 in interest. What is the annual interest rate? 17.5% 35. Find the value of an investment of $8500 after 5 years, if the interest rate is 8% per year. Assume the interest is compounded annually. $12,489.29 36. Find the value of an investment of $1200 after 5 years, if the interest rate is 9% per year. Assume the interest is compounded annually. $1846.35 37. Find the value of an investment of $2000 after one year, if the annual rate is 12% and the interest is compounded quarterly. $2251.02 38. Find the value of an investment of $2000 after one year, if the annual rate is 12% and the interest is compounded monthly. $2253.65 39. $1000 is invested for 4 years at an annual rate of 8%. What is the total interest if it is compounded (a) yearly, (b) quarterly, and (c) monthly? 40. $10,000 is invested for 5 years at an annual rate of 9%. What is the total interest if it is compounded (a) yearly, (b) quarterly, and (c) monthly? $360.49; 372.79; 375.67 $5386.24; 5605.09; 5656.81 41. Suppose you invest $5000 for one year at an annual rate of 10%. How much more would you earn if interest were compounded quarterly instead of yearly? $19.06 42. Suppose you invest $5000 for one year at an annual rate of 10%. How much more would you earn if interest were compounded monthly instead of yearly? 43. At the beginning of the month, Silvia receives a bill from her credit card company for $800. The interest rate is 1.5% per month on the balance due. If she pays $150 each month for three months, how much will she owe on the next bill? $372.91 44. At the beginning of the month, Jon receives a bill from a department store for $1150. The interest rate is 1.5% per month on the balance due. If he pays $250 each month for three months, what will be the amount of the next bill? $428.80 45. How long will it take an investment of $650 to increase to $1000 at a simple annual rate of 6.25%? (Round answer to nearest 0.1 year). 8.6 years 46. How long will it take an investment of $7000 to increase to $11,000 at a simple annual rate of 8.5%? (Round answer to nearest 0.1 year). 6.7 years 47. At a simple annual rate of 10 12 %, how long will it take any investment to triple in value? (Round answer to the nearest 0.1 year.) 19 years 48. At a simple annual rate of 7 12 %, how long will it take any investment to double in value? (Round answer to the nearest 0.1 year.) 13.3 years $23.57 ALG catalog ver. 2.6 – page 120 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. GA Topic: Equations involving addition and subtraction. Directions: 15—Solve. 1. 9 − 17 = r 5. d = −11 − (−20) 9. y+5=9 16—Solve and check. −8 9 2. c = −12 + (−18) 6. −14 + 7 = k 13. 22 = k + 14 8 14. 18 = x + 2 17. 28 + r = 39 11 18. n + 51 = 74 21. 150 = 85 + a 25. p + 17 = 9 −8 −45 33. c + 16 = −14 44 41. −250 + k = 53 45. x + 13 = 0 303 3 w = −5 + 23 7. 34 − (−6) = a 23 100 18 40 4. −26 − (−14) = p 8. r = −30 − 46 12. 5 + m = 11 3 15. 27 = 13 + d 14 16. 10 = 8 + z 19. 35 = 25 + w 10 20. 79 = f + 44 6 2 35 23. h + 45 = 178 133 24. 238 + x = 296 27. 21 + m = 16 −5 28. 11 = 15 + k −4 30. 45 + m = 6 −39 31. 25 = 40 + s −15 32. a + 59 = 27 −32 −44 35. z + 57 = −7 −64 36. −20 = p + 25 38. −56 + r = 55 101 39. 9 = −49 + n 58 40. k − 97 = 23 42. 166 = w − 25 191 43. u − 184 = 39 223 44. 157 = −192 + h 47. y − 25 = 0 25 8 50. −11 = n − 12 1 51. −1 = k − 9 48. w − 17 = 0 52. m − 15 = −4 11 −15 54. k − 26 = −37 −11 55. −35 = b − 34 −1 56. −23 = y − 8 57. −18 = a − 32 14 58. −16 = x − 25 9 59. y − 45 = −23 22 60. r − 15 = −12 61. r − 24 = −24 0 62. c − 18 = −18 0 63. 17 + w = 17 8 20 67. −68 = −81 + m 69. −58 = y − 16 −42 70. −126 = b − 118 −8 71. x − 21 = −56 73. n − (−12) = 8 −4 74. 16 = w − (−22) −6 75. b − (−11) = 10 77. 32 = x − (−45) 81. b + (−24) = 1 −13 25 85. 105 = x + (−105) 89. x − (−5) = 12 210 7 93. 50 = −(−35) + a 97. y + (−6) = −12 15 −6 101. −200 = k + (−99) 78. −(−48) + y = 21 −27 37 83. 10 = m + (−6) 86. 72 = y + (−48) 120 87. m + (−93) = 57 90. 17 = −(−8) + n 9 91. 14 = k − (−12) 94. x − (−10) = 15 98. m + (−9) = −10 −1 5 106. −14 = k + (−21) 109. −24 = x + (−58) 34 110. n + (−105) = −33 −12 117. −34 = m − (−16) 114. −13 = n − (−6) 118. k − (−28) = −28 7 72 −19 −56 −13 −8 80. m − (−79) = 78 −1 84. 12 = n + (−10) 16 150 2 25 99. −22 = a + (−15) −7 22 88. b + (−61) = 129 190 92. −(−14) + y = 20 6 96. 90 = b − (−45) 45 100. −17 = x + (−12) −5 104. w + (−210) = −550 −125 105. w + (−17) = −12 113. x − (−5) = −7 −32 103. m + (−20) = −145 −225 56 76. 8 = w − (−16) 95. −(−40) + m = 65 5 0 72. k − 49 = −62 −1 79. 52 = −(−84) + c 3 68. −22 = −78 + n 13 −35 82. x + (−16) = 21 102. −400 = h + (−175) −101 64. 31 = b + 31 66. −65 + y = −45 349 17 −6 0 −45 120 53. w − 14 = −20 65. −107 + k = −99 58 −7 −37 −12 −76 26. 13 = y + 20 46. h + 37 = 0 −13 49. b − 10 = −7 16 34. −36 = u + 8 −30 3. 11. 4 + x = 7 3 22. 412 = p + 312 65 29. 21 = 66 + x 37. 36 = w − 8 −7 10. a + 12 = 15 4 −30 −340 107. −11 = r + (−19) 8 108. h + (−26) = −22 4 111. c + (−76) = −47 29 112. −36 = z + (−99) 63 115. m − (−8) = −12 −20 116. −1 = k − (−14) 119. −49 = w − (−32) −50 ALG catalog ver. 2.6 – page 121 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −81 120. n − (−19) = −27 −15 −46 GA 2 121. m = − 1 3 7 122. − + 2 = x 6 − 13 4 6 =s 125. − + − 5 5 1 1 129. y = 3 − 2 2 4 133. n + 137. − 141. 3 1 5 = 2 2 153. 11 7 =− 9 9 161. −5 169. 7 2 +f = 6 3 173. − 5 2 −4 155. t + 2 − 12 170. − 178. − 4 2 181. r + − = 3 3 171. a + 4 3 175. − 7 7 =h− 8 12 7 − 24 179. x + 5 1 182. y − − = 6 6 2 5 1 +d =− − 4 4 − 20 7 −1 2 1 189. w − − =− 5 10 186. −4 1 1 =k+ − 3 3 −4 11 5 156. − 94 − 14 4 3 =− +y 5 10 5 3 =− 4 18 2 2 = −3 + a 5 5 3 1 7 =x+ 6 6 −1 − 35 5 164. − + w = −6 2 − 72 7 4 =v− 4 7 65 28 9 8 =− 15 5 − 73 1 5 176. − + r = − 6 3 − 12 180. − − 37 36 7 11 =n− 6 8 − 32 5 24 3 7 184. = z + − 8 8 0 7 5 =t+ − 6 12 − 12 − 23 172. x + 3 4 1 3 3 9 =− 10 10 168. 17 6 3 2 7 1 =− 12 12 160. y − −6 1 1 187. h + −5 =1 2 2 191. − 152. − 5 1 1 183. = c − − 4 4 − 23 3 7 = 190. r + − 2 10 1 11 = 6 12 −5 1 1 7 = 4 12 5 =3+d 2 148. k + − 34 5 1 167. − + k = 2 3 11 1 =− 6 2 144. 1 13 =− 2 2 3 4 2 3 =r− 5 5 140. c + − 56 7 5 = 8 8 163. −1 = z − − 75 23 15 5 5 =w+ 14 2 − 17 10 159. x − − 13 136. 1 1 =w−7 2 2 − 12 1 2 132. −1 + 2 = r 6 3 − 43 3 2 1 6 9 124. h = − −(−4) 2 3 1 128. − − 4 = a 4 4 3 1 5 +a=− 8 8 151. −2 2 11 = 3 5 5 13 =− 15 6 2 5 = 3 6 1 2 166. d + 174. x − 147. −5 7 5 =− +a 6 6 2 3 1 10 =b+ 3 3 143. h + 1 = − 34 19 20 185. 1 4 7 1 = −2 10 10 − 11 4 135. 2 3 −3 7 5 131. x = + − 6 2 139. y − 162. n − 1 5 =c− 21 7 177. y + 158. − −2 − 38 1 8 11 3 = 2 2 154. u + − 32 1 3 = 5 4 1 2 127. k = −2 − 3 3 1 4 10 5 =y+ 3 3 150. z − 3 = − 4 7 1 3 =c−2 8 8 165. x − 146. − −2 4 10 =− 3 3 1 3 =x+ 2 8 142. w + 3 = 2 3 7 3 1 =p+2 4 4 157. z − 138. 7 10 − 13 149. −1 + m = − 5 3 + − 2 2 126. p = 7 9 134. − + p = 4 4 2 2 =z+4 3 11 123. −3 − − =y 3 3 3 130. − − − =d 4 8 5 4 3 2 +a= 10 5 145. x + −2 5 6 6 − 34 5 4 7 5 =− 188. t − − 6 6 −2 1 11 192. p − − = 2 14 2 7 7 5 = 196. u + − 20 8 39 40 − 12 193. 3 3 =k+ − 14 4 27 28 194. 2 1 +a =− − 9 6 1 18 7 2 195. m − − = 10 15 − 17 30 ALG catalog ver. 2.6 – page 122 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. GA 197. g + 5 = 3.75 198. 2.6 + w = 7 −1.25 201. −6 = y − 12.3 6.3 202. −0.99 + c = −1 205. m + 3.7 = 5.2 1.5 206. 0.5 = r − 10.5 210. v + 4.6 = 1.44 209. −0.61 = 0.05 + x 199. 9.2 = b + 12 4.4 16.4 204. −7.7 + a = −9 −1.3 11 207. t + 0.08 = 0.42 0.34 208. 0.16 = k − 2.04 2.2 −3.16 211. −18.4 + y = −22.3 212. d + 7.28 = 0.28 −7 −3.9 213. −5.8 = 14.6 + w 214. k − 0.027 = −0.003 −20.4 215. −3.05 = f + 1.25 −4.3 218. 18.03 + y = 16.5 0.64 221. n − 0.45 = −0.19 0.26 222. −3.06 = −5.21 + h 219. m + 0.001 = 0.0009 23.4 0.01 226. −1 = p + (−0.86) −0.14 229. −16.05 = y + (−8.75) −7.3 233. t + (−0.027) = 0.008 0.035 237. −28.23 = −(−30.6) + r 230. x − (−3.04) = 4.47 1.43 234. −10.15 = w − (−12.55) −22.7 238. 0.0078 = n + (−0.003) 0.0108 220. 10.4 + h = 6.07 −4.33 −0.0001 223. k − 11.1 = 10.07 21.17 224. −0.104 + d = −0.99 −0.886 2.15 −58.83 216. n − 50.3 = −26.9 0.024 −1.53 225. f − (−1.99) = 2 0.06 203. z − 30.4 = −14 −0.01 −0.66 217. 2.3 = 1.66 + p 200. 4 = 3.94 + x −2.8 227. −(−4.25) + z = 3 −1.25 231. 0.032 = g + (−0.068) 0.1 235. r + (−1.772) = −0.44 1.332 239. a + (−15.86) = 15.24 31.1 ALG catalog ver. 2.6 – page 123 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 228. w + (−8.13) = −5 3.13 232. −8.09 = −(−2.91) + u −11 236. c − (−20.01) = 24.91 4.9 240. −3.88 = f − (−6.02) −9.9 GB Topic: Equations involving multiplication and division. Directions: 15—Solve. 45 5 1. x= 5. (−6)(−17) = a 9. 5 u = 18 − 2 9 −45 13. −6 ÷ 24 = h 17. −k = 30 21. 39 = 3d 102 − 14 −30 13 25. −14m = 28 −2 29. −8f = −184 33. −12 = 12y 23 15 41. −14y = −126 45. 448 = −32c 49. 18n = 0 9 −14 53. −5 = 30x 69. x −7 14. p = −15 −35 −38 22 22. 2k = −22 −11 26. −45 = −15y 30. 210 = −6x 1 x=0 14 −35 1 −8 46. −25h = −600 10y = −15 −3 9 2 −168 4 11. k = − (−60) 5 48 10 13 4.5 24 0 2 3 16 4. b = −42 ÷ (−7) 8. (−12)(7) = w 12. 32 · 9 =n 8 16. z = 27 −18 20. −a = −(−7) 24. −5x = 75 −7 −29 32. 7t = 224 35. −19x = 19 −1 36. −15 = −15b 43. 26u = 182 25 51. −23a = 0 32 40. −9y = 117 1 −13 44. −135 = 15f 7 47. −735 = 21k −7 −15 31. −145 = 5p 39. −200 = −8h −35 0 55. −70b = −7 1 10 −9 48. 18p = 324 18 52. 0 = −12w 0 56. −24j = 32 − 43 − 14 59. 24 = −54y − 49 60. 12 = 96p 62. 24 = −108n − 29 63. 85k = −50 − 10 17 64. −105x = −30 66 68. −k = −3 8 78. r −11 z = 12 5 1 8 24 67. −6 = x −10 −100 71. 1 k 13 −65 1 75. −25 = − n 4 100 76. 79. 15 w = −30 8 −16 2 80. − u = 22 3 83. 3z = 24 −8 9 a = 27 2 6 −6w 11 3n 7 6 90. − x = 8 5 −110 t =7 7 87. − 0 − 20 3 9 z=0 20 91. 10 = ALG catalog ver. 2.6 – page 124 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 72. −9 = 49 4n 7 −64 0 35 2 84. 92. −n 9 81 120 −33 −10x = −90 3 d 8 2 7 60 1 c=8 15 88. 0 = −84 − 32 28. −70 = 10a 5 6 36 58. 56m = −14 86. 0 = 0 y = 8(−21) 27. 9b = 45 3 42. 176 = −22j 82. 60 = 49 7. −3 23. −64 = −4m −16 74. −5 = 12y = 84 7 −36 =m 12 19. −4.5 = −r 38. −144 = 9u 70. 10 = 30 3. 15. 40 ÷ 52 = x 3 7 18. −22 = −x 144 −54 −4 80 2 10. − · 57 = r 3 66. 3 77. −18 = − p 5 89. c = 16(5) −35 a = 12 12 85. − 9 5 23 12 1 73. − d = 6 9 81. 6. 54. 10 = 15u − 16 57. −25m = −45 65. 5 = 2 ÷ (−8) = y 50. 0 = −(−9y) 0 61. 48r = 92 2. 34. 27f = 27 −1 37. 7w = 105 16—Solve and check. 0 9 p = −6 2 − 43 27 GB 93. 3 3 k=− 2 2 −1 94. 4 4 = t 11 11 97. 10 5n = 3 7 14 3 98. 8y −4 = −9 15 3 10 49 4 102. 3 −5k = 5 3 9 − 25 −24 106. 10 2 m=− 33 15 110. 1 2 z=3 9 3 2 7 101. − c = − 7 2 105. − r 8 = 15 5 109. −2 1 1 = a 6 2 − 13 3 −0.03 114. −3.5 = −10d 117. −16 = 0.1z −160 118. 0.04f = 1 125. −0.054 = −2.7y 129. 1 d = 0.7 6 133. −0.02 = 137. −3 = − 141. − 4.2 x 15 r 2.4 x = 1.1 0.4 0.02 − 11 25 0.35 126. 0.004x = 0.4 100 1 130. − p = 0.06 5 −0.3 −0.3 134. −0.19 = − 7.2 138. −0.44 142. 0.08 = n 10 x = −5 1.6 y 0.05 1 − 21 1.9 0.004 100. 3 3 x= 10 5 −1 2 100 49 104. 4y 9 =− 9 4 107. −5x 5 = 12 −2 6 108. 7 21 p = 16 8 3 2 = t 5 3 115. 2y = 1.4 135. − 143. 0.7 116. −2.04 = 6m 1 f 2 y = 2.5 20 17 2 −0.34 120. −4.5x = −27 −10 0.05 −6 124. 0.01t = 0.8 −50 0.42 −0.073 6 80 128. 0.006 = −0.03k 132. −0.33 = 0.01 a 0.042 c = −0.73 0.1 ALG catalog ver. 2.6 – page 125 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 6 1 1 112. − k = −2 4 8 127. 0.25w = −1.5 131. 0.005 = − 81 16 12 5 123. −0.11 = −2.2n 139. −10 = − −8 7a 7 = 4 4 10 7 = w 7 10 119. 12 = −1.2r −0.04 96. − 1 103. 111. 1 25 122. −0.02 = 0.5a 18 −2r −2 = 5 5 7 1 99. − c = 2 6 33 113. −8x = 0.24 121. 0.35w = 6.3 95. 1 136. z = 0.3 12 140. n =6 2.5 144. − 1 c 3 −0.2 −0.99 3.6 15 e = −0.003 0.3 0.0009 GC Topic: Equations of the form: ax + b = c. Directions: 15—Solve. 1. −a = 24 − 17 16—Solve and check. 2. −7 −21 + 13 = −m 3. 8 −p = −14 − 16 4. 30 −8 − (−20) = −h −12 5. −y + 14 = 9 9. −6 = −20 − k 13. 5k − 35 = 0 6. 5 4 − x = 17 7. −13 10. −r − (−8) = −12 −14 14. 0 = −9m − 18 7 6 18. 8 + 6x = 50 21. −2x + 51 = −3 27 22. −25 = 4w − (−7) 29. −3a − (−12) = 19 33. −8z − 43 = −11 − 73 −4 37. −39 = −18w − 21 41. −8c − 56 = 0 1 45. −14t + 7 = 49 49. 28 = −14u + 16 53. −95 − 6s = 25 − 67 −20 57. 4f − (−56) = 56 0 16 23. 14 = −2p − 4 15 = −w − 6 −21 12. −28 − z = −32 4 16. 7b − (−70) = 0 −10 20. 23 = 9h + 50 −2 −9 0 −3 24. 3y − 5 = 16 7 28. 9 = 9 − 11k 0 30. 31 = −2s + 24 − 72 31. −10a − 2 = 4 − 35 32. −6w − 4 = 11 34. 9x − 61 = −16 5 35. −26 = 6t − 2 −4 36. −47 = −3x − 8 38. 15 = −8d − (−7) −1 39. −24h − 9 = 15 7 4 47. 21 − (−15f ) = 96 7 50. −7 − (−12p) = 38 15 4 − 52 40. 28 − 3c = 25 −1 43. 0 = 24x − 42 4 46. 37 − 11k = −40 −3 −13 27. 15c − (−30) = 30 0 42. 64 − 16t = 0 −7 −8 8. 2 19. 8y − (−18) = 2 7 26. 28 + 6q = 28 0 11. −p − 26 = −13 15. −3n + 48 = 0 −2 17. 23 = 3y − (−5) 25. 17 = 17 − 32p 20 10 = −a − (−12) 5 13 1 44. −45 − 27n = 0 − 53 48. −18 = 60 − 13a 6 − 11 5 51. 19 = 10y − 16 7 2 52. −15x − 11 = 22 3 56. 10t − (−95) = 25 54. −9a − 47 = 52 −11 55. 19 = 64 − 15x 58. 9h − 25 = −25 0 59. −43 − (−22m) = −43 60. 39 = 13p + 39 −7 0 0 61. −8 = −4r − 13 62. 15x − (−33) = 27 − 54 65. −128 + 5y = −43 17 66. −25 = −4r − 97 − 35 −18 63. −17 + 3b = −9 64. 46 − 9s = 16 8 3 67. −17 − (−5k) = −37 10 3 68. −7r − 21 = −63 6 −4 69. 12x − (−22) = 10 −1 70. −28 + 17w = −11 1 71. 61 = 5y + 56 72. −41 − (−7m) = −48 1 −1 73. −14d + 15 = 21 77. 83 − 2x = 179 − 37 −48 74. 20z − (−9) = 25 78. −5a − 68 = 92 75. −30x − 28 = 20 4 5 −32 76. 28h − 15 = 15 − 85 79. 133 = −7a − (−21) 15 14 80. 156 = 8u − 132 36 −16 81. −4z − (−122) = 62 82. 5y + 147 = 37 83. −24s + 39 = −105 −22 6 84. 13a − (−76) = −119 −15 15 85. −111 = 9a − 12 −11 86. −13d − 18 = −70 4 87. −44 = 26d − 200 6 88. −35y − 134 = −29 −3 89. −20y − 3 = −7 1 5 90. −8 = −21b + 10 6 7 91. 5 − 12m = −3 2 3 92. −44k − 2 = −6 1 11 Fractions 93. 0 = r +8 2 1 97. 3 = 4 − w 5 −16 5 94. − 98. 3n −6=0 5 k + 6 = −3 8 −10 −72 95. 0 = 9 − 1 k 10 90 96. 2 p − 10 = 0 7 a 7 −7 100. 1 d + 20 = 16 10 99. 15 = 14 − ALG catalog ver. 2.6 – page 126 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 35 −40 GC 101. 2y + 5 = −9 5 8 102. − c − 2 = 6 3 −35 4h = 16 9 12z 109. 15 = 7 + 7 105. 16 + 3 106. − t − 8 = −8 4 6y 110. − 6 = 3 152 5 0 14 3 103. 20 = −3 4n +8 7 21 1 107. 5 = − y + 5 0 5 8 111. −33 = − h − 35 11 0 3 104. 15 − x = 12 2 2 108. −10 = −10 + 7c 10 112. 14a − 17 = 18 9 0 45 2 − 11 4 113. 0 = 10k − 1 5 117. −7x + 3 = − 121. 9c + 125. 15 2 1 5 = 4 8 1 24 1 − 72 129. 0 = 145. 3 2 9 11 − 15y = 12 8 2m 2 − 9 3 2 1 133. − r = 2 5 5 x 7 137. − = 3 3 6 7a 4 1 141. + = 6 3 3 9 = 0 − 38 4 9 118. 2z + 5 = − 85 5 11 1 122. = − + 7d 9 3 5 7 13 126. 6t − = 6 15 60 2 9 −12 25 2 − 67 146. − −3 3 5k 1 7 =− − 2 7 4 4 c 5 7 1 153. + = 12 6 8 2 7 2 1 157. − y − = −1 6 3 2 3 1 1 =− z− 5 8 10 150. 3 14 3 − 10 5 72 132. 0 = − 131. 147. 4 5 1 5 =− y+ 3 12 4 4x 11 5 154. − − = 7 14 6 r 3 1 = 1 158. + 5 10 2 149. − 4 + 2m = 2 57 7 1 5 1 120. = 10w + − 15 6 6 7 17 124. − = − + 18x 10 5 1 3 1 − 40 128. −2x + = 4 10 116. − 29 5 d − = 0 25 2 10 1 2 135. y − 1 = 10 6 3 x 23 139. 3 = − + − 14 5 4 10 6 3 1 143. p + =− − 23 5 10 10 8 4 r + = 0 −6 15 5 x 3 134. 4 = − − −22 4 2 1 15 = 2 54 138. s+ 10 8 2 7 2 5 142. − = p − 9 2 9 9 130. 3 1 5 1 q+ = 2 3 6 1 3 8 2 119. 4h − = − 7 7 14 7 123. 7k + = 5 10 5 5 127. = 14c − 9 12 115. 3 = −15w − 114. 6u + 1 50 − 25 − 17 6 4 4k 8 + =− 5 15 3 1 1 q− 15 3 3 20 −5 n 5 + = 3 14 8 4 1 7 140. −4 − y = − 23 2 2 4 7 c 11 8 144. − = − 12 8 12 3 136. 148. − −1 7 9 4 1 151. − a + = − 4 2 10 5 5 10 5 5 155. = − y − − 12 6 3 9 c 1 2 159. + = 7 14 6 3 5r 7 1 + = 8 8 4 1 9d 3 3 =− − 4 10 5 1 1 1 156. w + = 6 18 4 3 7 3 160. = − t − 2 10 5 152. 2 − 15 7 6 −3 Decimals 161. −1.5d − 13.5 = 0 −9 165. −2h − 0.3 = 1.4 −0.85 169. 0.2 = 5 + 12w 162. 0 = 4.8 + 0.3x 166. 2 = 5y + 1.7 163. 5m − 0.4 = 0 −16 167. 2.8 − 10x = 3.8 0.06 170. −3a − 3.2 = −0.5 −0.4 178. 11.4 + 8t = 7.4 175. 1.2 = −5y − 3 0.09 −0.5 179. 2s + 3.9 = 0.3 180. −1.3 = −10m − 4.7 −1.8 −0.34 182. −0.76 = 4n − 0.4 −2.7 183. −14q − 1.3 = −4.1 −0.09 185. 4 = 1.2 − 0.2a 189. 0.4y + 3.8 = 3.8 1.3 176. −0.9 + 9r = −0.09 −0.84 −0.07 181. 3x + 8 = −0.1 2.25 172. −6y + 10.4 = 2.6 −0.04 177. −5u − 0.4 = −0.05 1.2 −0.02 174. −11c − 0.42 = 0.02 1.8 168. 4k − 6.1 = 2.9 −0.1 171. 7d − 0.16 = −0.04 −0.9 173. 3p − 6 = −0.6 164. 0 = −9z + 10.8 0.08 186. −1.5w + 5 = 0.5 −14 187. 0.08z + 0.8 = 1 3 190. −9r + 0.02 = 0.02 0 184. 0.6 − 6a = −3 0.6 0.2 0 2.5 191. −14.5 − 1.2p = −14.5 188. 0.24c + 3 = 0.6 −10 192. −1.9 = 3x − 1.9 0 0 193. −1.6s − 0.4 = −10 6 194. −3.4 − 0.5k = −0.8 195. −0.79 = 3.6r − 0.07 −5.2 197. 2.7 = −4.8 + 0.01b 198. 2.7h + 1.2 = −1.5 196. 0.02t − 5 = −3.3 85 200. −2.2d − 3 = 2.5 −2.5 −0.2 −1 199. −0.8k + 0.3 = −0.5 750 ALG catalog ver. 2.6 – page 127 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 GD Topic: Mixed practice and review (first-degree equations). Directions: 15—Solve. 16—Solve and check. 1. y + 23 = −9 −32 2. 22 = x − (−17) 5. 18 = m − 38 56 6. r − 16 = −25 9. a − (−14) = 28 −9 14 10. y + 35 = 70 13. −15 = −x − 32 −17 14. 21 − (−p) = 20 2 3 17. k − (− ) = − 5 5 −1 21. c + 1 5 = 6 3 3 2 7 1 25. p − 2 = −6 8 4 −3 38 29. 13.6 = d − (−18.2) 5 7. k + (−39) = 41 −13 1 2 = −5 3 3 7 1 22. x − − = 10 2 80 −7 8. −44 = w − 55 11 20. 1 2 = 5 15 − 13 24. h + − 15 23. −z − 22 16. −33 = −c − (−7) 32 −4 19. −3 3 11 27. − = w − 4 12 30. y + 2.45 = −5.88 a − (−12) = 5 1 3 =r+ 4 4 8 − 59 4. 12. z + 18 = 40 9 15. 8 − y = −24 −1 18. −w + 2 −4.6 8 = c + 21 11. 17 = m + 8 35 5 5 26. k + = 6 18 3. 7 1 −v = 6 6 1 28. t + −3 2 31. k + (−7.7) = −3.7 4 1 7 2 =− 3 12 1 6 40 − 54 =1 3 10 32. −1.4 = x − 0.8 4 45 −0.6 −8.33 33. −z − 0.13 = −0.84 34. 8.2 = −a − (−2.2) −6 35. 3.59 = 2.09 − u −1.5 36. 10.1 = 16.8 − m 6.7 0.71 37. −56 = 7r 38. −12p = −108 −8 41. −18x = −45 45. − 49. h = 30 6 9 n = 36 2 53. − 42. 9n = −33 5 2 46. 8 = −180 8 20 8u = 21 3 5 − 14 1 d 4 39. 45 = −15x 9 47. 32 50. − 5z = 100 4 54. − 10 10 w=− 11 3 55. 11 3 −13 58. 0.07 = 1.4f 61. 36 − 4a = 0 9 62. −27 + 5m = −27 1 70. −24 = 24 − 4a 73. −19 = 9 − 7a 4 74. −3d − (−42) = 12 77. 9z − 3 = −30 −3 78. −11 − 7x = 3 81. 14 + 10k = 9 − 12 89. −12.3 = 3y + 20.7 3 9 y= 8 2 98 12 −2.1 −36 75. 3r + 37 = −11 91. 3.3 = 7.9 + 2z 56. 15 5 =− a 4 4 − 13 60. −3.2r = −9.6 68. 25 = 4f + 17 76. −7 = 18 − 5c −16 6 20 3 87. −9b − (−35) = 38 9 4 −50 3 −2.3 − 13 0 2 72. 4s − (−42) = 6 4 83. 8 = 3m − 12 3 7 3x = −15 10 64. 12 = 3k − (−12) −5 79. −13 = 7r + (−55) −2 52. −9 5 80. −2p − 11 = −35 12 84. 22 = 5x − (−16) 6 5 88. 4m − 21 = −27 − 32 92. −6t − 0.8 = 5.2 −1 0.07 93. 1.2t − 0.06 = −0.9 94. −2.5 = 0.1s + 3.8 −0.7 97. 8 − 10 90. 5n − 0.16 = −0.51 −11 64 71. 5 = 29 − 6y 12 82. 10 − 63r = −17 86. 24 = 16c − 12 1 48. − y = −8 8 67. 2w + 19 = −53 7 −8 17 3 −45 63. 0 = 25 + 5b 0 69. 5x + 56 = 16 85. −6x + 13 = −21 − 67 59. −0.042 = 0.02x 0.05 66. 6x − 14 = 28 44. 36 = −42p 4 51. −56 = − h 7 −80 57. −0.6p = 7.8 65. 31 = 4y − (−27) a = −15 3 17 4 13 43. 78w = 24 − 11 3 40. 4y = 68 −3 −63 95. 0.03x − 5.7 = −2.1 96. 0.03 = 3.5c − 1.02 120 y = 17 2 −18 98. 1 x − 12 = −3 5 45 1 99. 35 = 32 − a 3 ALG catalog ver. 2.6 – page 128 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −9 100. k − 11 = −20 6 −54 0.3 GD 101. 2 k − 42 = −22 3 105. 4r + 4 = 2 3 102. 17 = 29 + 30 − 56 109. 4 16 = −2m + 5 5 113. 3 11 a− = −4 8 2 117. 7 11 − 5s = 4 2 − 34 121. 1 2 3 − y= 5 10 5 2 3 6 5 5 − 5w 2 110. 4t − 45 17 =− 7 7 122. 125. (−4)(−7c) = 140 5 129. 12(4x) = −45 − 15 16 133. 48 − 4(6a) = 0 2 1 4 = 6 3 1 4 3 104. −36 = − p − 30 5 52 108. 4d − 3 8 2 7 − 10h = − 16 3 3 x 17 115. − − =8 6 3 112. − 111. 1 − 23 3 3x 9 = − 2 4 2 5c − 46 = 84 2 107. 1 = 2a + 1 2 7 5c =4+ 3 2 118. −6a − 103. −16 106. 0 = 114. 4 3m 4 1 4 8 119. 5 7 = 10y + 6 2 123. n 9 7 − − 2 8 8 −1 130. 42 = 16(−3u) − 78 131. −5(6y) = −50 5 3 −1 9 9 = 3r + 2 2 −3 9 3 = − 12n 2 8 1 2 13 32 5 5 5 a+ =− 3 6 6 −1 128. 8(5y) = −120 −3 124. 1 2 127. 42 = 3(−14r) 134. 41 = 14 + 9(−3p) 120. − 4 − 15 2 1 32 7 11 116. − y − 1 = − 2 4 14 126. −9(2k) = −36 1 =0 8 10 132. 33 = (−6)(−12k) 135. 7 = (−7)(−5b) + 112 11 24 136. 2(7w) − 22 = 48 5 −3 137. −14 = −(31 + p) 141. 68 = −4(m + 9) −17 −26 145. 8(z − 3) = −25 − 18 149. −12(1 − 2y) = 108 5 153. 24 = −4(3k − 11) 53 2 1 3 157. 6 x = − − 16 9 4 1 161. −27 = 6 d + −5 2 3 165. 5 3r − = 0 14 4 138. −(28 − n) = −9 19 139. 45 = −(w + 45) −90 140. −(x − 16) = 16 142. 0 = −7(14 − w) 14 143. 3(a − 8) = −24 0 144. −52 = −2(19 + c) 146. 21 = −6(5 − h) 17 2 147. −9(d − 6) = 33 7 3 148. −45 = 10(n + 3) − 15 2 152. 3(6p − 13) = −3 2 156. 0 = −21(5s − 4) 4 5 150. 9(7h + 8) = 72 151. −24 = 4(5t + 19) 0 154. 10(3r + 8) = 45 − 76 2 2 1 158. −12 z = − 20 3 5 3 162. 8 = 14 h − 1 7 1 166. −20 5 − p = −15 4 155. 2(9a + 7) = −13 −5 − 32 5 1 = (−20y) 38 8 12 2 163. −10 − f = 86 5 2 167. 48 = 18 w − 1 3 159. − 169. 2 t + 173. 5 8 =7 1 4 9 (10 + 6y) = 42 2 7 3 3 = − (−5k) 25 5 10 5 164. 8 x − = −34 −3 4 8 = 66 168. −15 3y + 5 160. 9 23 4 −2 17 0 7 12 4 3 3 170. 8 m − − 19 2 174. −18 = − (15n − 45) 5 = 3 4 171. 3 175. 1 −b 6 =3 1 2 3 (30 + 4x) = 18 4 −1 172. 1 3 = 10 k + 2 4 − 32 176. 3 (2p − 64) = −24 8 180. −r − 8 = 14 2 7 − 10 0 6 177. −5 = 7−x 4 −27 181. 15m + 3 = −6 2 185. −5(2 − x) = 90 3 189. 3 3(2k + 3) = 5 5 −1 56 −1 178. a+3 =4 7 182. 7x + 28 =0 12 186. −20 = 190. 179. 0 = 25 10(1 − p) 4 =− 3 3 −11 183. 3u − 20 = 11 2 88 187. −2(p + 12) =4 9 7 5 191. − −4 −(r − 8) 4 n + 11 3 −30 9 −3(x + 10) = 10 10 −7 ALG catalog ver. 2.6 – page 129 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 184. −1 = 14 4a + 5 7 −36 −3 188. 3(c − 19) =0 5 192. −5(3y − 1) 11 = 7 7 19 − 25 GE Topic: Combining terms on one side of an equation. Directions: 15—Solve. 1. 2y + 7y = 36 16—Solve and check. 2. 4 −85 = 11c − (−6c) 3. 42 = m + 6m 7. 5p − (−13p) = −28 6 4. 3a − (−8a) = −99 8. 14 = 7s + 15s −9 −5 5. 3a + 12a = −21 6. − 75 50 = 16w + 14w 5 3 7 11 − 14 9 9. 24 = 8k + (−5k) 10. 19h − 12h = −42 8 −6 13. 4y − 9y = −95 19 14. 78 = 7a − 10a 17. 31t − 27t = −6 − 32 18. −33 = 5k + (−20k) 11. −32 = 15w − 7w 15. 6d − 14d = 56 −26 12. 14y − 5y = 9 −4 16. −64 = x + (−9x) −7 19. 10 = 25y − 17y 1 20. 13h − 19h = 8 5 4 8 − 43 11 5 21. 18 = −24d − (−6d) 22. −13m + 7m = −72 −1 25. 6p + 18p = 0 23. −11k + 16k = 85 17 24. −99 = −8c + 17c 27. 0 = 12r + (−16r) 0 28. 0 = 24m − 9m 0 31. −4a − 3a = −84 12 32. −2p − 7p = 54 −6 −11 12 26. −7u + 7u = 0 0 Anyrealorirrationalnumber. 29. −36 = −5h − 4h 30. 11 = −10b − b 4 −1 33. −z + z = 21 Ø 34. 12y − 12y = −5 2 37. n − n = 12 5 20 1 38. x + x = 16 3 9 41. 2x − x = 15 2 −6 42. − 3 6 a + a = 18 7 7 14 46. 4 = 45. 4 39. −22 = s + s 7 12 11 q + 2q = −7 5 4 8 y− y 9 9 35. −9n − (−9n) = 18 Ø 35 7 43. 5b − b = 39 4 47. 9 Ø 36. 4t + (−4t) = −2 3 40. z − z = −9 4 −14 Ø −36 8 44. −24 = − w + 3w 3 12 3 9 d + d = −48 11 11 48. 4 2 x− x=6 5 5 52. 2 4 1 d− d= 5 5 10 72 −15 −44 49. − 53. 5 2 1 = d− d 6 3 3 1 3 y + y = −20 2 4 3 3 6 k+ k=− 7 7 14 5 2 50. −16 54. 1 = 5 57. 3p − p − 14 = 0 4 8 58. 2 3 r− r 3 5 − 16 15 2 k + 3 − 2k = 11 3 −6 51. 4 4 8 = y+ y 3 9 9 55. 3 1 x + x = 26 4 3 1 56. −15 = 24 1 59. −13 = 8 + a + a 2 5 1 a− a 6 3 1 4 −30 9 60. c − c − 3 = −8 4 4 64. 3.6y + 2.9y = 13 2 −14 61. 5.2z − 8.6z = −34 65. −9.3 = p + 2.1p 10 −3 69. 8u + 6 − 3u = 41 62. −18 = 1.3x + 1.7x 66. 3.5s − 2s = 10.5 −6 67. r − 0.2r = −6.4 7 70. −2n + 10 − 5n = 17 7 63. 7 = 2.2c − 0.8c 5 −8 71. 4s − 8 − 15s = −30 2 68. −5.2 = 3w − 3.4w 13 72. 7n − 49 + 3n = −9 4 76. 0 = −7x + 12 − 7x 6 7 −1 73. 11y + 14 − 7y = 0 − 72 74. 0 = −8z − (−15z) − 35 −9 5 77. 32 = 2a − (−14) + 7a 78. 3x + 9x + 47 = 11 −3 −6 17 85. 14 = 12r − 4 + (−12r) Ø 79. −80 = 8b − 15 + 5b −5 2 81. 4 − 6x + (−8x) = 90 75. 9u − 27 + (−12u) = 0 82. 38r − 14 − 17r = 16 10 7 86. −22n − 11 + 22n = 33 Ø 83. 28 = 34 + 7y − (−y) − 34 87. −9t − 30 − (−9t) = 0 Ø ALG catalog ver. 2.6 – page 130 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 80. −38 + 9t − (−14t) = 54 4 84. 46 = −4n − 9 + 19n 11 3 88. 15y − 8 − 15y = 17 Ø GE 89. 2k − 23 − 11k = −17 90. 4h + (−10h) + 21 = −15 91. −55 = 21x − 37 − 3x − 23 93. 7x − (−9x) − 15x = 8 94. 75 = −5a + 2a − 22a 97. 0 = −8z + 27z − 19z 101. 37 − (w + 8) = 32 −2 99. 15 − (−7r) − 7r = 15 IR 100. 8 = −12k − 8 + 12k IR IR 102. 0 = −(p − 22) − 9 −3 96. −3q − 25q + 5q = 46 −5 98. 45z − 9z + (−36z) = 0 IR − 15 95. 8p + 7p − (−3p) = −90 −3 8 92. −1 = 64m + (−14m) + 9 −1 6 13 103. −(31 − k) + 24 = −5 104. 12 − (x + 2) = 25 −15 2 105. 5 = −(11 − 4s) − 14 106. 36 − (5a + 19) = −3 109. −3u − (5u + 7) = −2 3 116. −19 − 6(w − 8) = 35 −1 118. 21m + 6(m − 2) = 12 −8 119. −11(4 − n) − n = −60 8 9 121. 6a + 2(4a + 1) = −5 −6 126. −8 = 12h − 4(2 + 3h) IR 3 (3k + 2) − 2k 4 14 138. 7 132. 2 = 1 5 134. 5 = 1 2 Ø 1 131. 4x + (12x + 2) = 3 2 5 4 1 2 (4y − 3) − = −1 3 3 128. −8p − 8(3 − p) = −15 Ø 2 130. − (6z − 15) − 4z = 0 3 −3 − 56 127. −2(9d + 4) + 18d = 10 IR 3 129. 1 − (5w − 10) = 16 5 135. 11 3 1 2 + (5 − 3a) = −3 5 5 3 136. −6x + (x + 8) = 0 2 13 3 3 (p + 3) − 4 = 2 4 5 4 139. −6 = q − (3 − q) 5 3 (8p − 20) − 5 4 8 3 −2 2 (2a − 1) − 3a = 11 3 140. −7 141. −2p + (−7p) − (−5) = 59 143. 14 = 24 − (−3s) + (−9s) 145. 19a − 7 − 17a + 23 = −14 −6 5 3 −15 147. −29 = −36 + 14n + 7 + 21n 149. 17 − c − 5c + 22 = 20 0 142. 6 = −11 − (−2k) + (−12k) − 17 10 144. −8p − (−27) + (−15p) = 27 0 146. 22 − 25y + 9 − (−13y) = 43 −1 148. 16d − (−4) − 11d + 10 = 49 7 150. −14 + (−t) + 44 − 7t = −28 − 19 6 151. −2m − 6 + 19 + (−4m) + 9 = 0 11 3 153. 58 = x + 7 + (−15x) + 9 − 17x − 42 31 155. 4y − 14 + 18y − 5 − 10y = 29 5 124. 13 = 4(−7r − 3) − 2r 123. 55 + 5(3x + 7) = 0 −2 125. 3(x − 8) − 3x = −24 120. 48 + 9(y − 5) = 48 − 85 122. −3(5 − 2t) + 28 = 1 − 12 1 (2x − 5) + 1 = 4 3 115. 22 = 5b + 7(b − 2) 3 2 8 117. 57 = 22 − 7(k + 3) 137. 112. −18 = 8p − (33 − 2p) 0 114. −3(z + 5) + 29 = −10 −6 −7 111. −(5c − 30) − 2c = 30 − 34 113. 4(y − 9) − 10y = 0 108. −(8d − 7) − 63 = 0 − 94 110. 6r − (−2r − 27) = 21 −58 133. 107. −8 − (12y + 2) = 17 4 15 2 4 152. −38 = −9r + 18 + r − 26 1 4 15 4 154. 5 − 8x − 49 + 14x + 26 = 0 3 156. 8 + 12w − 17w + w + (−29) = 19 157. −12 − 9r + 53 + 17r − 6 = 41 3 4 158. −4w + 17 − 3w − 3 + 9w = −5 159. 5 + 6k − 9k − 40 − 11k = −33 − 17 160. 13m + 16 − 4m − 29 + 7 = 0 ALG catalog ver. 2.6 – page 131 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 2 3 −10 − 19 2 GE 161. 10y − (−18) + 3y − 7 − 13y = 0 163. 2z + 14z + 14 + (−16z) + 6 = 20 165. 44 = −(11r − 20) + 2r + 36 162. 17 − 2p + p − 20 − (−p) = −5 Ø 164. −14 − 9x − (−11x) + 6 − 2x = −8 IR 4 3 166. 8x − (26 + 6x) + 60 = 21 − 13 2 167. 21 + 9t − (5t − 7) = −8 −9 168. 37 − (4d − 6) + 9d = 108 13 169. 5 + 3(4 − 3d) + 6d = −7 8 170. 32 − 5c − 2(c − 1) = −50 12 171. 6(2p + 3) − 4p + 37 = 95 5 172. 22 = −2k + 11 + 4(6 + k) 173. (6n − 9) − (2n − 19) = 0 − 52 174. −18 = −(7 − 2a) − (a + 12) 175. (8 − 3z) − (12 + 3z) = 10 177. 3(4t − 6) − 10(t + 1) = 4 Ø − 13 2 1 176. −(14s − 8) + (9s + 4) = −13 − 73 5 178. −4(7y − 12) + 6(2 + 3y) = 12 16 24 5 179. 0 = −2(m + 10) − 7(4 − 2m) 4 180. 3(7z − 1) − 5(3 + z) = −14 181. 30 = −(18k − 1) − 9(4 − 2k) Ø 182. 2(3 − 10x) + 4(5x + 2) = −6 Ø 184. −3(6r + 5) + 9(2r + 3) = 12 IR 183. 8(a + 3) − 4(2a + 1) = 20 185. IR 2 1 (21 + 3a) + 6( + a) = −15 3 2 1 1 187. − (12h − 4) − 6( − h) = −1 4 3 189. 1 3 (n + 6) − (n − 3) = 0 4 2 1 3 188. 7 = 16( w − 2) − (8w + 4) 4 4 0 −24 5 5 191. 3( − 2k) + (3k − 2) = 8 6 2 1 4 2 1 186. 10( x − 2) − (30 − 5x) = −11 2 5 −4 7 193. 7(2 − x) − 3(x + 1) + 3 [9 − (4 − 2x)] = 18 190. 4 1 (c − 2) − 2(c + ) = −6 5 5 192. 1 1 (r + 1) + (2r − 5) = −1 3 6 3 4 10 3 − 34 194. 4(a + 6) + 2(5 − a) − 2 [3 − (a − 2)] = 4 2 195. −5(2c + 3) − 8(1 − 3c) + 4 [5 − (1 + c)] = −15 IR − 45 −5 196. −2(1 − 3y) − 3 [(2 + y) − 5] + 3(y − 4) = 13 Quadratic terms 197. (x2 − 3x + 10) − (x2 − 9x + 6) = −4 199. (5c2 + 4c − 5) − (5c2 + 11c + 8) = 8 − 43 −3 198. (2y 2 + y + 7) − (2y 2 + 4y − 5) = 12 200. (3p2 − 6p + 2) + (−3p2 + 8p − 2) = −26 201. −4a(3a − 3) − 6a(1 − 2a) = 36 6 202. −2(n2 + 3n − 2) − n(2n − 7) = −5 203. y(5 − 3y) + 3(y 2 − 9y + 2) = 2 2 11 204. 6u(u + 4) − 2u(3u − 8) = 10 205. n(4n − 5) + (1 − 2n)(1 + 2n) = −9 207. −p(p − 3) + (p + 6)2 = 42 2 209. (y + 3)2 − (y + 5)(y − 6) = −10 206. (c + 4)(c − 6) − c(c + 1) = 15 208. (4 − r)(4 + r) + (4 + r)2 = 0 2 5 210. (x − 4)2 − (x + 4)2 = 24 −7 211. (k + 8)(k + 1) − (k + 2)(k − 2) = 3 −1 0 1 4 −13 −4 − 32 212. (a + 7)(a − 1) − (a − 2)(a + 5) = 15 ALG catalog ver. 2.6 – page 132 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −9 4 −13 3 GF Topic: Variables on both sides of an equation. Directions: 15—Solve. 16—Solve and check. 1. 4y − 10 = 3y 10 2. 16 + 2x = 10x 5. 5 − 3w = 2w 1 6. 5n + 4 = 7n 9. 4p + 2 = 11p 2 7 10. 8 − 5a = −2a 13. 5x − 3 = −x 1 2 14. 2 − 4c = 2c 17. 7r − 5 = 2r + 5 8 3 1 3 6 22. 2k + 14 = 6k − 22 7 25. 7m + 15 = 3m + 3 29. 3t + 5 = 3t + 11 2 18. 3m − 2 = 2m + 4 2 21. 4a + 2 = 6a − 12 2 −3 26. 4y + 3 = 2y − 7 9 −5 30. 4 − 6h = −6h + 5 Ø 33. 9r + 4 = 7r + 4 0 34. 3w − 5 = 8w − 5 37. 3k − 1 = 3k − 1 IR 38. 4m + 2 = 2 + 4m Ø 0 IR 3. 4a = 3 + 7a −1 4. 2c = 4c − 6 7. 6d = 4d − 8 −4 8. 12 − 4y = −2y 6 11. 7g = 1 − 6g 1 13 12. 9k − 12 = −5k 6 7 15. 3 + 5y = 9y 3 4 16. 7n = 1 − 4n 19. 8w − 15 = 4w − 3 3 3 1 11 20. 9t − 5 = 6t + 10 5 23. 5x + 2 = 7x − 2 2 24. 4p + 7 = 5p + 4 3 27. 9c + 7 = 4c − 3 −2 28. 5x − 6 = 8x + 6 −4 31. 7 + 2y = 2y − 3 Ø 32. 5 + 11a = 11a − 6 35. 6 − 2g = 3g + 6 0 36. 8x + 2 = 2 − 4x 0 40. 9 + 6a = 6a + 9 IR 44. 7c + 4 = 10c − 5 3 − 19 2 39. 11 − 3y = −3y + 11 Ø IR 41. 4x − 1 = 6x + 2 45. 3a − 7 = a + 8 − 32 15 2 49. 3z + 15 = 6z − 13 28 3 53. 7w − 6 = 6w − 7 −1 57. 4f + 5 − 2f = 3f 5 42. 5p + 2 = 3p − 5 − 72 43. 9n − 5 = 3n + 11 46. 4z + 3 = 7z − 2 5 3 47. u − 7 = 8u + 3 − 10 7 48. 5d + 8 = 3d − 11 50. 8g − 7 = 3g + 7 14 5 51. 6r + 4 = r − 8 − 12 5 52. 8s + 9 = 5s − 4 − 13 3 54. 8y − 5 = 5 − 8y 5 8 55. 3a − 5 = 4a − 3 56. 9k + 4 = 4k − 9 −135 58. 5p − 6 + 2p = 4 + 3p 5 2 61. 6x − 2 = 5x − 7 − 3x 62. 4p + 5 = 3p − 11 − 8p − 54 − 16 9 8 3 −2 59. 3c + 5 − 7c = 2c − 11 60. 8y − 9 + 2y = 5y − 3 8 3 6 5 63. 3t + 8 = 5t + 3 − 9t 64. 7k − 6 = k − 5 + 4k − 57 1 2 65. 6u + 7 − 3u = 8 + 5u − 11 5 66. 4x + 3 − 2x = 15 − 5x + 9 67. 8a − 11 + a = 3 + 4a − 19 −1 68. −2w + 13 + 5w = 8 − 4w − 9 69. 5p + 2 − 3p = 8 + 4p − 6 70. 6c − 11 + c = 5 − 2c − 16 0 71. 2x + 5 + 3x = 14 − 2x − 2 73. 8d + 5 − 3d = 2 + 5d + 3 72. 7 − 3t + 4 = 5t − 1 + 4t 1 3 0 1 74. 2g − 6 + 5g = 3g + 2 − 8 + 4g IR −2 IR 75. 3 − 2r + 8 = 6r + 11 − 8r IR 76. 12 + a − 5 + 2a = 4 − a + 3 + 4a 77. 9y − 1 − 7y = 7 − 6y − 15 − 78 78. 8t − 5 + 2t = 5 + 5t − 12 79. 4 − 2p + 25 = 7p − 8 − 5p 37 4 80. 6 + 4k − 10 = 5k − 7 − 8k 81. 5w + 2 − 8w = 5 − 3w + 1 Ø 82. 4 + 6c + 13 = 7c − 5 − c 83. 9y − 5 + y = 8 + 10y − 3 Ø 85. 9 + 6a − 14 = 8 − a − 6 + 4a 87. 13 + 6y − 8 = −3y + 6 − 2y 7 3 1 11 − 25 − 37 Ø 84. 9 + 3x + 12 = 8x − 9 − 5x Ø 86. 7 − 3s − 9 = 2s + 11 + 5s − 13 10 88. 20 − 4u + 3 = 5u − 8 + 2u 31 11 ALG catalog ver. 2.6 – page 133 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. IR GF 89. 4(y + 8) = 7(y + 2) 6 90. 5(n − 1) = 2(n + 8) 91. 2(4 − c) = 3(2 − c) −2 92. 5(3k − 6) = 6(2k − 3) 93. 4(2a − 2) = −2(1 − 5a) 95. −3(8 + 2y) = 2(y − 8) 7 4 94. 2(3u + 10) = 5(4 − 2u) −3 0 96. −5(p + 3) = 4(2p − 7) −1 1 97. 6(4 − 3j) = −2(3j − 5) 7 6 98. −8(4 − 5x) = −2(6x + 8) 99. 7(3k − 8) = −4(6k + 3) 44 45 100. −5(6 − r) = 3(9r − 2) 4 13 − 12 11 101. 6(4 − 3s) = −2(5 + 9s) Ø 102. 3(8r − 5) = −4(7 − 6r) Ø 103. 5(4 + 6h) = 3(10h − 7) Ø 104. −2(5 − 8d) = 4(7 + 4d) Ø 105. 3(4y + 12) = 6(2y + 6) IR 106. −5(2m − 8) = 10(4 − m) IR 108. 6(5y − 1) = −2(3 − 15y) IR 107. 8(5 − 3r) = −4(6r − 10) IR 109. 3(g − 5) + 8g = 18 − (3 − 10g) 111. 5 + 2(2n − 13) = 8n + 5(6 − n) 115. 3(x + 6) + 2x − 6 = 8x − 2(2x − 4) 117. 2(3x − 5) + 4 = 15 − (9x − 4) −3 114. 4(s + 2) − 6s + 15 = 10 − (s + 8) 2 −4 13 6 123. 5d − 2(3 − d) = 4(2d − 3) − d Ø 1 2 120. 3(2k − 4) + 3 = −5k − 2(k + 4) 122. 3(x + 2) − x = 2(x + 4) + 11 Ø 21 116. 3w + 6(w + 1) − 10 = 11w − 3(4 − 2w) 118. 7p − 2(3 − 4p) = 12p − (p + 4) 5 3 119. −2(c − 4) + c = 5c − 3(6 − 2c) 3 112. 6(z − 2) + 2z = 7z + 3(z − 2) 51 113. 18 − (2a − 5) − 2(a + 2) = 3a + 5 121. 1 − 3(t + 2) = 2(5 − 2t) + t 110. 7k − (4 − 2k) = 3(k + 5) − 1 30 1 13 Ø 124. 3(8p − 5) + 3 = 22p + 2(p − 6) IR 125. 14 − 2(1 − 5r) = 4(3 + r) + 6r IR 126. 5(2a − 3) + 2 = 4a + 2(3a − 6) − 1 127. 2 − 7(3t + 2) = −5(4t + 2) − 2 0 128. 3 + 4(5 − 7x) = 5(2x + 5) − 2 129. 1 3 (6 − 15w) = (40w − 8) 3 8 1 4 3 3 131. − (5 − 10k) = (24k + 4) 5 4 − 12 5 2 133. − (30 + 18k) = (45 − 15k) 6 3 135. 2 1 (3m + 3) = (4m + 28) 3 4 137. 3 3 (16y − 32) = − (56 − 28y) 4 7 139. 3 2 (4p − 6) = (27p − 45) 2 9 −11 5 Ø IR 0 130. 2 1 (6x + 9) = (10x − 2) 3 2 132. 1 7 (3 + 9r) = (28 − 12r) 3 4 134. 3 1 (12z − 42) = − (4 − 16z) 6 4 136. 5 1 (3c − 3) = (20c + 5) 3 5 138. 4 2 (28n − 35) = (24n − 30) 7 3 IR 140. 3 1 (25x + 35) = (30 + 45x) 5 3 Ø ALG catalog ver. 2.6 – page 134 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 7 2 − 25 6 IR 1 GF 5 3 141. 10 − h = h − 6 8 8 5 1 142. 1 + m = m − 7 4 4 16 −8 143. 6 1 c−2=− c+5 7 7 4 1 144. − w + 2 = 14 − w 3 3 7 −12 145. 1 3 y = 19 − y 10 5 2 1 149. 4 − m = m 3 2 1 1 146. 24 + n = n 6 3 38 24 7 153. 1 7 11 u+ =− u 4 4 16 157. 1 1 1 p+5= p− p 8 3 12 −4 150. 3 3 s+9= s 5 4 154. 4 7 1 a− = a 12 3 3 158. 2 3 1 m−3= m+ m 3 8 4 40 161. 144 60 96 7 3 148. 24 − s = s 6 2 151. 3 1 y =1+ y 10 3 −30 152. 2 2 r−4= r 3 7 60 11 156. 1 7 4 − w= w 3 5 15 1 1 1 h − h = 13 + h 5 6 4 160. 1 3 1 x−6= x+ x 2 10 8 159. −60 7(15 − 3c) = −5c + 6 8 162. 5 5 1 x − 12 = x 8 2 3 5 1 155. − z = z− 8 12 2 16 3 72 2(5p − 1) = 3p + 1 3 147. 163. 6a + 3 = 4(5x + 6) = 2x + 5 3 9 − 14 169. 12c + 2.6 = 6.8c 167. 9r + 2 = 2 − 17 5(4a + 1) 3 164. 2x + 17 = 2 173. 0.07y + 2.3 = 0.3y −104 177. 0.7d − 512 = 0.5d + 288 181. 5.02h + 4.3 = −6.08 + 5.02h 191. 0.4(6a + 1) = 3.5(a + 2) 175. 2.5x = 0.05x − 2.94 −17 4.5 0 20 Ø 193. 0.75(1.2w − 1.6) = 0.8(w + 2) 195. 1.5(c − 0.02) = 0.6(2.0c − 0.03) 500 188. 0.15x − 0.4 − 0.05x = 0.05 − 0.4x 0.9 192. 2.1(3 − p) = 0.7(7p − 6) −6 1.5 −0.3 196. 0.25(0.08 − 0.4y) = 0.2(0.3y + 0.1) 0.04 197. 2(2.6p − 3.4) − 5.2p = 7.1 − (p + 12.3) 2 194. 0.2(0.1 − 5x) = −0.8(x − 0.1) 28 IR 186. 2.4 + 0.03z = 0.04z + 7.4 − 0.02z 190. 0.05(r − 18) = 0.2(2r − 1) 0.3 1.6 199. 0.02(0.5c + 0.3) = 0.03c − 0.07(0.3 − 0.1c) 1 0 198. 14.3(2d − 1) − 28.6d = 11.6 − (d + 14.2) 11.7 200. −0.4(0.5k − 0.4) = 1.3 − 0.6(0.3 − 0.2k) −3 ALG catalog ver. 2.6 – page 135 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −2 176. 0.09m = 0.72 − 0.07m 184. 4.15 − 0.9m = −0.9m + 4.15 1.5 2(4y + 7) 5 172. 0.8 − 5u = −5.4u 6 182. 4.8 − 0.65m = 7.3 − 0.65m IR 189. 0.4(4k − 0.9) = 0.1(k + 0.9) 171. 20.4 + 3.6p = 7p 180. 0.55y − 4.5 = 0.05y + 5.5 Ø 185. 0.3n + 0.4 = 0.6n + 0.7 − 0.5n 3(1 − 5x) 7 26 23 178. 0.06x + 11.2 = 11.2 − 0.04x −6000 187. 3.2r + 10.1 − 2.1r = 5 + 0.8r 168. 8 − 3y = −1.2 4000 179. 0.05r + 260 = 0.03r + 140 183. 0.05y + 3.1 = 3.1 + 0.05y 2.5 174. 12.48 + 0.2a = 0.08a 10 7(r − 5) 3 − 41 20 170. −3.3x = 3.9x − 18 −0.5 1 5 −4 6(3 − 2m) =m+4 5 166. 21 2 80 −3 165. 9 GG Topic: Advanced first-degree equations. Directions: 15—Solve. 16—Solve and check. 1. 1 1 − (4w + 6) = (9 − 3w) 2 3 −6 2. 3 3 (8x + 10) − (10x − 5) = 0 2 5 3. 2 2 (12p − 9) = (7p + 14) 3 7 5 3 4. 4 3 (30 − 15m) = (6m + 28) 5 2 5. 3 1 (8z − 12) = (36z + 12) 4 6 6. 5 1 (2c + 18) = (25c + 30) 2 5 7. 1 4 (12d + 36) − (96 + 32d) = 0 3 2 8. 1 1 (49 − 14x) = − (12x − 42) 7 6 9. 3 2 (5y − 4) − (2y + 8) = 0 3 5 10. 4 4 (3a + 2) = (5a − 4) 5 7 11. 7 3 (2r − 17) = (3r − 11) 3 4 12. 6 3 (3w + 14) = (5w + 16) 7 4 14. 1 8 (6u + 7) − 8u = (4 − u) + 11 3 2 − 23 16. 3 3 (2a + 3) + (8a − 2) − 9a = 0 4 5 7 18 Ø IR 7 2 13 1 2 13. 8 + (3h − 1) = −2 + (20 − 3h) 5 2 1 4 15. 7 − (5y − 3) = 10 − (3 − 4y) 2 5 4 27 5 − 11 −3 6 7 Ø IR 17 2 0 17. 7 + 3 [4(2x − 3) − 8x] = 3x − 8 −7 18. 11 − 2y = 2 [3y − 8(y − 2)] − 13y 19. 5k − 2 [3k + 2(k − 4)] = 4k − 5 7 3 20. r + 4 = 4 [2(8r − 7) + 5r ] − 3r 21. 3(n + 2) − 1 = 5 − 2 [6n + 2(n − 5)] 23. 2 − 5(a + 3) = 3a + 4 [5 − 2(3a + 11)] 1 3 4 22. 5x + 3 [4(2x − 5) − (−7x)] = 6 − 2(3x + 1) 20 19 8 7 24. 7 − 5 [3(2c − 5) − (−4c)] = 2 − 3(5c − 6) + 2 − 55 16 25. 7 [4w − 2(3w + 8)] − w = −4(3w − 2) + 6 −42 26. 2b − 3(4b − 6) = 10 − 3 [4(2b − 5) + 4b] 27. 5 [3(4y − 1) + (−2)] + 2y = 7 − 2(3y − 1) 1 2 28. 5x − (x + 4) = 5 − 2 [3x − 2(x + 8)] 29. 3(2a − 1) + 4 = 3a − 7 [2(3a − 1) − (−6)] − 35 30. 9n + 4 [3n − 4(2n − 3)] = 2 − 3(2n + 4) 31. 3(m + 2) + 5m = −3 [(4m + 3)3 + 5] + 2m 32. 5k + 2 [−4(k + 3) − k ] = 4 − (2k + 3) − 13 14 33. 6 [2(−5y − 3) + 1] − 15y = 33 + 3 [7 − 2(8y + 5)] 35. 3 [4(2r − 7) − r ] + 3r = 2 + 2 [8 + 3(2r − 1)] −2 8 10 7 2 41 6 58 5 − 25 3 34. 4 − 8 [2(x − 3) − (−2x)] = 5 [9 − 2(3x + 1)] + 7x 17 9 36. 5 + 2 [3(2w − 5) − (−4w)] = −3 [4 − 5(w − 1)] + 2w − 25 37. 8 + 2 [3b − 2(b − 8b + 5)] = 3(7b + 3) − 3b 39. 3 [2 − 3(2n + 4 − 3n)] + 5n = 4n − 2(n − 5) 38. 5(4c − 3) + 11 = 3 [2 − 3(2c + 8c − 1) + 5c] 3 10 3 41. 2x + 7(3x + 1) = 4 − 3 [2x + (−5) + 3(2x − 5x + 3)] 40. 7m + 2(3m − 5) = 6 [5 + 2(2m − 5 + 2m)] 1 5 4 7 42. 2 − [3k + 2(20k − 4 + 24k + 1)] = 6(2k − 3) − 3k − 15 2 43. 3r − 4(r + 4) = 5 − 2 [3r − 2(4r − 2r + 3) − (−5)] 44. 7 + 3 [2a − 4(8 + 2a) − 3 + a] = 7a − 3(a + 1) − 23 3 ALG catalog ver. 2.6 – page 136 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −5 13 50 GG Quadratic terms 45. r2 + 4(r2 + 1) + 7r = 2r2 + 3(r2 + 6) 47. 12 − 4(3 − 2x2 ) + 3x = 6(x2 + 4) + 2x2 49. p(p + 4) = p2 + 6p − 8 48. 3(y 2 + 3y) − y 2 = 3y + 2(1 + y 2 ) + 16 8 50. y 2 − 5y − 12 = y(y − 3) 4 51. (w + 1)(w − 4) = w2 + 9w + 17 53. 3r2 + r − 17 = 3r(r − 11) 55. 5h2 + 3h = h(5h − 4) 46. 2(a2 − 1) + 3(a2 + 1) + 6a = 5(a2 + 2) 2 54. 2m(4m − 7) = 8m2 − 10 1 2 56. 2p(3p − 1) = 6p2 + 5p − 4 0 57. (3x + 5)(2x − 1) = x(6x + 1) − 16 59. (7a − 1)(a + 5) = 7a(a + 5) − 2 61. (k − 5)(3k + 4) = 3k 2 + 4k − 10 2 65. 2m(6m − 1) = (3m − 2)(4m + 3) 67. 4c(4c + 9) = (8c − 11)(2c + 1) 2 − 11 50 69. (9p − 4)(p + 2) = (3p + 1)(3p − 5) 71. (14b − 9)(2b + 3) = (7b − 5)(4b + 5) 5 3 62. 5w2 + 10w − 7 = (5w − 7)(w + 2) − 23 63. (4x − 3)(x + 3) = 4x2 + 7x − 5 4 7 60. (2 − n)(4 − n) − n2 = 5(1 − n) −3 20 13 5 7 58. (1 − y)2 + (y − 1)2 = 2y 2 − 18 − 11 6 64. 2y 2 − 9y − 4 = (y − 6)(2y + 5) 13 66. (6x + 1)(4x − 5) = 3x(8x − 7) −1 68. (4b − 2)(5b + 4) = 10b(2b − 3) 2 9 −1 70. (5h + 4)(6h + 1) = (3h + 1)(10h + 3) 3 26 72. (2x + 1)(9x − 4) = (3x + 2)(6x − 1) 2 9 3 −6 52. n2 + 6n − 10 = (n − 5)(n − 2) − 74 3 2 1 − 10 − 14 73. (3x + 5)(2x − 7) + 2x2 = (4x + 1)(2x − 5) 30 7 74. (5y − 3)(2y + 1) = y 2 + (3y + 5)(3y + 2) − 13 22 75. (4u + 3)(3u + 4) = (2u − 1)(7u − 5) − 2u2 − 16 76. 2c2 + (6c − 5)(3c + 1) = (4c + 3)(5c − 2) 1 16 77. 4u − 7 − (u − 1)(1 + u) + (u − 2)(u − 3) = −3 79. (k + 1)(2k − 1) − (k − 1)(2k + 1) = −18 −9 3 78. 8 + 3(4n − 1) + n2 + (2 − n)(n + 1) = 6n + 42 80. 2(5a − 3a2 ) + (3a − 1)(2a + 3) = 8a + 12 ALG catalog ver. 2.6 – page 137 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 5 3 5 GH Topic: Solving for other variables (first-degree equations). See also categories JE (factorable equations) and LM (rational equations). Directions: 19—Solve for the indicated variable. 1. x − a = b; for x a+b 2. A = i + p; for p A−i 3. C = K + 273; for K 4. C − 273 5. P = a + b − c; for c a+b−P 9. 6. e = v + f − 2; for f 2a − z = a; for z a 7. 180 − X K = x − (y − 1); for y 8. x+1−K e−v+2 10. 3b + y = b; for y −2b 12. −c 13. ax = b; for x b a F m 17. F = ma; for a 21. I = E ; for R R 14. y = kx; for x y k A ; for W W A L 23. R = V `h 27. C = 2πr; for r I Pt 26. V = `wh; for w 25. I = Prt; for r V h 15. V = Bh; for B W F 22. L = 19. V = IR; for I W I2 V ; for V I 16. d = rt; for t 20. A = LW ; for W IR 24. d = C ; for C π 28. A = 1 bh; for h 2 C 2π 1 2 r w; for w 2 V πr2 30. W = I 2 R; for R 33. S = πdN ; for d 12 12S πN 34. s = gt2 ; for g 2 2s t2 35. V = b2 h ; for h 3 37. C = mv 2 ; for r r mv 2 C 38. t = pD ; for s 2s pD 2t 39. F = gm1 m2 ; for m1 d2 2i r2 3V b2 2c − 11 3 45. 2ax + 1 = ax + 5; for x 4 a 5 a 2 46. 3by − 2 = 2by + 1; for y n + b = c; for n a ac − ab 57. v = V + gt; for t v−V g r = 2s; for r 3 3p − 6s 58. p = 2w + 2`; for w p − 2` 2 a+b+c ; for c 4 4A − a − b 43. 3w = 1 z − 5; for z 2 6w + 10 47. 3rw + 1 = rw − 7; for w 62. Z = X −Y +1 ; for Y W 1 + X − ZW 55. 3x + a = b; for x b−a 3 59. A = P + Prt; for t A−P Pr v2 − v1 ; for v1 t v2 − at ALG catalog ver. 2.6 – page 138 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. e 10t2 36. R = k` ; for ` d2 40. F = kE1 E2 ; for E1 d2 Rd2 k 44. 1 x + 3y = −6; for y 3 1 − x−2 9 48. 6bct − 1 = 4bct + 1; for t 52. 2nk + 3m = nk + 1; for k 1 − 3m n 1+t 9p 63. a = 2A b 1 bc 50. 5ax − 2b = ax − c; for x 51. 1 − 3pr = 6pr + t; for r 54. p − πd F d2 kE2 4 − r 2b − c 4a b+d 2c 61. A = 3− 3 b 49. 3cy − b = cy + d; for y 53. 42. 5a = −2b + 6; for b A L 32. e = 10kt2 ; for k F d2 gm2 41. 2c − 3d = 11; for d d r V R 29. V = πr2 h; for h 31. i = 2 8 d = d − w; for w 3 3 2d 18. W = Fd; for d E I T = 1 − (m + n); for n 1−m−T c 3c = − ; for x 2 2 11. x − X = 180 − Y ; for Y 56. a − 2y = 5b; for y a − 5b 2 60. E = Ir + IR; for r E − IR I 64. v = s2 − s1 ; for s2 t vt + s1 GH 65. a + 1 = 0; for a t −t 66. 0 = a − 1; for t t a 67. ax = c + d; for x b 68. bx − a = d; for x c bc + bd a 69. F = 9 C + 32; for C 5 70. S = P + prt; for r S−P pt 5 (F − 32) 9 73. I = p(1 + rt); for t 9 C + 32 5 81. s = vt + 16t2 ; for v 82. s = s − 16t2 t 2 ; for w −w m + 2n = t; for n rx 90. S = v(P − r) ; for P f −r 98. V = 1 (b1 + b2 )h; for b1 2 91. s = 95. r = h(B + b) ; for B H 99. A = 111. 5e(e + f ) = e(e − 3f ); for f − e 2 2V − IR ; for R 2I h(b1 + b2 ) ; for b1 2 103. x = 2 + y(w − 3z); for z 88. a = 2c(s1 − s2 ); for s2 2cs1 − a 2c 92. I = 2b a 96. K = 100. d = a(2t − r) ; for t 2 2d + ar 2a 104. R = r(r − 2s) + k; for s r2 + k − R 2r 108. I = 1 c(c + m) = c(c − m); for m 2 2V ; for r R + 2r 2V − IR 2I 110. (2x + b)(2x − b) = 4x(x − 1); for x ALG catalog ver. 2.6 – page 139 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. kb + B ; for b 3 3K − B k 2V − 2Ir I 112. nE ; for R R + nr nE − Inr I 2 − x + wy 3y 1 2 2V πh (3r − h); for r 107. I = ; for R 3 R + 2r sm H A − 2πr2 2πr 2A − hb2 h 3V − πh3 3πh2 109. (a + b)(y − 2) = (y + 2)(b − a); for y H ; for t1 m(t1 − t2 ) H (t1 − t2 ); for t2 m 84. A = 2πr2 + 2πrh; for h 2V − 2Ir I b + c − 4d 4 2A − b2 h h t1 − H + smt2 sm 102. c = 4(a + d) − b; for a 106. V = 80. s = S − πrs πs HV − hb h S−a+d d 105. A = 87. S = π(r + R)s; for R cd + bn a G(f − r) +r v 101. S = a + (n − 1)d; for n a ; for r 1−r am − bn = d; for m c 94. 3c − d 3c A − πr2 πr S−a S trx − m 2 97. G = 83. A = πr2 + πr`; for ` A − 2πr2 2πr T n2 − 2 T 93. 1 2 gt + vo t; for vo 2 86. A = 2πr(r + h); for h L − Lo · L Lo · t n (a + 50); for a 2 IR 2 76. 3c(1 − y) = d; for y 2t − 50 n 2s − gt2 2t 85. L = Lo (L + ct); for c n2 79. t = V R − ; for V I 2 Ir + S − 2an 2a 5 (F − 32); for F 9 78. C = 2A −b h 89. T = 75. S = 2a(n + `); for ` c − ab a 1 h(b + c); for c 2 72. r = v 2 − u2 2s 74. a(x + b) = c; for x I −p pr 77. A = 71. v 2 = u2 + 2as; for a ac + cd b c 3 b2 4 HA Topic: Number problems (simple). Directions: 0—(No explicit directions.) 16—Solve and check. 20—Solve using one variable. 39—Translate and solve. 40—Write an equation and solve. 2. −18 is the sum of p and −65. Solve for p. 4. The sum of x and −20 is 13. Find x. The sum of a number and 85 is 305. What is the number? 220 6. The sum of a number and 148 is 110. What is the number? −38 7. 152 equals a certain number plus 75. Find the number. 77 8. −3 equals a certain number plus 28. Find the number. −31 9. 242 is equal to a number increased by 117. Find the number. 125 10. 37 is equal to a number increased by 65. Find the number. −28 1. 29 is the sum of r and 54. Solve for r. 3. The sum of a and 12 is −7. Find a. 5. −25 −19 47 33 11. When a number is increased by 29, the result is 76. What is the number? 47 12. When a number is increased by 96, the result is 42. What is the number? −54 13. 24 more than a number is 80. Find the number. 14. 81 more than a number is 100. Find the number. 56 19 15. 16 is five more than n. Find n. 16. 42 is eight more than y. Find y. 11 17. 36 more than a number is 25. What is the number? −11 34 18. 19 more than a number is 6. What is the number? −13 19. Twelve more than a number is −12. Find the number. −24 20. Five more than a number is −32. Find the number. 21. When 24 is subtracted from b, the result is −80. Find b. −56 22. When 56 is subtracted from c, the result is 18. Find c. 74 23. A number decreased by 110 is 54. Find the number. 24. A number decreased by 25 is −78. Find the number. −37 −53 164 25. A number reduced by 70 is −35. What is the number? 35 26. A number reduced by 41 is 119. What is the number? 160 27. When x is decreased by 28, the result is −5. Find x. 28. When r is decreased by 95, the result is −40. Find r. 23 55 29. When y is subtracted from 300, the result is 144. Solve for y. 156 30. When a is subtracted from 106, the result is −200. Solve for a. 306 31. 75 minus some number is −113. What is the number? 188 32. 50 minus some number is −121. What is the number 33. 21 less than a certain number is 79. What is the number? 100 34. 34 less than a certain number is 46. What is the number? 80 35. −20 is 75 less than some number. Find the number. 36. −12 is 110 less than some number. Find the number. 55 98 37. 105 less than b is equal to 85. Solve for b. 39. 12 less than k is −8. Find k. 171 190 40. 300 less than a is −190. Find a. 4 41. The difference of 35 and p is 15. Find p. 38. 14 less than f is equal to 57. Solve for f . 20 110 42. The difference of 100 and c is 66. Find c. ALG catalog ver. 2.6 – page 140 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 71 34 HA 43. −5 is the difference between 21 and some number. What is the number? 26 44. −29 is the difference between 11 and some number. What is the number? 40 45. −200 is the difference between a number and 500. What is the number? 300 46. 35 is the difference between a number and 125. What is the number? 160 47. The difference between n and −9 is 25. Find n. 48. The difference between c and 17 is −3. Find c. 16 49. 4 times a number is 128. What is the number? 51. −4 times a number is 100. Find the number. 32 −25 14 50. 12 times a number is 156. What is the number? 52. −6 times a number is 72. Find the number. −12 53. Some number multiplied by negative five is 145. Find the number. −29 54. Some number multiplied by negative three is 81. Find the number. −27 55. When a number is multiplied by −6, the result is −90. What is the number? 15 56. When a number is multiplied by −11, the result is −154. What is the number? 14 57. Twice a number is 448. Find the number. 58. Three times a number is −246. Find the number. 224 13 −82 59. When a number is tripled, the result is −51. What is the number? −17 60. When a number is doubled, the result is 46. What is the number? 23 61. Five times a number is 65. What is the number? 62. Seven times a number is −105. What is the number? −15 13 63. 1000 equals a number times 160. Find the number. 25 4 65. −21 times r is −35. Find r. − 15 2 66. −20 times k is 65. Find k. 5 3 67. Half of a number is −13. What is the number 69. −30 equals one-third of n. Solve for n. −26 − 13 4 68. Half of a number is 45. What is the number? 70. 21 equals one-third of u. Solve for u. −90 71. One-fourth of a number is 16. What is the number? 90 63 72. One-tenth of a number is −50. What is the number? −500 64 73. Two-thirds of x is equal to 72. Solve for x. 75. −21 is three-fourths of m. Find m. 74. Three-fifths of y is equal to 60. Solve for y. 108 76. −80 is one-half of k. Find k. −28 77. The product of −26 and c is 156. Solve for c. 79. 120 equals the product of z and 45. Find z. 81. The quotient of x and −6 is 15. Find x 83. The quotient of p and 2 is 21. Find p. 6 8 3 −90 42 85. A number divided by 4 is −13. What is the number? −52 100 −160 78. The product of −14 and d is −266. Solve for d. 80. −90 equals the product of h and 18. Find h. 82. The quotient of y and 10 is −3. Find y. 84. The quotient of w and −5 is −8. Find w. 19 −5 −30 40 86. A number divided by −12 is 3. What is the number? −36 87. −6 equals a number divided by −9. Find the number. 54 89. A number divided by −22 is 64. −750 equals a number times 100. Find the number. 1 2. 88. 14 equals a number divided by 8. Find the number. 112 What is the number? 90. A number divided by 10 is − 15 . What is the number? −11 91. When a number is divided by 7, the result is −7. What is the number? −49 −2 92. When a number is divided by −25, the result is −1. What is the number? 25 ALG catalog ver. 2.6 – page 141 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HA 93. 2 3 is equal to a divided by 50. Solve for a. 94. − 52 is equal to r divided by 45. Solve for r. 100 3 95. The quotient c divided by −18 equals 1. Find c. −18 − 225 2 96. The quotient w divided by 5 equals 36. Find w. 180 97. 24 minus the product of x and −8 is 96. Solve for x. 9 98. −10 minus the product of 12 and a is −154. Solve for a. 12 99. −13 plus the product of y and 10 is −53. Solve for y. −4 100. 100 plus the product of p and −2 is 50. Solve for p. 101. Seventeen plus half a number is 12. What is the number? −10 102. Fourteen minus half a number is −31. What is the number? 90 103. 48 is equal to eight times the quantity r minus 9. Find r. 15 104. −115 is equal to five times the quantity c plus 3. Find c. −26 105. The sum of 27 and five times a number is 38. Find the number. 11 106. The sum of −18 and three times a number is 10. Find the number. 28 25 5 3 107. 80 more than twice a number is −10. What is the number? −45 108. 23 more than twice a number is 15. What is the number? −4 109. 111 is 75 more than six times k. Find k. 110. 200 is 90 more than five times d. Find d. 6 22 111. −16 is 21 more than half of a number. Find the number. −74 112. 5 is 25 more than one-third of a number. Find the number. −60 113. Eleven less than four times a number is forty-nine. What is the number? 15 114. Twelve less than five times a number is thirty-three. What is the number? 9 115. Four less than one-fifth of a number is −16. What is the number? −60 116. Ten less than two-thirds of a number is 20. What is the number? 45 117. 19 less than three-fourths of n is 32. Find n. 118. 33 less than half of a is −5. Find a. 68 56 119. If 35 is added to three times a number, the result is 101. Find the number. 22 120. If 32 is added to four times a number, the result is 100. Find the number. 17 121. 46 is the difference of 18 and 7 times a number. What is the number? −4 122. 106 is the difference of 50 and 8 times a number. What is the number? −7 123. When a number is multiplied by −5 and then added to 16, the result is −24. Find the number. 8 124. When a number is multiplied by −8 and then added to −6, the result is 82. Find the number. −11 125. When 86 is subtracted from ten times a certain number, the result is 34. What is the number? 12 126. When 70 is subtracted from four times a certain number, the result is −10. What is the number? 127. When 22 is subtracted from three times a number, the result is −1. Find the number. 7 128. When 45 is subtracted from nine times a number, the result is 0. Find the number. 5 ALG catalog ver. 2.6 – page 142 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 15 HB Topic: Number problems (advanced). Directions: 0—(No explicit directions.) 16—Solve and check. 20—Solve using one variable. 21—Solve using two variables. 22—Solve using a system of equations. 39—Translate and solve. 40—Write an equation and solve. 1. Four times a certain number is the same as the number increased by 78. Find the number. 26 2. Five times a certain number is the same as the number decreased by 52. Find the number. −13 3. 35 less than half of a number is the same as three times the number. What is that number? −14 4. 27 more than half of a number is the same as twice the number. What is that number? 18 5. If you add three-fourths of a number to the number itself, you get 49. What is the number? 28 6. If you add three-fifths of a number to the number itself, you get −32. What is the number? −20 7. A number is decreased by 21. The result is multiplied by 2. The result is 8 more than the original number. Find the number. 50 8. A number is increased by 45. The result is multiplied by 2. The result is 18 less than the original number. Find the number. −108 9. When p is decreased by 36, the result is 8 less than one-third of p. Find p. 42 10. When m is increased by 6, the result is 3 less than one-fourth of m. Find m. −12 11. Five times the sum of a number and 12 is 32 less than four times the number. What is that number? −92 12. Six times the sum of a number and 15 is 99 more than three times the number. What is that number? 3 13. If you triple a number and then add 10, you get one-half of the original number. What is the number? −4 14. If you double a number and then subtract 75, you get one-third of the original number. What is the number? 45 15. Four times a number, increased by 36, is the same as 32 decreased by twice the number. Find the number. 16. Three times a number, decreased by 14, is the same as 22 decreased by five times the number. Find the number. 9 − 23 2 17. If 3 more than twice a number is decreased by 8 less than 4 times the number, the result is the same as the orginal number decreased by 16. What is the number? 9 18. If 10 less than twice a number is decreased by 5 less than 3 times the number, the result is same as the original number increased by 7. What is the number? −6 19. Eight times the sum of k and 5 is one more than the product of k and 5. Find k. −13 20. Five times the sum of a and 3 is one more than the product of a and 3. Find a. −7 Pairs of numbers 21. One number is 14 less than another. Their sum is 300. Find each number. 157, 143 22. One number is 21 more than another. Their sum is −423. Find each number. −222, −201 23. One number is six times another number. Their sum is −147. Find the numbers. −21, −126 24. One number is ten times another number. Their sum is 253. Find the numbers. 23, 230 25. One number is five times another number. Their sum is 3. What are the numbers? 1 , 5 26. One number is three times another number. Their sum is 3. What are the numbers? 3 , 9 27. One number is 12 less than three times another number. Their sum is 188. What are the numbers? 28. One number is 15 less than half of another number. Their sum is 6. What are the numbers? 14, −8 2 2 4 4 50, 138 29. One number is 14 more than another. When half of the smaller number is added to the larger number, the sum is 59. What are the numbers? 30, 44 30. One number is 8 more than another. When twice the larger number is added to the smaller number, the sum is 55. What are the numbers? 13, 21 ALG catalog ver. 2.6 – page 143 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HB 31. One number is 9 less than another. When 4 times the larger is subtracted from 12 times the smaller, the difference is 36. Find each number. 0, −9 32. One number is 17 less than another. When 3 times the smaller is subtracted from 4 times the larger, the difference is 21. Find each number. −30, −47 33. One number is twice another number. When the larger is diminished by 10, the result is 5 greater than the smaller. Find the numbers. 15, 30 34. One number is half of another. When the larger is diminished by 20, the result is 4 less than the smaller. Find the numbers. 16, 32 35. The sum of two numbers is −117. One number is 11 less than the other. Find the numbers. −53, −64 36. The sum of two numbers is 556. One number is 124 more than the other. Find the numbers. 216, 340 37. The sum of two numbers is −103. One number is 37 larger than the other. What are the numbers? 38. The sum of two numbers is 106. One number is 44 smaller than the other. What are the numbers? −33, −70 39. The sum of two numbers is −18. One number exceeds the other by 38. What are the numbers? 31, 75 40. The sum of two numbers is 43. One number exceeds the other by 75. What are the numbers? −16, 59 −28, 10 41. The sum of two numbers is 284. One number is three times the other. What are the numbers? 71, 213 42. The sum of two numbers is −216. One number is five times the other. What are the numbers? −36, −180 43. The sum of two numbers is −49. Twice the first number is equal to five times the second number. Find the two numbers. −35, −14 44. The sum of two numbers is 72. One-third of the first number is equal to two-thirds of the second number. Find the two numbers. 48, 24 45. The sum of two numbers is 95. The larger number increased by 21 equals the smaller number increased by 32. Find the numbers. 42, 53 46. The sum of two numbers is −10. The larger number decreased by 18 equals the smaller number increased by 18. Find the numbers. −23, 13 47. The sum of two numbers is 68. Six times the smaller number is 8 less than half the larger number. What are the numbers? 4, 64 48. The sum of two numbers is 14. Half the larger number is 7 more than twice the smaller number. What are the numbers? 0, 14 49. The sum of two numbers is 1000. The first number is 350 less than two-thirds of the other number. What are they? 190, 810 50. The sum of two numbers is 450. Twice the first number is 65 more than half the other number. What are they? 116, 334 51. The sum of two numbers is 45. If 4 times the smaller is increased by 3 times the larger, the result is 150. Find the numbers. 15, 30 52. The sum of two numbers is 99. If 10 times the smaller is decreased by 2 times the larger, the result is 30. Find the numbers. 19, 80 53. The difference of two numbers is 12. When twice the larger is subtracted from 5 times the smaller, the difference is −9. Find each number. 5, 17 54. The difference of two numbers is 5. When twice the larger is subtracted from 6 times the smaller, the difference is 26. Find each number. 14, 9 55. The difference of two numbers is 13. Four times the larger number is 68 more than twice the smaller. What are the two numbers? 8, 21 56. The difference of two numbers is 18. Twice the smaller number is 56 less than three times the larger. What are the numbers? 2, 20 57. The second of two numbers is 8 more than twice the first number. Their sum is 29. Find the two numbers. 7, 22 58. The second of two numbers is 4 more than 7 times the first number. Their sum is 76. Find the two numbers. 9, 67 59. The larger of two numbers is 24 more than half of the smaller. The sum of the two numbers is −3. Find the two numbers. −18, 15 60. The smaller of two numbers is 1 more than three-fifths of the larger. The sum of the numbers is 17. Find the two numbers. 7, 10 ALG catalog ver. 2.6 – page 144 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HB 61. The larger of two numbers is 10 less than twice the smaller. If half the larger is increased by 4 times the smaller, the result is 50. What are the numbers? 11, 12 63. The first of two numbers is 11 more than the other. If the first is increased by three times the other number, the result is 75. Find the two numbers. 62. The smaller of two numbers is 2 less than half the larger. If twice the larger is decreased by 5 times the smaller, the result is zero. What are the numbers? 8, 20 64. The first of two numbers is 9 less than the other. If the first is decreased by four times the other number, the result is −18. Find the two numbers. −6, 3 27, 16 65. Three numbers have the sum 207. The second number is 9 more than the first, and the third is 3 less than the second number. Find the three numbers. 64, 73, 70 66. Three numbers have the sum 107. The second number is 12 less than the first, and the third is 5 more than the second number. Find the three numbers. 42, 30, 35 67. Three numbers have the sum 81. The second is twice the first, and the third number is 6 more than the second. Find the three numbers. 15, 30, 36 68. Three numbers have the sum 129. The second is three times the first, and the third number is 11 less than the second. Find the three numbers. 20, 60, 49 69. The second of three numbers is 6 times the first. The third is 6 less than the first. The sum of the second and third numbers is 98. Find all three numbers. 70. The second of three numbers is 4 times the first. The third is 21 more than the first. The sum of the second and third numbers is 156. Find all three numbers. 27, 108, 48 14, 84, 8 71. The second of three numbers is 3 times the first. The third is 5 more than the second. If the third is decreased by twice the second, the result is −1. Find all three numbers. 2, 6, 11 72. The second of three numbers is 4 times the first. The third is 13 less than the second. If twice the first is decreased by the third, the result is −21. Find all three numbers. 17, 68, 55 ALG catalog ver. 2.6 – page 145 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HC Topic: Consecutive integers. Directions: 0—(No explicit directions.) 16—Solve and check. 20—Solve using one variable. 21—Solve using two variables. 22—Solve using a system of equations. 39—Translate and solve. 40—Write an equation and solve. 1. Find two consecutive integers whose sum is 139. 2. Find two consecutive integers whose sum is −91. −46, −45 69, 70 3. The sum of two consecutive integers is 211. Find the integers. 105, 106 4. The sum of two consecutive integers is −49. Find the integers. −25, −24 5. The sum of three consecutive integers is −342. What are the integers? −115, −114, −113 6. The sum of three consecutive integers is 108. What are the integers? 35, 36, 37 7. Find three consecutive integers whose sum is −99. 8. Find three consecutive integers whose sum is 135. −34, −33, −32 9. The sum of two consecutive integers is −75. What is the smaller integer? −38 44, 45, 46 10. The sum of two consecutive integers is −59. What is the smaller integer? −30 11. The sum of three consecutive integers is −171. Find the largest of the three integers. −56 12. The sum of three consecutive integers is 216. Find the largest of the three integers. 73 13. The sum of three consecutive integers is 282. What is the middle integer? 94 14. The sum of three consecutive integers is −501. What is the middle integer? −167 15. The of sum of four consecutive integers is −130. What is the smallest integer? −34 16. The sum of four consecutive integers is 182. What is the smallest integer? 44 17. Find four consecutive integers such that the sum of the second and fourth is l32. 64, 65, 66, 67 18. Find four consecutive integers such that the sum of the first and fourth is −35. −19, −18, −17, −16 19. Find three consecutive integers such that the sum of second and third is −17. −10, −9, −8 20. Find three consecutive integers such that the sum of the first and third is 40. 19, 20, 21 21. Find two consecutive integers such that the larger minus twice the smaller is −13. 14, 15 22. Find two consecutive integers such that the smaller plus twice the larger is −61. −21, −20 23. Find two consecutive integers such that half the smaller plus three times the larger is −32. −10, −9 24. Find two consecutive integers such that four times the larger minus half the smaller is 53. 14, 15 25. Find three consecutive integers such that three times the first, added to the third, is 102. 25, 26, 27 26. Find three consecutive integers such that four times the second, added to the third, is 66. 12, 13, 14 27. Find three consecutive integers such that the sum of the first and second is 9 more than half of the third. 28. Find three consecutive integers such that the sum of the second and third is 33 more than half of the first. 6, 7, 8 20, 21, 22 29. Find two consecutive integers such that the difference of their squares is 201. 100, 101 30. Find two consecutive integers such that the difference of their squares is 151. 75, 76 31. Find three consecutive integers such that the product of the first and second is 10 less than the square of the third. 2, 3, 4 32. Find three consecutive integers such that the square of the first is 14 less than the product of the second and third. 4, 5, 6 ALG catalog ver. 2.6 – page 146 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HC Odd & Even integers 33. The sum of two consecutive even integers is 114. What are the integers? 56, 58 34. The sum of two consecutive even integers is −86. What are the integers? −44, −42 35. Find two consecutive odd integers whose sum is −36. 36. Find two consecutive odd integers whose sum is 72. −19, −17 35, 37 37. The sum of three consecutive even integers is 174. Find the integers. 56, 58, 60 38. The sum of three consecutive even integers is −126. Find the integers. −44, −42, −40 39. The sum of three consecutive odd numbers is −219. What are they? −75, −73, −71 40. The sum of three consecutive odd integers is 189. What are they? 61, 63, 65 41. The sum of four consecutive even integers is −420. Find the smallest integer. −108 42. The sum of five consecutive even integers is 520. Find the smallest integer. 100 43. The sum of four consecutive odd integers is 336. Find the largest integer. 87 44. The sum of five consecutive odd integers is −305. Find the largest integer. −57 45. Find two consecutive odd integers such that 4 times the first integer is 29 less than 7 times the second. 46. Find two consecutive even integers such that twice the larger is 14 less than 5 times the smaller. 6, 8 5, 7 47. An odd integer is added to 3 times the next consecutive odd integer. The sum is 66. Find the two integers. 15, 17 48. An even integer is doubled. The result is 16 more than the next consecutive even integer. Find the two integers. 18, 20 49. Find three consecutive odd integers such that twice the sum of the smaller two integers is 25 more than 3 times the largest. 33, 35, 37 50. Find three consecutive even integers such that twice the sum of the larger two is 4 less than 5 times the smallest. 16, 18, 20 51. If the sum of three consecutive odd integers is decreased by 25, the result is twice the middle integer. Find the three odd integers. 23, 25, 27 52. If the sum of three consecutive even integers is decreased by 80, the result is equal to half the middle integer. Find the three even integers. 30, 32, 34 53. Find four consecutive even integers such that twice the sum of the first and fourth is 124. 28, 30, 32, 34 54. Find four consecutive odd integers such that twice the second, added to the last, is 61. 17, 19, 21, 23 55. Find four consecutive even integers such that the largest is 2 more than half the sum of the first three integers. 2, 4, 6, 8 56. Find four consecutive odd integers such that the smallest is 25 less than twice the sum of the largest two integers. 5, 7, 9, 11 Special 57. Are there four consecutive integers whose sum is −6? If so, what are they? −3, −2, −1, 0 58. Are there five consecutive integers whose sum is 10? If so, what are they? 0, 1, 2, 3, 4 59. Are there four consecutive even integers whose sum is 32? If so, what are they? no 60. Are there two consecutive odd integers whose sum is 58? If so, what are they? no 61. Are there four consecutive even integers whose sum is zero? If so, what are they? no 62. Are there five consecutive odd integers whose sum is zero? If so, what are they? no 63. Are there four consecutive odd integers whose sum is zero? If so, what are they? −3, −1, 1, 3 64. Are there five consecutive even integers whose sum is zero? If so, what are they? −4, −2, 0, 2, 4 ALG catalog ver. 2.6 – page 147 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HC 65. Find three consecutive integers such that the sum of the first and third, decreased by twice the second, is 0. any three con. integers 66. Find four consecutive integers such that the sum of the second and third equals the sum of the first and fourth. any four con. integers 67. Find three consecutive integers such that second is 2 more than half the sum of the first and third. 68. Find three consecutive integers such that the sum of the first and third is 6 less than twice the second. not possible not possible 69. Julio said, “I am thinking of two consecutive even integers. If I take the first one, multiply it by 4 and subtract 22, I get the next even integer.” What integers was Julio thinking about? 8, 10 70. Rosanna said, “I am thinking of two consecutive integers. If I take first one, divide it by 2 and add 18, I get the three times the next integer.” What integers was Rosanna thinking about? 6, 7 71. Henry made up a problem about three consecutive odd integers. He said, “The first decreased by the third equals the second decreased by 9.” What integers did he have in mind? 3, 5, 7 72. Theresa made up a problem about three consecutive integers. She said, “The first decreased by half of the third equals the second decreased by 15.” What integers did she have in mind? 26, 27, 28 73. Explain why two consecutive integers always have an odd sum. n + (n + 1) = 2n + 1 74. Explain why four consecutive integers always have an even sum. n + (n + 1) + (n + 2) + (n + 3) = 4n + 6 = 2(n + 3) 75. Explain why three odd integers can never have an even sum. answers will vary 76. Explain why the sum of five odd integers can never equal zero. answers will vary 77. Jessica thought of a relationship between two consecutive odd integers. She said, “If you subtract the second from the first and divide by 2, you get the number 1.” What integers did Jessica have in mind? 78. Marcus thought of a relationship between three consecutive even integers. He said, “The second even integer is half the sum of the first and third.” What integers was Marcus thinking about? any two cons. odd integers 79. Show that the following statement is true. “Given any two consecutive integers, the square of the smaller subtracted from the square of the larger is one more than twice the smaller.” (n + 1)2 − n2 = 2n + 1 any two cons. even integers 80. Show that the following statement is true. “Given any two consecutive even integers, the square of the smaller subtracted from the square of the larger is four times the smaller, plus 4.” (n + 2)2 − n2 = 4n + 4 ALG catalog ver. 2.6 – page 148 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HD Topic: Coins, stamps, etc. Directions: 0—(No explicit directions.) 16—Solve and check. 20—Solve using one variable. 21—Solve using two variables. 22—Solve using a system of equations. 39—Translate and solve. 40—Write an equation and solve. 1. A boy has 7 more dimes than quarters. The total value of the coins is $4.90. Find the number of dimes and quarters. 12 q, 19 d 2. Patty has a total of $1.60 in pennies and nickels. There are 10 more pennies than nickels. Find the number of each. 25 n, 35 p 3. Denyse spent $10.60 on stamps. She bought 15 more 10/ c stamps than 25/c stamps. How many 10/ c stamps did she buy? 41 4. There are 3 more dimes than nickels in a sack of coins. The value of the coins is $8.85. How many nickels are there? 57 5. There are 81 coins in a parking meter. There are 15 fewer quarters than dimes in a parking meter. The value of the coins is $13.05. How many dimes are there? 48 6. Some loose stamps are worth $2.10. There are 24 fewer 5/ c stamps than 1/ c stamps. How many 5/ c stamps are there? 31 7. In his coin box, Brian has 12 fewer nickels than dimes. The value of his nickels and dimes is $2.40. How many each type does he have? 20 d, 8 n 8. Thien has quarters and nickels in his pocket. He has ten fewer nickels than quarters, and their total value is $6.10. How many of each does he have? 22 q, 12 n 9. In a spy movie, agent 707 sits at the casino table with a pile of chips worth $30,000. There is an equal number of $100 and $50 chips. Figure out the total number of chips. 400 10. In a western film, the desparado sits at a poker table with a stack of coins worth $50. There are as many silver dollars as there are quarters. Figure out the total number of coins. 80 11. In Robin’s stamp collection, there is an equal number of 45/ c and 22/c stamps. Their total face value is $10.72. How many of each are there? 16 12. Frank collects baseball cards. He has the same number of $5 cards as $2 cards, and their total value is $252. How many of each does he have? 36 13. A parking meter contains 4 times as many nickels as quarters. The meter contains $4.05 total. How many coins of each type are there? 9 q, 36 n 14. A piggy bank contains 10 times as many pennies as nickels. The total value of the coins is $1.35. How many coins of each type are there? 9 n, 90 p 15. Sally has $1.50 worth of change in her pocket—all nickels and dimes. She has three times as many nickels as dimes. Find the number of each. 6 d, 18 n 16. Marty, the hot dog vendor, has $11.20 in change—all quarters and dimes. He has six times as many quarters as dimes. Find the number of each. 42 q, 7 d 17. Jaime has one-third as many nickels as quarters. Their value is $2.40. What is the total number of coins? 12 18. Louise has one-fourth as many 8/ c stamps as 14/ c stamps. Their value is $4.48. What is the total number of stamps? 35 19. At the end of the day, a postal worker has 1 21 times as many 25/ c stamps as 45/c stamps. Their combined value is $19.80. How many 45/c stamps does she have? 24 20. After closing down his lemonade stand, David finds that he has 3 12 times as many dimes as quarters. Their combined value is $15.60. How many dimes does he have? 91 21. A change purse contains $6.55 in dimes and quarters. If the number of dimes is 5 more than 3 times the number of quarters, how many of each coin are there? 11 q, 38 d 22. A coin-operated washing machine contains $19.95 in nickels and quarters. If there is 1 less nickel than 3 times the number of quarters, how many of each coin are there? 50 q, 149 n 23. Bernice has $2.25 in dimes and nickels. She has 4 fewer nickels than 5 times her number of dimes. Find out how many dimes she has. 7 24. Tony has $1.50 in pennies and nickels. He has 10 more pennies than twice his number of nickels. Find out how many nickels he has. 20 25. A change purse contains 120 coins worth $10. They are all nickels and dimes. How many of each kind are there? 40 n, 80 d 26. A cash register contains 53 coins worth $4.40. They are all nickels and dimes. How many of each kind are there? 35 d, 18 n ALG catalog ver. 2.6 – page 149 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HD 27. Earl has 28 coins, all dimes and quarters. How many of each does he have, if their total value is $5.20? 16 q, 12 d 28. Mr. Loren has 36 coins, all 50/ c pieces and quarters. How many of each does he have, if their total value is $15.50? 26 h, 10 q 29. Mrs. Nunez has nickels and pennies in her purse. She has a total of 40 coins, and they are worth $2.40. How many of each does she have? 25 n, 15 p 30. Manny has dimes and pennies in his pocket. He has a total of 38 coins, and they are worth $1.91. How many of each does he have? 17 d, 21 p 31. A stack of 130 half-dollars and quarters is worth $40. Find the number of each type of coin. 30 h, 100 q 32. A stack of 100 half-dollars and quarters is worth $45. Find the number of each type of coin. 80 h, 20 q 33. A newspaper girl collects $13.45 in dimes and quarters. If there are 70 coins in all, how many quarters does she have? 43 34. An ice cream vendor collects $11.85 in dimes and quarters. If there are 60 coins in all, how many dimes does he have? 21 35. Ms. Swenson puts quarters and nickels aside for paying tolls. She has a total of 18 coins, and they are worth $3.45. How many quarters does she have? 36. Bob saves quarters and dimes for the laundromat. He has a total of 32 coins, and they are worth $7.10. How many dimes does he have? 6 11 37. The value of 92 stamps is $14. There are all 10/ c and 25/ c stamps. Find the number of 10/c stamps. 60 38. The value of 21 stamps is $1.65. There are all 5/ c and 10/ c stamps. Find the number of 5/ c stamps. 9 39. Paul has 64 coins in his piggy bank. They are all nickels and dimes, and their total value is $3.65. How many nickels does he have? 55 40. Sheila has 26 coins in her toy bank. They are all nickels and dimes, and their total value is $2.45. How many dimes does she have? 23 41. Martina has twice as many dimes as nickels, and 5 fewer quarters than nickels. The value of all her coins is $2.25. Find how many nickels she has. 7 42. Celeste has 4 times as many nickels as dimes, and 6 more quarters than dimes. The value of all her coins is $4.25. Find how many nickels she has. 20 43. A coin-sorting machine contains nickels, dimes and quarters worth $5.50. There are 3 times as many nickels as dimes, and 2 more quarters than dimes. How many of each type of coin are there? 44. A parking meter contains pennies, nickels and dimes worth $2.50. There 2 fewer pennies than nickels, and 3 times as many dimes as nickels. How many of each type of coin are there? 5 p, 7 n, 21 d 30 n, 10 d, 12 q 45. Toby has 3 more nickels than dimes and 8 fewer nickels than pennies. If the value of his coins is $2.66, how many dimes does he have? 15 46. Mr. Dubois has 6 more dimes in his pocket than nickels, and twice as many pennies as dimes. If the value of his coins is $1.40, how many pennies does he have? 20 47. A vending machine is filled with $12 worth of change. There are twice as many nickels as dimes, and 6 more dimes than quarters. Find the number of each type of coin. 24 q, 30 d, 60 n 48. One night a waiter received $11.30 in tips—all coins. He had 3 times as many dimes as nickels, and 10 more quarters than dimes. Find the number of each type of coin. 34 q, 24 d, 8 n ALG catalog ver. 2.6 – page 150 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HE Topic: Age problems. Directions: 0—(No explicit directions.) 16—Solve and check. 20—Solve using one variable. 21—Solve using two variables. 22—Solve using a system of equations. 39—Translate and solve. 40—Write an equation and solve. 1. Bob is six years older than his sister, and the sum of their ages is 32. How old is Bob? 19 2. Marie is 13 years older than Joanna. The sum of their ages is 55. How old is Joanna? 21 3. Romulo is twice as old as his nephew. The sum of their ages is 108. What are their ages? R 72, n 36 4. Mrs. Mitchell is 3 times older than her daughter. The sum of their ages is 52. How old is each person? M 39, d 13 5. Frank is 12 years old, and his mother is 39. In how many years will Frank be half as old as his mother? 6. Bridgette is 10 years old, and her father is 42. In how many years will she be one-third his age? 6 Emil, who just celebrated his 17th birthday, has a 50 year old aunt. In how many years will Emil half as old as his aunt? 16 15 7. Mr. Valmonte, who is 30 years old, has a one year old baby girl. In how many years will the girl be a quarter of her father’s age? 10 8. 9. Serina is nine years old. Her mother is 39 years old. In how many years will her mother be three times as old as Serina? 6 10. Imagine that you are 15 years old and your father is 45. In how many years will your father be twice as old as you? 15 11. A woman is now 26 years old and her baby boy is 2 years old. In how many years will the mother be five times as old as her son? 4 12. A man is 61 years old and his grandson is 7. In how many years will the man be four times as old as his grandson? 11 13. Gabriella is 29 years old. Her mother is 50. How many years ago was the mother twice as old as Gabriella? 8 14. Sean is 12 years old. His father is 40. How many years ago was the father five times as old as Sean? 15. Mike is 18 years old and his grandmother is 66 years old. How many years ago was the grandmother 9 times as old as Mike? 12 16. Marilyn just turned 30 years old. Her uncle is 64 years old. How many years ago was the uncle three times as old as Marilyn? 13 17. Barbara is 5 years older than Roxanne. In 6 years, the sum of their ages will be 35 years. How old is each person now? R 9, B 14 18. Mr. Rodriguez is 25 years older than his son. In 10 years, the sum of their ages will be 59. How old is each now? R 32, s 7 19. Anna is twice as old as Bettye. Seven years ago, the sum of their ages was 13. How old are they now? 20. Duane is twice as old as Erik. Five years ago, the sum of their ages was 26. How old is each person now? D 24, E 12 A 18, B 9 5 21. Kelly’s age plus her father’s age is 32 years. In 12 years, Kelly will be one-third as old as her father. Find her age now. 2 22. The sum of the ages of a father and son is 46 years. In 2 years, the son will be one-fourth as old as the father. What is the father’s age now? 38 23. In 4 years, Kathy will be 3 times as old as Andy. The sum of their ages is now 56. How old is each person? K 44, A 12 24. In 10 years, Mr. Yuen will be twice as old as his daughter. Their ages now add up to 61. How old is each person? Y 44, d 17 25. Lindsay is now 3 times as old as Greg. In five years, she will be twice as old as Greg. Find their ages now. L 15, G 5 26. Sheila is 5 times as old as her nephew. In four years, she will be 3 times as old as her nephew. Find their ages now. S 20, n 4 27. Lee is 4 times older than Nick. In 10 years, he will be twice as old as Nick. What is each person’s age now? L 20, N 5 28. Mrs. Salazar is 6 times older than her grandson. In eight years, she will be 4 times as old as her grandson. What is each person’s age now? H 72, g 12 ALG catalog ver. 2.6 – page 151 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HE 29. Susan is twice as old as her brother. Five years ago Susan was 3 times as old as her brother. Find her age now. 20 30. George is 5 times as old as his son. Two years ago George was 7 times as old as son. Find his son’s age now. 6 31. Cassie is 9 years older than her brother. Three years ago, Cassie was 4 times as old as her brother. How old is each person now? C 15, b 6 32. Ms. Reid is eighteen years older than her son. One year ago, she was three times older than he was. How old is each person now? R 28, s 10 33. Luke is 2 years younger than his friend. Five years ago, Luke was three-fifths of his friend’s age. How old is Luke now? 8 34. Nina is 5 years younger than Fred. In 6 years, Nina will be three-fourths as old as Fred. How old is Fred now? 14 35. Dierdre’s age is one-fourth of her aunt’s age. In 12 years, Dierdre will be half as old as her aunt. Find their ages now. D 6, a 24 36. Sherri is half as old as her mother. Twelve years ago, she was 31 of her mother’s age. Find their ages now. 37. Ben is 8 years older than Frank. In 3 years, Ben will be 1 21 times older than Frank. Find Ben’s present age. 21 38. Martha is 7 years younger than George. In 7 years, George will be 1 13 times older than Martha. Find Martha’s present age. 14 39. Katy is 5 years younger than Margaret. In 4 years, four times Margaret’s age will equal six times Katy’s age. How old is Katy now? 6 40. Joe is 15 years younger than his brother. Five years from now, three times his own age will equal twice his brother’s age. How old is Joe now? 25 41. Mr. Jeffries is twice as old as his daughter. In six years Mr. Jeffries’ age will be three times what his daughter’s age was six years ago. How old is each person now? J 48, d 24 42. Ms. Nakao is three times older than her cousin. In two years, Ms. Nakao will be four times as old as her cousin was two years ago. How old is each person now? N 30, c 10 43. The sum of Stuart’s and Tracy’s ages is 27. Stuart’s age five years from now will be twice what Tracy’s age was two years ago. How old is each person now? 44. The sum of Martin and Shalene’s ages is 20. Shalene’s age one year from now will be nine times Martin’s age one year ago. How old is each person now? S 17, M 3 S 15, T 12 45. The ages of a mother and daughter add up to 56 years. Four years ago, the mother was 2 times older than the daughter. How old is daughter now? S 24, m 48 46. The ages of a father and son add up to 59 years. 13 years ago, the father was 10 times older than the son. How old is the father now? 43 20 47. A woman was 30 years old when her daughter was born. The mother’s present age is 6 years more than 3 times the daughter’s age. How old is the mother? 48. A man was 25 years old when his son was born. The father’s present age is 3 years less than 5 times the son’s age. How old is the son? 7 42 ALG catalog ver. 2.6 – page 152 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HF Topic: Time, distance, rate. Directions: 0—(No explicit directions.) 16—Solve and check. 20—Solve using one variable. 21—Solve using two variables. 22—Solve using a system of equations. 39—Translate and solve. 40—Write an equation and solve. 1. Two trains left the same station at the same time. Train A traveled north at 28 mph and Train B traveled south at 52 mph. How much time passed before they were 320 miles apart? 4 hrs 2. Two boys on bicycles start from the same place at the same time. One rides at 15 km/hr, and the other at 9 km/hr. They travel in opposite directions. How much time will pass before they are 48 km apart? 2 hrs 3. Two cars pass each other on the highway, going in opposite directions. If their rates are 95 and 85 kph, how long before they are 240 km apart? 1 1 hrs 4. 3 Two airplanes take off at approximately the same time, but fly in opposite directions. One goes west at 450 mph, the other goes east at 500 mph. How long after they take off will they be 2280 miles apart? 2 25 hrs 5. Two fishing boats pass each other going in opposite directions. Their rates are 20 km/hr and 16 km/hr. After how many minutes will they be 21 km apart? 6. A car and a motorcycle pass each other going in opposite directions. Their rates are 48 and 42 mph. After how many minutes will they be 75 miles apart? 50 Two trains pass each other on parallel tracks. One train is going west at 90 kph, the other is going east at 42 kph. After how many minutes will they be 121 km apart? 55 35 7. A car and a truck leave a highway rest area at the same time. The car travels south at 55 mph and the truck travels north at 40 mph. After how many minutes will they be 38 miles apart? 24 8. 9. Two ships pass each other at 2:00 in the afternoon. One ship is going north at 12 km/hr and the other is going south at 9 km/hr. At what time will they be 105 km apart? 7:00 pm 10. Two trains, going in opposite directions, pass each other at 10:30 in the morning. Their rates are 65 and 85 mph. At what time will they be 450 miles apart? 1:30 pm 11. At 1:30 in the afternoon, two cars pass each other on the interstate. One car is heading west at 60 mph. The other is heading east, pulling a trailer at 48 mph. At what time will they be 252 miles apart? 3:50 pm 12. Two Girl Scout troups leave the same campground at 8:30 in the morning. One troup hikes north at a rate of 2 21 mph, the other hikes south at 3 12 mph. At what time will they be 15 miles apart, if they keep walking? 11:00 am 13. Two boats, originally 35 km apart, sail toward each other. The first goes at a speed of 8.5 kph. The second goes at a speed of 5.5 kph. How long until they meet? 2 1 hrs 14. An Air Force jet and a refueling plane, which are initially 210 km apart, fly toward each other. If their rates are are 800 and 250 km/hr, how long will it take for them to meet? 1 hr 15. At 11:30 am, two cars start traveling toward each other from cities that are 170 km apart. One car’s rate is 45 km/hr, and the other car’s rate is 40 km/hr. At what time of day will they meet? 1:30 pm 16. At 9:00 in the morning, two fishing boats begin heading toward each other on the open sea. Their rates are 8 km/hr and 14 km/hr, and they start out 121 km apart. At what time of day will they meet? 2 5 2:30 pm 17. How many minutes will it take an airplane, flying at 370 mph, to intercept another airplane that is 95 miles away, if the second airplane is heading toward the first at 200 mph? 10 18. How many minutes will it take a helicopter, flying at 120 km/hr, to reach a naval vessel that is 45 km away, if the vessel is heading toward the helicopter at 30 km/hr? 18 19. Two people, who are 315 meters apart, start walking toward each other at the same time. If they walk at rates of 1.5 and 2 m/sec, how much time will pass before they meet? 90 sec 20. At the same time and place, two people start running around a 440 yard track. They go in opposite directions, and their speeds are 15.5 and 17.5 ft/sec. How long before they pass each other? 40 sec ALG catalog ver. 2.6 – page 153 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HF “Round trips” 21. A fisherman takes his boat out to sea and then back to the harbor. The entire trip lasts 8 hours. If he travels out at 18 mph and follows the same route back at 14 mph, how many miles does he travel altogether? 126 mi 22. Mrs. Pomroy takes her Sunday drive into the country at an average rate of 60 km/hr. She returns over the same road at an average rate of 48 km/hr. If the round-trip takes 3 hours, how many kilometers does she travel altogether? 160 km 23. A round trip in a helicopter lasts 4 12 hours. The average rate going is 160 km/hr, and the average rate returning is 80 km/hr. Find the total distance flown by the helicopter. 480 km 24. A barge travels up the Mississippi River at 12 mph and then back to its original port at a rate of 15 mph. The round trip takes 7 21 hours, What is the total distance traveled by the barge? 100 mi 25. Susan started her bicycle ride at 1:30 in the afternoon. After riding a certain distance, she got a flat tire and had to walk home. She arrived home at 4:30. If Susan averaged 21 km/hr on her bicycle and 6 km/hr walking, how far did she ride before getting the flat tire? 14 km 26. At 12:30, Martin left his house to go on a bike ride. After riding a certain distance, he got a flat tire and had to walk home. He arrived home at 3:00 the same afternoon. If Martin rode at 12 mph and walked at 3 mph, how far did he ride before getting the flat tire? 6 mi 27. Jason forgot that his bicycle was locked up at school. So he ran to the school to get the bicycle, and then rode it back home. His running speed was 6 mph and his riding speed was 18 mph. Find the distance between his home and school, if the round trip took 20 minutes. 1.5 mi 28. A girl runs to the park to get her bicycle. Then she rides the bicycle back home. The total time for the round-trip is 45 minutes. Her running speed is 8 kph and her riding speed is 24 kph. How far is the park from her home? 4.5 km 29. At 10:30 in the morning, Laura’s mom drove her to a friend’s house, where Laura stayed for 2 hours. Then she walked back home, and arrived there at 2:00 in the afternoon. If her mom averaged 48 km/hr in the car, and she walked at 6 km/hr, find the distance between Laura’s house and her friend’s. 8 km 30. A gasoline truck leaves the refinery at 11:45 am. After making a round trip to deliver the gasoline, the truck returns at 2:15 in the afternoon. The truck’s average speed going is 30 mph, and returning is 45 mph. If it takes one hour to unload the gasoline, find out how far it is from the refinery to the delivery point. 27 mi 31. As part of Jane’s workout, she runs to the store, buys a snack, and walks home. She spends 10 minutes in the store, and the whole trip takes one hour. Her running speed is 6 mph, and her walking speed is 3 mph. How far is the store from her home? 1 2 mi 32. Dewayne ran from his house to the gym, exercised for 45 minutes, and ran home. His speed running to the gym was 12 km/hr, and returning was 13 km/hr. If the entire workout, including the running, lasted 2 hours, figure out the distance between Dewayne’s house and the gym. 7.8 km 33. On a trip to the mountains, Ms. Jacobs drove her car at an average rate of 50 mph. Due to bad road conditions, the return trip took 3 hours longer, and she averaged only 30 mph. Find out how much time she spent driving home. 7.5 hrs 34. John drove from his college to his parents’ house at an average rate of 55 kph. On the return trip there was not as much traffic, so it took an hour less and and John’s average rate was 80 kph. How much time did he spend driving to his parent’s house? 3.2 hrs 35. Freddie walks to the top of a hill, then rides his skateboard back down. He walks at 4 mph and skateboards at 10 mph. If it takes 21 hour less time to go down the hill, find out how much time Freddie spends walking. 5 hr 36. Freddie gets a car ride to the top of a hill, then rides his skateboard back down. The downhill ride takes 15 minutes longer than the uphill. If the car averages 32 mph, and Freddie rides his skateboard at 8 mph, find out how much time he spends skateboarding. 3 6 1 3 hr “Catching up” 37. A police car receives a radio call to catch a vehicle that is speeding down the highway at 70 mph. The police car, which is 14 miles behind the vehicle, drives after it at 98 mph. How long will it take for the police car to overtake the vehicle? 1 hr 2 38. Two trains head in the same direction on parallel tracks, but Train E is 30 km in front of Train F. If Train E averages 42 km/hr and Train F averages 60 km/hr, how long will it take for the faster train to catch up with the slower? 1 2 hrs ALG catalog ver. 2.6 – page 154 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3 HF 39. Steve and Helen ride their mountain bikes on a dirt road when Steve gets a flat tire. He stops to fix it. By the time he starts riding again, Helen is one mile ahead. If Helen’s average speed is 8 mph and Steve’s is 10 mph, find the distance from where he got the flat tire to where he eventually catches up. 5 mi 40. Mrs. Quintaro started driving to an out-of-town conference. When she was 5 km away from her office, she called her assistant and asked him to meet her there. Mrs. Quintaro and her assitant drove along the same route and averaged 40 and 48 kph, respectively. If they arrived at the same time, find out how far the conference was from their office. 30 km 41. A car leaves a highway rest area 1 21 hours after a truck. Both are traveling in the same direction. In how many hours will the car pass the truck, if their respective rates are 90 and 60 kph? 3 42. One hour after Pete left on a canoe trip down the river, his friend Sam started after him in kayak. Pete traveled at 16 kph. Sam, who left from the same place, traveled at 22 kph. How long did it take Sam to catch up with Pete? 2 2 hr 3 43. Thirty minutes after Eileen leaves on a bicycle trip, her brother gets in a car and drives after her. Eileen rides at average rate of 16 kph, and her brother drives the car at 48 kph. How long will it take for him to catch up? 1 hr 44. Martin left the harbor in a sailboat and headed north at 24 km/hr. Twenty minutes later, Leslie left the harbor in a motorboat and headed in the same direction at 30 km/hr. How long before she met up with Martin? 1 1 hrs 45. Marshall rides his bike to school, and forgets his lunch. Ten minutes after he leaves the house, his mother starts to drive after him in a car. The speed of the car is 22 mph. Marshall rides his bike at 12 mph. How many minutes will it take his mother to catch up? 12 46. A jogger, starting at a certain place, runs at a constant speed of 10 kph. Ten minutes later, someone else starts jogging from the same place. If the second jogger runs at a rate of 14 kph and follows the same course, how many minutes will it take to catch up with the first jogger? 25 47. Freddie and I have a race. He rides his skateboard and I ride my bicycle. I give him a lead time of 15 minutes. His speed is 6 mph and mine is 21 mph. How far will I have to ride before I catch up? 2.1 mi 48. A truck crosses the county line at 60 mph. Five minutes later, a sheriff crosses the border in hot pursuit, driving at 90 mph. How far from the border will the sheriff overtake the trucker? 15 mi 49. At 9:30 am, Josh and Marlee leave on a bicycle trip. Their average speed is 15 mph. At 11:30 am, Richard leaves from the same place and starts driving after them in his car. His average speed is 35 mph. At what time of day will Richard meet up with the bicyclists? 1:00 pm 50. Brian leaves Eagle Nest Campground at 8:30 am, and hikes along a trail at 4 kph. One hour later, Rob leaves the same campground, and hikes along the same trail at 6 kph. At what time of day will he catch up with Brian? 11:30 am 51. At 12:30 in the afternoon, Francis left his house to go on a bike ride. One hour later, his sister set out on the same route on her bicycle. If Francis’ speed was 14 mph and his sister’s was 18 mph, find the time when she caught up with him. 4:00 pm 52. A small plane left the airport at 11:15 am, and flew west at 280 km/hr. at 1:15 pm, a jet left the airport and flew in the same direction at 760 km/hr. At what time did the jet overtake the small plane? 4 3 2:25 pm Special 53. A cyclist had been traveling 24 km/hr for 8 hours when he was overtaken by a motorist who left the same starting point 5 hours after the cyclist. Find the motorist’s speed. 64 kph 54. Mr. Applebaum had been hiking for 5 hours when he was passed by by Ms. Brooks, who left the same starting point 21 hour later. If Mr. Applebaum hiked along at 3 mph, find the rate of Ms. Brooks. 3 1 mph 3 55. A motorcycle leaves a highway rest area 2 hours after 56. A passenger train leaves a station 2 12 hours after a a car, and heads in the opposite direction. After freight train, and heads in the opposite direction. traveling for 1 12 hours at 64 kph, the motorcyle is After traveling for one hour at 54 mph, the passenger 376 km away from the car. Find the speed of the car. train is 173 miles away from the freight train. Find the speed of the freight train. 34 mph 80 kph ALG catalog ver. 2.6 – page 155 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HF 57. At 11:00 in the morning, Fred and Stuart leave town in their cars and travel in opposite directions. At 5:00 in the afternoon, they are 378 mi apart. Find Stuart’s average rate, if it is twice as fast as Fred’s. 42 mph 59. Two cars travel in opposite directions from the same starting point. The rate of one car is 10 km/hr faster than the rate of the other car. After 4 hours, the cars are 472 km apart. Find each car’s rate. 54 and 64 kph 58. Two jets leave Vancouver at the same time, one flying east and one flying west. The rate of the second jet is 100 km/hr faster than the first. In 3 hours, they are 4200 km apart. Find the rate at which the faster jet is traveling. 750 kph 60. At 1:30 in the afternoon, a commuter train and an express train pull out of the station and travel in opposite directions. The express train goes three times faster than the other. at 2:45 in the afternoon, they are 150 miles apart. Find the speed of each train. 30 and 90 mph 61. Mr. Brunnelle went on a 114 km bike ride over a mountain pass. He averaged 24 km/hr going up the mountain and 36 km/hr going down the other side. If the time spent going down was one hour less, find how many kilometers were traveled in the uphill part of the ride. 60 62. Vannessa sailed her boat a total of 50 miles in a race from the harbor to the lighthouse and back again. She averaged 9 mph to the lighthouse, and 12 mph on the return trip, which took a half-hour less time. How long was the route to the lighthouse (it was not necessarily a straight line). 24 63. A car traveled from one city to another at an average speed of 90 km/hr. The car returned via the scenic route, which was 20 km longer and took an extra half-hour. If the rate returning was 80 km/hr, find the total distance traveled by the car. 380 km 64. On a trip to the mountains, Lori drove at a rate of 55 mph. On the trip back home, she decided to try a route that was 10 miles shorter. As it turned out, she took an extra hour to get home and averaged only 40 mph. Find the total distance she traveled. 356 23 mi ALG catalog ver. 2.6 – page 156 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HG Topic: Mixture problems. Directions: 0—(No explicit directions.) 16—Solve and check. 20—Solve using one variable. 21—Solve using two variables. 22—Solve using a system of equations. 39—Translate and solve. 40—Write an equation and solve. 1. How much water should be added to 2.2 liters of pure acid in order to obtain a solution that is 55% acid? 1.8 L 2. How much water should be added to 75 mL of pure lemon juice in order to get a mixture that is 20% lemon juice? 300 mL 3. Most paints have to be thinned before they can be applied with a roller. How many ounces of turpentine should be added to 1 gallon (128 ounces) of paint, so that the final mixture is 60% turpentine? 4. Most indoor plant foods have to be diluted before they can be used. How many ounces of water should be added to 2.5 ounces of plant food, so that the final mixture is 95% water? 47.5 oz 192 oz 5. How much water must be added to 42 liters of a liquid fertilizer that is 0.8% nitrogen to get a mixture that is 0.3% nitrogen? 70 L 6. How much water must be added to one liter of a window cleaner that is 45% ammonia to get a solution that is 20% ammonia? 1.25 L 7. How much water must be added to 48 mL of a metal cleaner that is 63% acid to get a solution that is 48% acid? 15 mL 8. How much water must be added to 6 quarts of radiator fluid that is 4% glycol to get a mixture that is 2.5% glycol? 3.6 q 9. A restaurant has some pancake batter that is too thin. It weighs 12 kilograms and contains 85% flour. How many kilograms of flour should be added so that the final mixture is 90% flour? 6 kg 10. A bakery has some cookie dough that is not sweet enough. It weighs 10 kilograms and contains 30% sugar. How many kilograms of sugar should be added so that the final mixture is 37.5% sugar? 1.2 kg 11. Imagine you have 6 gallons of fruit punch. It is 25% soda and 75% juice. If you wanted it to contain only 60% juice, how much soda would you have to add? 1.5 gal 12. Imagine you have 15 quarts of fuel for your moped. It is 85% gas and 15% oil. If you wanted the fuel to contain only 75% gas, how much oil should you add? 2q 13. A material scientist has 35 grams of an alloy that is 76% copper and 24% zinc. How much pure copper should be added, so that the content is raised to 79%? 5 g 14. An aircraft parts company has 130 kg of an alloy that is 80% aluminum and 20% magnesium. How much pure magnesium should be added, so that the content is raised to 35%? 30 kg 15. A 12-liter antifreeze solution is made up of water and alcohol. How much pure alcohol must be added to raise the concentration from 20% to 50%? 4.8 L 16. A 6-liter cleaning solution is made of up water and detergent. How much pure detergent must be added to raise the concentration from 5% to 10%? 0.2 L 17. A concentrated drink is 22% fruit juice. If the proper amount is 10% fruit juice, how much water must be added to 15 quarts of the concentrated drink? 18 q 18. A concentrated cleaner is 25% alcohol. If the proper amount is 7.5% alchohol, how much water must be added to 12 ounces of the concentrated cleaner? 28 oz 19. A wall covering compound is made up of water and plaster-of-paris. How many kilograms of water must be added to 7 kilograms of the compound, in order to reduce the concentration of plaster from 45% to 35%? 2 kg 20. Some bricks are joined together with a mixture of water and clay. How many kilograms of water must be added to 14 kilograms of the mixture, in order to reduce the concentration of clay from 62% to 56%? 1.5 kg Three different percentages 21. Chemical A is 60% acid and chemical B is 36% acid. How much of each should be mixed together to get 120 oz of a chemical that is 52% acid? 80 oz–A, 40 oz–B 22. Two metal alloys, containing 6% zinc and 16% zinc are to be mixed together. How much of each is needed to get 150 kg of an 14% zinc alloy? 30 kg–6%, 120 kg–16% 23. Two kinds of milk, which have butterfat contents of 1% and 3.5%, are to be mixed together. How many liters of each kind are needed to produce 10 liters of low-fat milk (2% butterfat)? 6 L–1%, 4 L–3.5% 24. A jeweler works with two kinds of metals, the first contains 72% silver and second contains 87% silver. How many grams of each should be melted together to get 50 grams that is 84% silver? 10 g–72%, 40 g–87% ALG catalog ver. 2.6 – page 157 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HG 25. A painter has two types of solvent, which contain 4% and 10% methanol. How much of each should be mixed together to obtain 6 liters of a solvent that is 7.5% methanol? 2.5 L–4%, 3.5 L–10% 26. A pharmacist has two anti-bacterial solutions, which contain 14% and 24% iodine. How much of each should be mixed to obtain 36 mL of a solution that is 16% iodine? 28.8 mL–14%, 7.2 mL–24% 27. Reformate is used to boost the octane rating of gasoline. Assume there are two kinds of gasoline, which contain 20% and 12% reformate. How much of each should be mixed together to produce 3000 gallons of gasoline that is 18% reformate? 28. Pine-oil is often used in household cleaning products. Assume there are two types of detergent, which contain 3% and 8% pine-oil. How much of each should be mixed together to produce 240 ounces of detergent that is 6% pine-oil? 144 oz–8%, 96 oz–3% 2250 gal–20%, 750 gal–12% 29. A beaker contains 20 mL of a solution that is 12% cetyl alcohol (or CEA), a moisturizer often found in shampoo. How much of a solution that is 45% CEA should be added, so that the final mixture is 30% CEA? 24 mL 30. A beaker contains 6 mL of a chemical that is 35% glycine, an important amino acid. How much of a another chemical that is 50% glycine should be added, so that the resultant chemical is 46% glycine? 31. A road repair company has two kinds of patching material, which contain 30% and 60% asphalt. How much of 30% asphalt should be added to 230 kg of the 60% asphalt, so that the mixture contains 42% asphalt? 345 kg 32. A jewelry designer works with two types of precious metal, which are 34% and 62% gold. How much of the 62% gold should be added to 7.5 grams of the 34% gold, so that the mixture contains 50% gold? 16.5 mL 10 g Special 33. A 21 gram mixture of water and potassium is 0.8% potassium. How much water must be evaporated so that the mixture is 1.4% potassium? 9 g 34. A 45 ounce mixture of water and calcium is 4% calcium. How much water must be evaporated so that the mixture is 18% calcium? 35 oz 35. How much water must be evaporated from 630 grams of a 25% salt solution to get a 45% salt solution? 36. How much water must be evaporated from 120 gallons of a 2.5% sulfate solution to get a 20% sulfate solution? 105 gal 280 g 37. A truck radiator is filled with 18 gallons of an antifreeze solution. The concentration of glycol in the antifreeze is 15%. How much of the solution should be drained and replaced with pure water so that the new solution is 10% glycol? 6 gal 38. An automobile radiator has a volume of 16 liters. It is filled to capacity with 80% water and 20% antifreeze. How much of the mixture must drained off and replaced with pure antifreeze to get a mixture that is 30% antifreeze? 2 L 39. A 75 mL jar is filled with an water-alcohol solution that is 30% alcohol. How much of the solution should be poured out and replaced with pure water so that the jar contains 25% alcohol? 12.5 mL 40. A 228-liter drum is filled with a solution that is 24% acid. How much of the solution should be poured out and replaced with pure acid so that the drum contains 34% acid? 30 L 41. Frank makes a cleaning solution out of 1.5 grams of bicarbonate and 21 grams of water. If the mixture is supposed to be 75% water, how much more bicarbonate is needed? 5.5 g 42. 66 kilograms of cement is mixed with 22.5 kilograms of water. However, the mixture is supposed to be 40% water in order to dry properly. Find the amount of water that should be added. 17.5 kg 43. 10 liters of water is mixed with 400 mL of lawn fertilizer. If a 2% concentration of fertilizer is required, how much more water must be added? 44. Nurse Levin added 50 mL of dextrose to 1.8 liters of intravenous fluid. But the physician said a 10% concentration of dextrose is needed. Find the amount of dextrose that the nurse should add. 150 mL 9.6 L 45. James has a 10 liters of fuel for his moped, which contains gas and oil in a 3 : 2 ratio. How much gas should he add so that the ratio is 5 : 1, gas to oil? 14 L 47. Mrs. Chang has just mixed 3 gallons of semi-gloss enamel. The mixture contains paint and thinnner in a 1 : 1 ratio. How much paint should she add, if she wants a 4 : 3 ratio of paint to thinner? 0.5 gal 46. Sarah has made 72 ounces of fruit drink, which contains apple and pear juice in a 5 : 1 ratio. How much pear juice should she add so that the ratio is 5 : 3, apple to pear? 24 oz 48. A shoe repair shop has 120 mL of leather cleaner, which contains soap and conditioner in a 2 : 1 ratio. How much conditioner must be added to reverse the ratio (1 : 2 soap to conditioner)? 120 mL ALG catalog ver. 2.6 – page 158 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HG Unit pricing 49. Assume you have 25 pounds of cookies that cost 96/ c/lb. How many pounds of cookies costing 72/ c/lb should you add to them, in order to get a mixture that costs 80/c/lb? 50 lb 50. Assume you have 15 kilograms of coffee that costs $4.75/kg. How many kilograms of coffee costing $4.00/kg should you add to it, in order to get a mixture that costs $4.45/kg? 10 kg 51. How much fresh orange juice at $3.00 per liter must 52. How many kilograms of cashew nuts worth $6.60/kg be combined with 6 liters of frozen orange juice at should be combined with 10 kilograms of pecans $1.20 per liter to get a mixture worth $1.80 per liter? worth $8.50/kg to get a mixture worth $7.10/kg? 3L 28 kg 53. Premium grade apples cost $2.25/lb and fancy apples cost $1.45/lb. How many pounds of premium apples should be mixed with 11 pounds of fancy apples to get a mixture that costs $1.70/lb? 5 lb 54. A golf course supervisor wants to mix two types of grass seed. How much regular seed at $2.65/kg should he mix with 42 kg of bluegrass seed at $3.50/kg so that the overall price is $3.00/kg? 60 lb 55. Chemical A, which costs $5.30/mL, is to be combined with 40 mL of Chemical B, which costs $8.30/mL. How much of Chemical A should be used, in order for the overall cost to be $6.90/mL? 35 mL 56. Cheese Doodles, which cost $1.92/lb, are to be combined with 10 pounds of Corn Crisps, which cost $1.20/lb. How many pounds of Doodles should be used, if the mixture is supposed to cost $1.60/lb? 57. Darjeeling tea costs $8.20 per pound. Orange Pekoe tea costs $6.10 per pound. How much of each kind must be used to make a 42-pound mixture that costs $7.60/lb? 30 lb–D, 12 lb–O 58. Clover honey, priced at $4.75/kg, is blended with Orange Blossom honey, at $6.25/kg. The resulting mixture sells for $5.05/kg. How much of each kind of honey is needed for 24 kilograms of the mixture? 12.5 lb 19.2 kg–C, 4.8 kg–O 59. French roast coffee costs $5.20/lb and Colombian coffee costs $4.00/lb. How much of each kind should be used for a 100 kilogram mixture that can be sold for $4.72 a kilogram? 60 kg–F, 40 kg–C 60. Ground beef pork costing sausage that each type of 61. A cheese platter weighs 3.5 kilograms and sells for $22.75. It is made up of Havarti cheese costing $6.90/kg and Munster cheese costing $5.90/kg. How many kilograms of each type of cheese are used for the platter? 2.1–H, 1.4–M 62. A deli tray that consists of ham and turkey weighs 10.5 pounds and costs $46.15. If the ham sells for $3.90/lb and the turkey for $4.70/lb, how many pounds of each meat are used? 6.5–T, 4–H 63. A shopowner plans to combine $3.00-per-pound nuts and $5.00-per-pound nuts to produce 10 pounds of a mixture that sells for $36.00. How many pounds of each are required? 7–$3, 3–$5 64. A chemical engineer plans to mix together two gasolines that cost 59/ c per gallon and 51/ c per gallon. His goal is to produce 6000 gallons at a total cost of $3180. How many gallons of each kind are required? costing $2.10/lb is mixed with ground $1.60/lb to produce 60 pounds of sells for $1.75/lb. How many pounds of meat are used? 18 lb–B, 42 lb–P 1500–59/ c, 4500–51/ c 65. A $14.85 box of chocolates contains cream- and caramel-filled varieties. The creams cost $5.80/kg and the caramels cost $7.00/kg If there are twice as many caramels (by weight), find the number of kilograms of each kind of chocolate. 0.75–Cr, 1.5–Ca 66. Peanuts cost $8.75/kg and cashews cost $13.00/kg. In a package consisting of both kinds, there are 3 times as many peanuts as cashews (by weight). If the package costs $15.70, find the number of kilograms of each kind of nut. 0.4–C, 1.2–P 67. A stationary store plans to sell a package of writing paper and envelopes for a total cost of $2.65. The paper costs $3.20 kg and the envelopes cost $4.20 kg. If each package is supposed to contain twice as much paper as envelopes (by weight), how many kilograms of each are required? 0.5–P, 0.25–E 68. A health food store wants to sell a large glass of apple-strawberry juice. Apple juice costs 8/ c per ounce, and strawberry juice 23/ c per ounce. If each serving is supposed to cost $1.89 and contain five times as much apple as strawberry juice, how many ounces of each should be used? 15–A, 3–S ALG catalog ver. 2.6 – page 159 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HH Topic: Interest and investment. Directions: 0—(No explicit directions.) 16—Solve and check. 20—Solve using one variable. 21—Solve using two variables. 22—Solve using a system of equations. 39—Translate and solve. 40—Write an equation and solve. 1. Josephine invests a total of $35,000 in two different accounts, which pay 10% and 8% annual interest. After one year she earned $3100 in interest. How much did she invest in each account? 2. 20,000–8%, 15,000–10% 3. Arthur invests his inheritance of $24,000 in two different accounts, which pay 6% and 5% annual interest. After one year he received $1340 in interest. How much did he invest in each account? 14,000–6%, 10,000–5% Sophia invests her money in a regular savings acount and a money market account, which pay 6% and 12% annual interest. If she invested a total of $20,000, and she received $1890 in interest after one year, how much did she put into each account? 4. Mr. and Mrs. Berman put their savings into two accounts, which pay 6% and 9% annual interest. If they invested a total of $22,000, and they received $1440 in interest after one year, how much did they put into each account? 18,000–6%, 4000–9% 11,500–12%, 8500–6% 5. How should $9000 be divided into two accounts, paying 5.5% and 8% interest, so that the total interest after one year is $630? 5400–8%, 3600–5.5% 6. How should $27,500 be divided into two accounts, paying 7.5% and 5% interest, so that the total interest after one year is $1660? 11,400–7.5%, 16,100–5% 7. A man invests $16,500 in two kinds of treasury notes, which yield 7 21 % and 6% annually. After one year, he earns $1221 in interest. How much does he invest at the 6% rate? 1100 8. A woman invests $3000 in two savings accounts, which yield 5 12 % and 8% annually. After one year, she earns $184 in interest. How much does she invest at the 8% rate? 760 9. Emily invested $6000, part at an interest rate of 7.2% and the rest at 9%. A year later, her interest income was $497.70. How much did she she invest at each rate? 3650–9%, 2350–7.2% 10. The Van Burens invested $3650, part at an interest rate of 6.4% and the rest at 5%. After one year, the interest earned was $218.20. Find the amount invested at each rate. 2550–6.4%, 1100–5% 11. $10,000 is invested, part at 6 14 % and the remainder at 7%. The yearly income from both investments is $649. Find the amount of invested at 6 14 %. 6800 12. $42,000 is invested, part at 9% and the remainder at 7 34 %. The yearly income from both investments is $3605. How much is invested at 7 43 %? 14,000 13. A person borrows a total of $20,000 from two banks. Citywide Bank charges 12% annual interest and Nationwide Bank charges 13.5%. If the total interest owed after one year is $2625, how much does the person borrow from each bank? 15,000–N, 5000–C 14. Ms. Simmons borrows a total of $15,000 from two banks. 1st Federal Bank charges 12.5% annual interest and Commerce Bank charges 14%. If the total interest owed after one year is $1920, how much does Ms. Simmons borrow from each bank? 12,000–F, 3000–C 15. Partners in a business agreed to take out two loans totaling $65,000. The annual interest rates were 11% and 13%, and the interest paid during the first year was $7950. Find the amount of each loan. 40,000–13%, 25,000–11% 16. A software developer took out two business loans totaling $40,000. The annual interest rates were 12% and 14%, and the interest paid during the first year was $4960. Find the amount of each loan. 32,000–12%, 8000–14% 17. Mrs. Laird invests a total of $14,000 in two kinds of municipal bonds, which yield annual profits of 6 21 % and 8%. How much does she invest at each rate, if her profit after one year is $970? 10,000–6 1 %, 4000–8% 18. A woman invests a total of $25,000 in two different mutual funds, which yield annual profits of 6% and 8 12 %. How much does she invest at each rate, if her profit after one year is $1920? 16,800–8 1 %, 8200–6% 19. The total value of a collection of jewelry and rare coins is $26,000. It is estimated that in a year the rare coins will increase 3% in value, while the jewelry will increase 6%. Their total value will then be $27,275. What is the present value of each part of the collection? 9500–C, 16500–J 20. The total value of a collection of antique furniture and paintings is $17,500. It is estimated that in a year the furniture will increase 2% in value, while the paintings will increase 5%. Their total value will then be $18,300. What is the present value of each part of the collection? 2500–P, 15,000–F 2 2 ALG catalog ver. 2.6 – page 160 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HH 21. A college student puts his $10,000 grant in two different savings accounts, which pay 5% and 7% annual interest. If the total interest is equivalent to 6.4%, how much is deposited in each account? 7000–7%, 3000–5% 22. Mrs. Billet puts her inheritance of $60,000 in two different savings accounts, which pay 6% and 9% annual interest. If the total interest is equivalent to 7.7%, how much is deposited in each account? 34,000–9%, 26,000–6% 23. A redevelopment agency is going to make loans totaling $1.4 million, part of it at 9% annual interest and the rest at 12.5%. Find the amount that should be loaned at each rate, so that the total interest after one year is equivalent to 10.6%. 640,000–12.5%, 760,000–9% 25. Roger has $5000 more invested at 7 14 % than he has at 6%. If his total profit at the end of one year is $659.30, how much is invested at each rate? 24. A venture capital group is going to make loans totalling $3.2 million, part of it at 8.8% annual interest and the rest at 12%. Find the amount that should be loaned at each rate, so that the total interest after one year is equivalent to 9.4%. 600,000–12%, 2,600,000–8.8% 26. Katy has $800 more invested at 6% than at 8 21 %. After one year, her total interest income is $168.35. How much is invested at each rate? 830–8.5%, 1630–6% 2240–6%, 7240–7 14 % 27. Mr. Bowman invested one sum of money at 5 12 % and another sum at 6%. He invested $400 less at the 6% rate than the 5 12 % rate, and his total interest after one year was $114. Find the amount he invested at each rate. 1200–5 1 %, 800–6% 28. Ms. Richards invested one sum of money at 6% and another sum at 7 43 %. She invested $1200 less at the 6% rate than the 7 34 % rate, and her total interest after one year was $285.50. Find the amount she invested at each rate. 2600–7 3 %, 1400–6% 29. Mrs. Lin invested some money at 5% annual interest and twice as much at 8 14 % After one year, she makes a profit of $322.50. Find how much is invested in each. 1500–5%, 3000–8 1 % 30. Josh invested some money at 6% annual interest and three times as much at 8%. The total interest after one year was $660. How much did he invest at each rate? 2200–6%, 6600–8% 31. Janice borrowed some money from her parents at 6% interest. She also borrowed four times that amount from a bank, which charged 11.5% interest. If the total interest after one year was $390, find how much she borrowered from each source. 750–6%, 3000–11.5% 32. Miguel borrowed some money from friends at 7.5% interest. He also borrowed twice that amount from a bank, which charged 12% interest. If the total interest after one year was $315, find how much he borrowered from each source. 1000–7.5%, 2000–12% 33. Two equal loans are made at 11% and 14.4%. After one year, interest on the 14.4% loan exceeded interest on the 11% loan by $1700. How much money was loaned at each rate? 50,000 34. Two equal loans are made at 10.8% and 13%. After one year, interest on the 13% loan exceeded interest on the 10.8% loan by $3520. How much money was loaned at each rate? 160,000 35. Part of $4000 was invested at 7% and the other part at 9%. The 9% investment yielded $80 more in profits than the other investment. How much money was invested at each rate? 1750–7%, 2250–9% 36. Part of $5000 was invested at 5% and the other part at 6%. The 6% investment yielded $135 more in profits than the other investment. How much money was invested at each rate? 1500–5%, 3500–6% 37. Mr. Garrett invested twice as much money at 6% as he did at 7%. After one year, his earnings at 6% were $95 more than his earnings at 7%. Find the amount he invested at each rate. 1900–7%, 3800–6% 38. Claudia invested three times as much money at 8% as she did at 5%. After one year, the yield from the 8% investment was $1140 more than the 5% investment. Find the amount she invested at each rate. 6000–5%, 18000–8% 39. How should $7250 be invested, part at 8% and the rest at 6.5%, so that both investments produce equal income? 4000–6.5%, 3250–8% 40. How should $33,000 be invested, part at 9.5% and the rest at 7%, so that both investments produce equal income? 19,000–7%, 14,000–9.5% 41. Joanna Kim invested $20,000 in two stock portfolios. With one portolio, she made a 12% profit; with the other, she had an 4% loss. Her net profit for the year was $1200. How much did she invest in the profitable stocks? 12,500 42. Mr. Bohannon invested $12,000 in two different mutual funds. After a year, one fund lost 2.5% of its value; the other yielded profits of 15%. If he made a net profit of $1100, how much did he invest in the losing fund? 4000 2 4 4 ALG catalog ver. 2.6 – page 161 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HH 43. Matt borrowed $8400, part at 8% and the rest at 10%. If each rate of interest had been interchanged, his total interest for the year would have been $32 less. Find the amount borrowed at 8%. 3400 44. Mrs. Stolz invested $6500, part at 7% and the rest at 5%. If each rate of interest had been interchanged, her total earnings after one year would have been $50 more. Find the amount invested at 7%. 2000 ALG catalog ver. 2.6 – page 162 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HI Topic: Area, perimeter and volume. Directions: 0—(No explicit directions.) 16—Solve and check. 20—Solve using one variable. 21—Solve using two variables. 22—Solve using a system of equations. 39—Translate and solve. 40—Write an equation and solve. 1. The perimeter of a rectangle is 78 cm. The width is w and the length is w + 7. Find the dimensions of the rectangle. 16 × 23 cm 2. The perimeter of a rectangle is 122 yards. The length is ` and the width is ` − 15. Find the dimensions of the rectangle. 23 × 38 yd 3. The dimensions of a rectangle are w and 2w + 1. Solve for w if the perimeter is 50. 8 4. The dimensions of a rectangle are ` and 3` − 8. Solve for ` if the perimeter is 60. 9.5 5. The side of a square is 2x + 3. If the perimeter is 96, what is x? 10.5 6. The side of a square is 5x − 2. If the perimeter is 112, what is x? 6 7. The perimeter of a square is 16y and each side is y + 6. Find y. 2 8. The perimeter of a square is 12y and each side is y + 10. Find y. 5 9. A rectangle is four times as long as it is wide. Its perimeter is 200 cm. Find the length and width of the rectangle. 80, 20 cm 10. A rectangle is three times as long as it is wide. Its perimeter is 168 in. Find the length and width of the rectangle. 63, 21 in. 11. The perimeter of a rectangular tabletop is 384 cm. Its width is 3/5 of its length. Find the dimensions of the tabletop. 72 × 120 cm 12. The perimeter of rectagular window is 15 ft. Its width is 1/4 of its length. Find the dimensions of the window. 1.5 × 6 ft 13. The length of a rectangle is 5 in. more than the width. If the perimeter is 70 in., what is the width? 14. The length of a rectangle is 11 cm more than the width. If the perimeter is 74 cm, what is the length? 15 in. 24 cm 15. The width of a rectangular swimming pool is 8 feet less than the length. Find the dimensions of the pool if the perimeter is 104 feet. 22 × 30 ft 16. The width of a rectangular lawn is 15 meters less than the length. Find the dimensions of the lawn if the perimeter is 86 meters. 14 × 29 m 17. The perimeter of a rectangle is 450 cm. The length is 35 cm greater than the width. Find the length of the rectangle. 130 cm 18. The perimeter of a rectangle is 140 in. The length is 28 in. greater than the width. Find the width of the rectangle. 21 in. 19. The length of a rectangle is twice the width. Find the length and width if the perimeter is 96 feet. 20. The width of a rectangle is half the length. Find the width and length if the perimeter is 126 m. 21, 42 m 32, 16 ft 21. The length of a rectangle is 3 more than twice the width. If the perimeter is 42, what is the width? 6 22. The length of a rectangle is 6 less than 3 times the width. Find the width if the perimeter is 28. 5 23. The width of a rectangle is 1 more than half the length. If the perimeter is 86, what is the length? 24. The width of a rectangle is 3 less than half the length. Find the length if the perimeter is 54. 20 28 25. The length of a rectangular playground is 4 meters less than 3 times the width. The perimeter is 64 meters. What are the dimensions of the playground? 9 × 23 m 26. The length of a rectangular carpet is 8 feet more than twice the width. The perimeter is 46 feet. What are the dimensions of the carpet? 5 × 18 ft 27. A rectangular garden has a perimeter of 38 yards. The length is 2 yards less than twice the width. What is the length and width? 12, 7 yd 28. A rectangular parking lot has a perimeter of 310 meters. The length is 5 meters more than 4 times the width. What is the length and width? 125, 30 m 29. The sides of a triangle have lengths y, 2y and 3y − 6. What is the length of each side, if the perimeter is 60 inches? 11, 22, 27 in. 30. The sides of a triangle have lengths x, x + 3 and 2x. What is the length of each side, if the perimeter is 25 cm? 5.5, 8.5, 11 cm 31. The sides of a triangle are n + 7, n + 7 and 2n. What is n, if the perimeter is 82? 17 32. The sides of a triangle are are 5a − 6, 3a and 2a + 9. What is a, if the perimeter is 47? 4.4 ALG catalog ver. 2.6 – page 163 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HI 33. The base of an isosceles triangle is 8 meters longer than each of the other sides (they are equal). How long is the base, if the perimeter is 71 meters? 29 m 34. The base of an isosceles triangle is 4 feet shorter than each of the other sides (they are equal). How long is the base, if the perimeter is 80 inches? 24 in. 35. Each of the legs of an isosceles triangle is 4 cm longer than the base. The perimeter of the triangle is 68 cm. Find the length of the base. 20 cm 36. Each of the legs of an isosceles triangle is 6 ft shorter than the base. The perimeter of the triangle is 84 ft. Find the length of the base. 32 ft. 37. One side of a triangle is half as long as each of the other two sides. If the perimeter is 65, how long is each side? 13, 26, 26 38. One side of a triangle is two-thirds as long as each of the other two sides. If the perimeter is 120, how long is each side? 30, 45, 45 39. The perimeter of a triangular lot is 117 m. The lengths of two sides are each 4/5 of the length of the third side. Find the length of each side. 36, 36, 45 m 40. The perimeter of a triangular curtain is 255 in. The lengths of two sides are each 5/7 of the length of the third side. Find the length of each side. 75, 75, 105 in. 41. The length of the first side of a triangle is 5 less than the second side. The length of the third side is one-half the length of the second side. If the perimeter is 60, how long are the three sides? 42. The length of the second side of a triangle is 8 more than the first side. The third side is 2 less than twice the first side. If the perimeter is 54, what are the lengths of the sides? 12, 20, 22 13, 26, 21 43. The first side of a triangle is 5 cm shorter than the second side. The third side is 4 cm longer than the second side. The perimeter is 35 cm. How long is each side? 7, 12, 16 cm 44. The first side of a triangle is twice as long as the second side. The remaining side is 9 m longer than the second side. The perimeter is 53 m. How long is each side? 11, 20, 22 m 45. The perimeter of a triangle is 43 in. The second side is half as long as the first side. The remaining side is 3 in. longer than the second. Find the length of each side. 10, 13, 20 in. 46. The perimeter of a triangle is 33 feet. The first side is 2 feet shorter than the second. The third side is 7 feet longer than the first. Find the length of each side. 8, 10, 15 ft 47. The first side of a triangle is 1 inch shorter than the second side. The third side is twice as long as the first. If the perimeter is 29 inches, how long is each side? 7, 8, 14 in. 48. The first side of a triangle is 2 m longer than half the second side. The third side is 2 m longer than the first. If the perimeter is 38 m, how long is each side? 10, 16, 12 m Special 49. A square and an equilateral triangle have the same perimeter. Each side of the square is 12 in. Find the length of each side of the triangle. 16 in. 50. A square and an equilateral triangle have the same perimeter. Each side of the square is 27 cm. Find the length of each side of the triangle. 36 cm 51. A rectangle and an equilateral triangle have the same perimeter. The length of the rectangle is twice its width. Each side of the triangle is 30 mm. Find the length and width of the rectangle. 30, 15 mm 52. A rectangle and an equilateral triangle have the same perimeter. The length of the rectangle is six inches longer than its width. Each side of the triangle is 52 inches. Find the length and width of the rectangle. 42, 36 in. 53. The length of a rectangle is 4 cm less than twice the width. If the length is decreased by 1 cm and the width is increased by 2 cm, the perimeter will be 24 cm. Find the dimensions of the original rectangle. 54. A rectangular garden is 3 times as long as it is wide. If the length is decreased by 8 ft and the width is increased by 5 ft, the perimeter will be 66 ft. Find the dimensions of the original garden. 9 × 27 ft 5 × 6 cm 55. When two sides of a square are made twice as long, and the other two sides are made half as long, the new perimeter is 100 in. What is the original perimeter of the square? 80 in. 56. When two sides of a square are increased by 7 cm, and the other two sides are decreased by 4 cm, the new perimeter is 70 cm. What is the original perimeter of the square? 64 cm ALG catalog ver. 2.6 – page 164 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. HI 57. Find x if the volume of the box is 54. 1.5 58. Find x if the surface area of the box is 120. (Refer to the previous figure.) 2 59. Find x if the volume of the box is 126. 4 3DFIG01.PCX 3DFIG03.PCX 3DFIG01.PCX 61. Find x if the volume of the figure is 25. 0.5 60. Find x if the surface area of the box is 180. (Refer to the previous figure.) 4.5 3DFIG03.PCX 62. Find x if the surface area of the figure is 58. (Refer to the previous figure.) 1 63. Find x if the volume of the figure is 185. 4 3DFIG10.PCX 64. Find x if the surface area of the figure is 168. (Refer to the previous figure.) 3 3DFIG09.PCX 3DFIG10.PCX 3DFIG09.PCX 65. Find x if the volume of the figure is 180. 2 66. Find x if the surface area of the figure is 269. (Refer to the previous figure.) 2.5 67. Find x if the volume of the figure is 185. 3.5 3DFIG15.PCX 3DFIG16.PCX 3DFIG16.PCX 3DFIG15.PCX 69. Find x if the volume of the figure is 226. 2.75 68. Find x if the surface area of the figure is 286. (Refer to the previous figure.) 5 70. Find x if the surface area of the figure is 282. (Refer to the previous figure.) 3 71. Find x if the volume of the figure is 162. 4.5 3DFIG18.PCX 3DFIG20.PCX 3DFIG20.PCX 3DFIG18.PCX ALG catalog ver. 2.6 – page 165 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 72. Find x if the surface area of the figure is 204. (Refer to the previous figure.) 4 HJ Topic: Angles and triangles Directions: 0—(No explicit directions.) 16—Solve and check. 20—Solve using one variable. 21—Solve using two variables. 22—Solve using a system of equations. 39—Translate and solve. 40—Write an equation and solve. 1. In a triangle, the second angle is 10 ◦ smaller than the first. The third angle is 55 ◦ larger than the first. What is the measure of each angle? 45, 35, 100 ◦ 2. In a triangle, the second angle is 100 ◦ larger than the first. The third angle is 29 ◦ larger than the first. What is the measure of each angle? 17, 117, 46 ◦ 3. The second angle of a triangle is 25 ◦ larger than the first. The third angle is 34 ◦ larger than the second. What are the angle measures? 32, 57, 91 ◦ 4. The second angle of a triangle is 62 ◦ smaller than the first. The third angle is 17 ◦ smaller than the second. What are the angle measures? 107, 45, 28 ◦ 5. One angle of a triangle is twice as large as another. The third angle is 20 ◦ more than the smallest angle. Find the measure of the largest angle. 80 ◦ 6. One angle of a triangle is three times as large as another. The third angle is 30 ◦ more than the smallest angle. Find the measure of the smallest angle. 37.5 ◦ 7. One angle of a triangle is four times as large as another. The third angle is 25 degrees more than the sum of the other two angles. Find the measure of the smallest angle. 15.5 ◦ 8. One angle of a triangle is three times as large as another. The third angle is 44 ◦ less than the sum of the other two angles. Find the measure of the largest angle. 84 ◦ 9. One angle of a triangle is 15 ◦ smaller than another. The measure of the third angle is twice the sum of the other two. Find the measure of each angle. 10. One angle of a triangle is 66 ◦ larger than another. The measure of the third angle is half the sum of the other two. Find the measure of each angle. 27, 93, 60 ◦ 22.5, 37.5, 120 ◦ 11. In a triangle, the first angle is 18 ◦ less than twice the second. The third angle is one-third of the sum of the other two. What is the measure of each angle? 84, 51, 45 ◦ 13. In the figure, a = 2x, b = 2x and c = 3x + 5. Solve for x and give the measure of each angle. 25; 50, 50, 80 ◦ 12. In a triangle, the second angle is 45 ◦ more than twice the first. The third angle is one-third of the sum of the other two. What is the measure of each angle? 30, 105, 45 ◦ 14. If a = 4x + 5, b = 4x and c = 6x, solve for x and give the measure of each angle. 12.5; 55, 50, 75 ◦ 15. In the figure, a = x + 15, b = 3x and c = 11x. Solve for x and give the measure of each angle. 11; 26, 33, 121 ◦ 16. If a = x − 3, b = 2x − 12 and c = 3x + 15, solve for x and give the measure of each angle. 30; 27, 48, 105 ◦ ABC-TRI1.PCX ABC-TRI2.PCX ABC-TRI1.PCX ABC-TRI2.PCX 17. In the figure, a = 2x + 30, b = 4x and c = 4x − 10. Solve for x and give the measure of each angle. 16; 62, 64, 54 ◦ 18. If a = 5x + 23, b = 7x + 3 and c = 10x, solve for x and give the measure of each angle. 7; 58, 52, 70 ◦ 19. In the figure, a = 4x, b = 70 and c = 10x + 5. Solve for x and give the measure of each angle. 20. If a = x + 10, b = 5x and c = 80, solve for x and give the measure of each angle. 15; 25, 75, 80 ◦ 7.5; 30, 70, 80 ◦ ABC-TRI4.PCX ABC-TRI3.PCX ABC-TRI3.PCX ALG catalog ver. 2.6 – page 166 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ABC-TRI4.PCX HJ Supplements and complements 21. Find the measure of an angle which is 12 ◦ less than its complement. 39 ◦ 22. Find the measure of an angle which is 53 ◦ more than its supplement. 116.5 ◦ 23. The supplement of an angle is 8 ◦ less than three times the measure of the angle. Find the angle measure. 47 ◦ 24. The complement of an angle is 15 ◦ more than twice the measure of the angle. Find the angle measure. 25. Two angles are complementary. Four times the measure of the smaller is half the measure of the larger. Find both angle measures. 10, 80 ◦ 26. Two angles are supplementary. Five times the measure of the smaller is three times the measure of the larger. Find both angle measures. 67.5, 112.5 ◦. 27. Two angles are supplementary. The measure of one angle is 5 times the other. What are the angle measures? 30, 150 ◦ 28. Two angles are complementary. The measure of one angle is one-fourth of the other. What are the angle measures? 18, 72 ◦ 29. When the measures of an angle’s complement and supplement are added together, the result is 238 ◦. What is the measure of the angle itself? 16 ◦ 30. When the measures of an angle’s complement and supplement are added together, the result is 100 ◦. What is the measure of the angle itself? 85 ◦ 31. The complement of an angle is 8 ◦ less than one-third of the angle’s supplement. Find the angle measure. 32. The supplement of an angle is 72 ◦ more than two-thirds of the angle’s complement. Find the angle measure. 144 ◦ 57 ◦ 33. The two angles are supplementary. If a = 19x + 3 and b = 21x + 17, solve for x and find the measure of each angle. 4; 79, 101 ◦ 34. If a = 8x + 10 and b = 17x − 5, solve for x and find the measure of each angle. 7; 66, 114 ◦ SUPPL01.PCX 25 ◦ 35. The two angles are supplementary. If c = 16x and d = 5(x − 6), solve for x and find the measure of each angle. 10; 160, 20 ◦ 20; 15, 75 ◦ 32; 123, 57 ◦ SUPPL02.PCX SUPPL02.PCX SUPPL01.PCX 37. The two angles are complementary. If c = 2x − 25 and d = 3(x + 5), solve for x and find the measure of each angle. 36. If c = 3(x + 9) and d = x + 25, solve for x and find the measure of each angle. 38. If c = 12 x and d = 2x + 30, solve for x and find the measure of each angle. 24; 12, 78 ◦ 39. The two angles are complementary. If a = 23 (x − 9) and b = 2x, solve for x and find the measure of each angle. 36; 18, 72 ◦ COMPL01.PCX ALG catalog ver. 2.6 – page 167 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 8; 33, 57 ◦ COMPL02.PCX COMPL02.PCX COMPL01.PCX 40. If a = 4x + 1 and b = 5x + 17, solve for x and find the measure of each angle. IA Topic: Prime factorization. Directions: 11—Factor. 13—Factor completely. 68—Find the prime factors. 54—Rewrite without any exponents. 1. 14 7·2 2. 15 5·3 3. 33 11 · 3 4. 65 13 · 5 5. 12 3·2·2 6. 18 3·3·2 7. 27 3·3·3 8. 30 5·3·2 9. 20 5·2·2 10. 28 7·2·2 11. 44 11 · 2 · 2 12. 45 5·3·3 13. 42 7·3·2 14. 75 5·5·3 15. 63 7·3·3 16. 99 11 · 3 · 3 17. 50 5·5·2 18. 70 7·5·2 19. 110 21. 24 3·2·2·2 22. 32 2·2·2·2·2 23. 36 3·3·2·2 24. 40 5·2·2·2 25. 56 7·2·2·2 26. 88 11 · 2 · 2 · 2 27. 72 2·2·2·3·3 28. 98 7·7·2 30. 80 5·2·2·2·2 31. 90 5·3·3·2 32. 60 5·3·2·2 29. 100 33. 96 5·5·2·2 3·2·2·2·2·2 11 · 5 · 2 20. 130 13 · 5 · 2 34. 144 3·3·2·2·2·2 35. 108 3·3·3·2·2 36. 120 5·3·2·2·2·2 37. 175 7·5·5 38. 200 5·5·2·2·2 39. 250 5·5·5·2 40. 300 5·5·3·2·2 41. 180 5·3·3·2·2 42. 270 5·3·3·3·2 43. 162 3·3·3·3·2 44. 216 3·3·3·2·2·2 47. 203 29 · 7 48. 455 13 · 7 · 5 45. 85 17 · 5 46. 93 31 · 3 49. 585 13 · 5 · 3 · 3 50. 693 11 · 7 · 3 · 3 51. 495 11 · 5 · 3 · 3 52. 364 13 · 7 · 2 · 2 53. 525 7·5·5·3 54. 672 7·3·2·2·2·2·2 55. 756 7·3·3·3·2·2 56. 792 11 · 3 · 3 · 2 · 2 · 2 57. 450 5·5·3·3·2 58. 630 7·5·3·3·2 59. 441 7·7·3·3 60. 726 11 · 11 · 3 · 2 61. 1980 11 · 5 · 3 · 3 · 2 · 2 62. 1296 3·3·3·3·2·2·2·2 63. 1573 13 · 11 · 11 64. 1690 13 · 13 · 5 · 2 65. 1500 5·5·5·3·2·2 66. 2184 13 · 7 · 3 · 2 · 2 · 2 67. 2376 11 · 3 · 3 · 3 · 2 · 2 · 2 68. 5610 17 · 11 · 5 · 3 · 2 69. u7 u·u·u·u·u·u·u 70. y 5 y·y·y·y·y 71. n9 72. p6 p·p·p·p·p·p n·n·n·n·n·n·n·n·n 73. a4 b 77. 21k 6 a·a·a·a·b 3·7·k·k·k·k·k·k 81. 36x2 y 3 2·2·3·3·x·x·y·y·y 74. c3 d2 c·c·c·d·d 75. xy 3 78. 10x2 2·5·x·x 79. 39a5 82. 40pr3 2·2·2·5·p·r·r·r x·y·y·y 3 · 13 · a · a · a · a · a 83. 100n2 m2 2·2·5·5·n·n·m·m ALG catalog ver. 2.6 – page 168 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 76. u2 w4 80. 15c3 u·u·w·w·w·w 3·5·c·c·c 84. 54a5 b 2·3·3·3·a·a·a·a·a·b IB Topic: Missing factors. Directions: 69—Find the missing factor. 1. y 5 = ( ? )(y 3 ) 5. 8x3 = ( ? )(4x2 ) 9. 20c3 d = ( ? )(5c) y2 2x 4c2 d 2. a3 = ( ? )(a2 ) 6. 20z 3 = ( ? )(5z) a 4z 2 10. 28a2 b = ( ? )(14a) 2ab 3. c7 = ( ? )(c3 ) 7. 4y 5 = ( ? )(2y 5 ) 4. x4 = ( ? )(x4 ) 2 8. 6d5 = ( ? )(3d2 ) 4y 3 12. 18mw3 = ( ? )(9mw2 ) c4 11. 8xy 3 = ( ? )(2x) 1 2d3 2w 13. −6p5 = ( ? )(6p4 ) −p 14. −15k 4 = ( ? )(3k 4 ) −5 15. −4r3 = ( ? )(2r2 ) −2r 16. −10u3 = ( ? )(2u) −5u2 17. −15q 7 = ( ? )(−5q) 18. −10c6 = ( ? )(−5c3 ) 3q 6 19. −20h3 = ( ? )(−4h) 2c3 21. 4y 2 = ( ? )(−4y 2 ) −1 20. −12k 8 = ( ? )(−6k 4 ) 5h2 22. 10w3 = ( ? )(−2w3 ) 2k 4 23. 7x2 = ( ? )(−7x) −x 24. a2 b3 = ( ? )(−ab2 ) −ab −5 25. 50a3 b9 = ( ? )(2ab4 ) 26. 24p2 w3 = ( ? )(6pw2 ) 27. 40g 4 h2 = ( ? )(2g 2 h2 ) 4pw 25a2 b5 29. 32m4 p15 = ( ? )(m3 p9 ) 20g 2 30. 6q 11 w7 = ( ? )(q 3 w) 32mp6 42. −8a4 b5 c2 = ( ? )(−8ab4 ) 45. 100c3 d3 = ( ? )(−10cd2 ) 46. 50a6 b3 = ( ? )(−10a3 b2 ) 47. 63r4 u4 = ( ? )(−7r2 u3 ) 51. 84g 5 h15 = ( ? )(4g 5 h8 ) 22m4 r7 57. −w3 xy 7 z 8 = ( ? )(wy 2 z 8 ) 61. (a − b) = ( ? )(b − a) p5 r −w3 z 4 62. (3 − c) = ( ? )(c − 3) 3 2 4m p 3m = ( ? )( 14 mp) 60. w4 x9 y 3 z = ( ? )(−w4 x3 y 2 ) −x5 yz 63. (2d − 1) = ( ? )(1 − 2d) 5 2 6 rw 64. (x2 − y) = ( ? )(y − x2 ) −1 66. (9k 2 p)3 = ( ? )(9k 2 p)2 70. km3 p −w2 xz 5 −1 67. (−7x2 )3 = ( ? )(−7x2 )2 9k 2 p 69. 5ay 58. −w5 x2 yz 7 = ( ? )(w3 xyz 2 ) −1 65. (p5 r)2 = ( ? )(p5 r) 4b10 c6 56. −12k 2 m7 p = ( ? )(−12km4 ) −w2 xy 5 68. −(2ab)5 = ( ? )(2ab)4 −2ab −7x2 = ( ? )( 16 w) 5rw 71. 5 6 6x ALG catalog ver. 2.6 – page 169 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −2m5 p2 52. 96b13 c9 = ( ? )(24b3 c3 ) 54. 50a3 x4 y 2 = ( ? )(10a2 x4 y) −13cdh −1 48. 80m7 p3 = ( ? )(−40m2 p) 21h7 15xy 4 59. w8 x5 yz 6 = ( ? )(−w5 x5 yz 2 ) r3 p2 u2 −9r2 u 50. 66m7 r10 = ( ? )(3m3 r3 ) 55. −26c5 d4 h3 = ( ? )(2c4 d3 h2 ) 44. 9r5 p4 u3 = ( ? )(9r2 p2 u) g 2 h2 k −5a3 b 53. 45w9 x2 y 5 = ( ? )(3w9 xy) 9y 3 z 43. 5g 4 h3 k 2 = ( ? )(5g 2 hk) a3 bc2 4k8 40. −45y 5 z 2 = ( ? )(−5y 2 z) 30cb 41. −16c3 q 2 w3 = ( ? )(4cw2 ) −4c2 q2 w 49. 72k 11 n4 = ( ? )(18k 3 n4 ) −2w4 u2 39. −90c3 b4 = ( ? )(−3c2 b3 ) −4qr2 −10c2 d 36. 10w6 u5 = ( ? )(−5w2 u3 ) −3 38. −40q 2 r3 = ( ? )(10qr) −3b2 7k 35. 12b2 m = ( ? )(−4b2 m) −3ab2 37. −60ab5 = ( ? )(20ab3 ) 32. 7k 10 m8 = ( ? )(k 9 m8 ) 9ab6 34. 18a4 b2 = ( ? )(−6a3 ) −10y 2bc4 31. 9a2 b19 = ( ? )(ab13 ) 6q 8 w6 33. 20x3 y 2 = ( ? )(−2x3 y) 28. 8b6 c8 = ( ? )(4b5 c4 ) = ( ? )( 53 x4 ) 1 2 2x 72. 7 5 8y = ( ? )( 72 y 2 ) 1 3 4y IB 73. 5pr3 = ( ? )(30pr2 ) 1 6r 74. 8a4 b = ( ? )(24a) 1 3 3a b 75. 6h4 k 3 = ( ? )(8h2 k) 76. 10wz 7 = ( ? )(15wz) 3 2 2 4h k 77. − 89 ab4 = ( ? )( 43 b2 ) 78. − 23 ab2 15 5 14 g h = ( ? )(− 37 g 2 h) 79. − 52 g 3 81. 2a9 b3 = ( ? )( 15 a4 b2 ) 1 7 2r = ( ? )(2r2 ) 1 5 4r 10w3 82. 5c6 d = ( ? )( 13 c) 15c5 d 86. 2 3 3k = ( ? )(6k 2 ) 1 9k 90. 8d4 = ( ? )(0.08d2 ) 83. 3y 3 z 8 = ( ? )( 12 y 2 z 2 ) 0.1y 7 94. 0.06x12 = ( ? )(0.3x4 ) x2a 98. x7a = ( ? )(x5a ) 1 4 3p = ( ? )(2p4 ) 84. 8uw7 = ( ? )( 14 w4 ) 88. 1 6 95. 0.005c6 = ( ? )(0.1c) 102. y 4n+1 = ( ? )(y 3n ) y n+1 99. p3m = ( ? )(p2m ) 103. ax+2 = ( ? )(ax+1 ) 2 5 5a = ( ? )(4a) 1 4 10 a 92. 0.6a3 = ( ? )(0.03a3 ) 20 96. 0.14k 2 = ( ? )(0.2k) 0.7k 0.05c5 x2a 3 4 4 = ( ? )( 10 r s ) 32uw3 2r 0.2x8 a3n 87. 9 11 5 20 r s 3 7 2r s 91. 0.01r4 = ( ? )(0.005r3 ) 100d2 93. 0.02y 9 = ( ? )(0.2y 2 ) 101. x2a+1 = ( ? )(x) 80. 6yz 6 89. 0.1w8 = ( ? )(0.01w5 ) 97. a4n = ( ? )(an ) = ( ? )( 45 c3 d9 ) 2 3 3d 10a5 b 85. 8 3 12 15 c d 2 6 3z pm a 100. y 10x = ( ? )(y 5x ) y 5x 104. w3n+4 = ( ? )(wn+3 ) w2n+1 105. a5x bx+3 = ( ? )(ax bx ) a4x b3 106. ma+5 n3a = ( ? )(m5 na ) 107. xy−1 = ( ? )(xy−3 ) ma n2a ALG catalog ver. 2.6 – page 170 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. x2 108. p2n−3 = ( ? )(pn−5 ) pn+2 IC Topic: Factoring monomials. Directions: 11—Factor. multiplying. 1. 5a − 35 12—Factor, if possible. 2. 5(a − 7) 4x + 6y 13—Factor completely. 2(2x + 3y) 3. −6c2 − 3 14—Factor, then check answer by 32km + 24n 4. −3(2c2 + 1) 8(4km + 3n) 5. 4x2 − 7x3 x2 (4 − 7x) 6. 3d3 + d 9. 22t2 − 11t 11t(2x − 1) 10. −42gh − 30h2 d(3d2 + 1) 14. 12k 3 + 21k 5 2a2 (2a − b) −rs2 (4r4 u2 w3 (1 + 9w) 21. 27x2 y − 6xy 3 5ac(3b3 25. 108c2 n2 z 5 − 35c4 nz 4 9w2 z 3 (5w4 + 2z) + 1) 6m(6m2 + 5m − 11) 42. 70xy 3 − 20y 4 + 100x2 y 2 10y 2 (7xy − 13a + 7) − 2y 2 + 10x2 ) 46. ab2 c + 8a2 bc + 4abc2 kq(4k 2 r2 − krq − 10) abc(b + 8a + 4c) 49. 22m2 np − 121mn2 + 66mnp2 51. 90h3 j 2 k − 72h2 j + 18hjk 2 31. 21w4 − 14w2 − 35 32. −3p − 9q + 15r 7(3w4 − 2w2 − 5) + 4h − 1) 38. 36m3 + 30m2 − 66m + 5n4 ) 53. 6w2 z 3 − 30w3 z 3 − 9w2 z 2 24. 45w6 z 3 + 18w2 z 4 30k 3 m5 (4m2 + 5) −r2 (4r4 + r2 − 2) 45. 4k 3 r2 q − k 2 rq 2 − 10kq 23. −14g 3 h3 − 14g 2 h 28. 120k 3 m7 + 150k 3 m5 k(k2 + 9k + 1) −5a4 (5a2 cde(7c + 4d) 6adf 2 (8a − 9df ) 34. −4r6 − r4 + 2r2 41. −25a6 + 65a5 − 35a4 20. 7c2 de + 4cd2 e 27. 48a2 df 2 − 54ad2 f 3 5(x − 2xy + 6y) 37. 16n2 − 8n4 + 20n6 −12p4 (p4 + 2) −18pr4 s(2p2 r2 + 9s) 8(h2 33. k 3 + 9k 2 + k 16. −12p8 − 24p4 19. 8m2 n2 − 3mnp −14g 2 h(gh2 30. 8h2 + 32h − 8 29. 5x − 10xy + 30y 15n3 (6n + 5) 26. −36p3 r7 s − 162pr4 s2 c2 nz 4 (108nz − 35c2 ) 4n2 (4 − 2n2 − 7c3 ) p2 (5r + 1) 12. 90n4 + 75n3 mn(8mn − 3p) 22. 15ab3 c − 35ac4 3xy(9x − 2y 2 ) 11. 12a2 b − 68a2 18w2 (wy − z) 18. u2 w3 + 9u2 w4 + 5s) 5p2 r + p2 8. y(3 − 8x) 15. 18w3 y − 18w2 z 3k 3 (4 + 7k2 ) 17. −4r5 s2 − 5rs3 3y − 8xy 4a2 (3b − 17) −6h(7g + 5h) 13. 4a3 − 2a2 b 7. 11mn(2mp − 11n + 6p2 ) 18hj(5h2 jk − 4h + k 2 ) 3w2 z 2 (2z − 10wz − 3) 55. −42a3 b4 x5 − 56a3 x4 − 168a2 b2 x2 −3(p + 3q − 5r) 35. abc − a2 b + 2ac2 36. 2y 7 + 7y 5 + y 3 a(bc − ab + 2c2 ) y 3 (2y 4 + 7y 2 + 1) 39. −42x2 y 2 − 14x2 y + 21x2 40. 40a2 b + 16ab2 − 32b2 −7x2 (6y 2 + 2y − 3) 8b(5a2 + 2ab − 4b) 43. 63nr2 + 18r2 − 27n2 r 44. 34u9 − 24u7 + 18u5 9r(7nr + 2r − 3n2 ) 2u5 (17u4 − 12u2 + 9) 47. −m2 n3 − 3m2 n2 + m2 n 48. x2 y 5 + 2x4 y 4 − 4xy 5 −m2 n(mn2 + 3n − 1) xy 4 (xy + 2x3 − 4y) 50. −24r3 x2 − 16r4 x − 64r2 x2 52. 28b2 h2 − 63b3 h2 + 7b2 h −8r2 x(3rx + 2r2 + 8x) 7b2 h(4h − 9bh + 1) 54. 105k 4 n7 − 42k 3 n5 + 21k 4 n5 21k 3 n5 (5kn2 − 2 + k) 56. 24c2 d2 e2 + 84c2 d2 e − 96cd2 e3 12cd2 e(2ce + 7c − 8e2 ) −14a2 x2 (3ab4 x3 + 4ax2 + 12b2 ) 57. 32ab + 16ac − 8bc + 24c 59. 15cd2 − 10d2 − 5c2 + 5cd 61. x8 − 4x6 + x4 − 6x2 8(4ab + 2ac − bc + 3c) 5(3cd2 − 2d2 − c2 + cd) x2 (x6 − 4x4 + x2 − 6) 63. h2 kn2 − h2 k 2 + h3 n2 − h2 kn 65. 3ax − 6ay − 3a2 − 6aw h2 (kn2 − k 2 + hn2 − kn) 3a(x − 2y − a − 2w) 58. 4x3 − 2x2 + 14x − 2 2(2x3 − x2 + 7x − 1) 60. −72m3 + 36m2 − 45m − 9 62. −6u4 + 10u3 − 3u2 + 2u 64. 4pr − pr3 + 2p2 r4 − r6 −9(8m3 + 4m2 − 5m + 1) −u(6u3 − 10u2 + 3u − 2) r(4p − pr2 + 2p2 r3 − r5 ) 66. 4wxy − 8x2 y − 2xy + 10xy 2 2xy(2w − 4x − 1 + 5y) 67. 21a2 c + 3c2 b − 15abc − 6ac2 3c(7a2 + cb − 5ab − 2ac) 68. 8x2 − 16x2 y 2 + 4x2 y − 12x3 4x2 (2 − 4y 2 + y − 3x) 69. −8n7 − 28n6 + 16n5 − 14n4 −2n4 (4n3 + 14n2 − 8n + 7) 70. 36x4 − 15x3 y + 18x2 − 21xy 3x(12x3 − 5x2 y + 6x − 7y) ALG catalog ver. 2.6 – page 171 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. IC 71. 40t8 + 60t3 − 30t6 + 50t4 10t3 (4t5 + 6 − 3t3 + 5t) 73. 9a3 y − 24ay 2 − 15a2 y + 36ay 3 3ay(3a2 − 8y − 5a + 12y 2 ) 75. 15nr2 − 18m2 nr − 12mn2 r + 3nr 3nr(5r − 6m2 72. 14abc − 35acd + 21abd + 56ace 74. 5pc2 − pc + 15p2 c − 10p2 c2 7a(2bc − 5cd + 3bd + 8ce) pc(5c − 1 + 15p − 10pc) 76. 4c2 dx − 4cdx2 − 10cd2 x + 3cdx cdx(4c − 4x − 10d + 3) − 4mn + 1) 77. 4f 2 gh − 5fg 2 h + 6fgh2 − 8f 2 g 2 h f gh(4f − 5g + 6h − 8f g) 79. 5km2 n + mn2 − k 2 m2 n + 10mn3 78. 3a2 c2 − ac3 + 3ac2 + a3 c2 ac2 (3a − c − 3 + a2 ) 80. x2 y 2 z 2 + x3 y 2 z − xy 2 z + x3 y 3 z 3 xy 2 z(xz + x2 − 1 + x2 yz 2 ) mn(5km + n − k2 m + 10n2 ) 81. 51m2 n3 p + 34mp3 − 102m2 np2 + 68mnp 17mp(3mn3 + 2p2 82. 16x2 y + 50xy 2 − 8x2 y 2 + 8xy 2xy(8x + 25y − 4xy + 4) − 6mnp + 4n) 83. −18a2 b3 − 6a2 b + 12a3 b3 − 24a2 b2 −6a2 b(3b2 + 1 − 2ab2 + 4b) 84. 32r4 p2 s − 80r3 p3 + 16r4 p − 48r3 p2 s 16r3 p(2rps − 5p2 + r − 3ps) ALG catalog ver. 2.6 – page 172 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ID Topic: Factoring trinomials of the form: x2 + bx + c. Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. w2 + 7w + 6 2. (w + 6)(w + 1) 5. c2 + 25c + 24 6. prime (b + 15)(b + 5) 37. m2 + 17m + 60 45. u2 + 18u + 80 (u + 10)(u + 8) 49. d2 + 17d + 72 (d + 9)(d + 8) 53. y 2 + 25y + 46 (y + 23)(y + 2) 57. y 2 + 15y + 54 (y + 9)(y + 6) 61. m2 + 36m + 99 (m + 33)(m + 3) 65. t2 + 28t + 96 (t + 24)(t + 4) 69. z 2 + 77z + 150 (z + 75)(z + 2) 73. m2 + 33m + 200 (d + 30)(d + 7) 42. w2 + 28w + 20 46. h2 + 24h + 80 (h + 20)(h + 4) 50. z 2 + 23z + 90 (z + 18)(z + 5) 54. m2 + 20m + 51 (m + 17)(m + 3) 58. x2 + 18x + 56 (x + 14)(x + 4) 62. w2 + 35w + 66 (w + 33)(w + 2) 66. p2 + 22p + 96 (p + 16)(p + 6) 70. w2 + 56w + 108 (w + 54)(w + 2) 74. k 2 + 35k + 250 (k + 25)(k + 10) 78. m2 + 34m + 120 (m + 30)(m + 4) 28. d2 + 12d + 32 (d + 8)(d + 4) 32. a2 + 14a + 40 (a + 10)(a + 4) 36. y 2 + 19y + 48 (m + 24)(m + 2) (y + 16)(y + 3) 39. x2 + 13x + 42 (d + 15)(d + 4) prime (y + 5)(y + 4) 35. m2 + 26m + 48 38. d2 + 19d + 60 (m + 12)(m + 5) 24. y 2 + 9y + 20 (y + 12)(y + 3) (z + 32)(z + 2) 40. k 2 + 15k + 44 (x + 7)(x + 6) prime 43. k 2 + 10k + 28 47. y 2 + 22y + 40 (y + 20)(y + 2) 51. r2 + 46r + 88 (r + 44)(r + 2) 55. p2 + 52p + 51 (p + 51)(p + 1) 59. m2 + 19m + 70 (m + 14)(m + 5) 63. b2 + 62b + 120 (b + 60)(b + 2) 67. q 2 + 25q + 144 (q + 16)(q + 9) 71. p2 + 28p + 180 (p + 18)(p + 10) 75. a2 + 35a + 150 (a + 30)(a + 5) 79. y 2 + 46y + 240 (y + 40)(y + 6) ALG catalog ver. 2.6 – page 173 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. prime (c + 17)(c + 2) 31. y 2 + 15y + 36 34. z 2 + 34z + 64 16. w2 + 9w + 15 20. c2 + 19c + 34 (y + 10)(y + 3) (h + 15)(h + 3) 33. b2 + 20b + 75 prime 27. y 2 + 13y + 30 30. h2 + 18h + 45 (m + 6)(m + 3) (x + 5)(x + 3) (c + 4)(c + 3) (w + 15)(w + 2) 29. m2 + 9m + 18 12. x2 + 8x + 15 23. c2 + 7c + 12 26. w2 + 17w + 30 (k + 8)(k + 3) 15. w2 + 7w + 18 x2 + 75x + 74 (x + 74)(x + 1) (d + 11)(d + 3) (r + 13)(r + 5) 25. k 2 + 11k + 24 8. 19. d2 + 14d + 33 22. r2 + 18r + 65 (w + 11)(w + 5) q 2 + 50q + 49 (g + 7)(g + 5) prime m2 + 10m + 9 (m + 9)(m + 1) 11. g 2 + 12g + 35 (x + 11)(x + 2) 21. w2 + 16w + 55 41. m2 + 22m + 24 14. c2 + 4c + 10 4. (q + 49)(q + 1) 18. x2 + 13x + 22 (p + 7)(p + 3) 77. d2 + 37d + 210 7. (g + 4)(g + 2) 17. p2 + 10p + 21 (m + 25)(m + 8) d2 + 36d + 35 10. g 2 + 6g + 8 (y + 5)(y + 2) z 2 + 15z + 14 (z + 14)(z + 1) (d + 35)(d + 1) y 2 + 7y + 10 13. m2 + 9m + 12 3. (a + 2)(a + 1) (c + 24)(c + 1) 9. a2 + 3a + 2 (k + 11)(k + 4) prime 44. p2 + 15p + 30 prime 48. k 2 + 26k + 88 (k + 22)(k + 4) 52. r2 + 40r + 76 (r + 38)(r + 2) 56. t2 + 89t + 88 (t + 88)(t + 1) 60. w2 + 52w + 100 (w + 50)(w + 2) 64. x2 + 26x + 120 (x + 20)(x + 6) 68. x2 + 51x + 144 (x + 48)(x + 3) 72. c2 + 25c + 150 (c + 15)(c + 10) 76. r2 + 37r + 160 (r + 32)(r + 5) 80. u2 + 63u + 180 (u + 60)(u + 3) ID 81. k 2 + 45k + 200 (k + 40)(k + 5) 85. x2 + 204x + 800 (x + 200)(x + 4) 89. 9 + 10a + a2 (9 + a)(1 + a) 93. 6 + 5a + a2 (3 + a)(2 + a) 97. 20 + 9c + c2 (5 + c)(4 + c) 101. 48 + 14x + x2 (8 + x)(6 + x) 105. 80 + 18p + p2 (10 + p)(8 + p) 109. 57 + 22y + y 2 (19 + y)(3 + y) 113. 100 + 25x + x2 (20 + x)(5 + x) 117. 200 + 30k + k 2 (20 + k)(10 + k) 121. 180 + 27w + w2 (15 + w)(12 + w) 125. k 4 + 9k 2 + 8 (k 2 + 8)(k 2 + 1) 129. b8 + 12b4 + 35 (b4 + 7)(b4 + 5) 133. 96 + 35m5 + m10 (32 + m5 )(3 + m5 ) 137. x2 y 2 + 7xy + 6 82. w2 + 60w + 800 (w + 40)(w + 20) 86. d2 + 105d + 500 (d + 100)(d + 5) 90. 5 + 6y + y 2 (1 + y)(5 + y) 94. 15 + 8c + c2 (5 + c)(3 + c) 98. 12 + 8a + a2 (6 + a)(2 + a) 102. 88 + 26y + y 2 (22 + y)(4 + y) 106. 90 + 21b + b2 (15 + b)(6 + b) 110. 75 + 28h + h2 (25 + h)(3 + h) 114. 60 + 17w + w2 (12 + w)(5 + w) 118. 120 + 22x + x2 (12 + x)(10 + x) 122. 300 + 37x + x2 (25 + x)(12 + x) 126. a6 + 5a3 + 4 (a3 + 4)(a3 + 1) 130. a6 + 21a3 + 90 (a3 + 15)(a3 + 6) 134. 76 + 23p4 + p8 (19 + p4 )(4 + p4 ) 138. 15 + 16ab + a2 b2 83. q 2 + 56q + 300 (q + 50)(q + 6) 87. r2 + 120r + 2000 (r + 100)(r + 20) 91. 24 + 25x + x2 (24 + x)(1 + x) 95. 65 + 18p + p2 (13 + p)(5 + p) 99. 32 + 18b + b2 (16 + b)(2 + b) 103. 54 + 15a + a2 (9 + a)(6 + a) 107. 72 + 22w + w2 (18 + w)(4 + w) 111. 51 + 20c + c2 (17 + c)(3 + c) 115. 96 + 28y + y 2 (24 + y)(4 + y) 119. 140 + 39a + a2 (35 + a)(4 + a) 123. 210 + 37m + m2 (30 + m)(7 + m) 127. 14 + 9r2 + r4 (7 + r2 )(2 + r2 ) 131. 55 + 16w5 + w10 (11 + w5 )(5 + w5 ) 135. h12 + 22h6 + 105 (h6 + 15)(h6 + 7) 139. c4 d2 + 10c2 d + 24 (xy + 6)(xy + 1) (15 + ab)(1 + ab) (c2 d + 6)(c2 d + 4) 141. 36 + 15c3 w + c6 w2 142. x4 y 8 + 20x2 y 4 + 51 143. 12 + 8ac2 z + a2 c4 d2 (12 + c3 w)(3 + c3 w) (x2 y 4 + 17)(x2 y 4 + 3) (6 + ac2 d)(2 + ac2 d) ALG catalog ver. 2.6 – page 174 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 84. m2 + 54m + 200 (m + 50)(m + 4) 88. z 2 + 205z + 1000 (z + 200)(z + 5) 92. 49 + 50y + y 2 (49 + y)(1 + y) 96. 33 + 14w + w2 (11 + w)(3 + w) 100. 45 + 18m + m2 (15 + m)(3 + m) 104. 60 + 19c + c2 (15 + c)(4 + c) 108. 64 + 34k + k 2 (32 + k)(2 + k) 112. 99 + 36p + p2 (33 + p)(3 + p) 116. 144 + 25p + p2 (16 + p)(9 + p) 120. 250 + 55c + c2 (50 + c)(5 + c) 124. 400 + 50y + y 2 (40 + y)(10 + y) 128. 24 + 11c3 + c6 (8 + c3 )(3 + c3 ) 132. 80 + 42x2 + x4 (40 + x2 )(2 + x2 ) 136. r10 + 30r5 + 144 (r5 + 24)(r5 + 6) 140. 18 + 9mp2 + m2 p4 (6 + mp2 )(3 + mp2 ) 144. x4 y 2 z 8 + 12x2 yz 4 + 20 (x2 yz 4 + 10)(x2 yz 4 + 2) IE Topic: Factoring trinomials of the form: x2 − bx + c. Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. y 2 − 4y + 3 2. (y − 3)(y − 1) 5. y 2 − 28y + 27 6. 21. z 2 − 12z + 20 41. x2 − 13x + 40 (x − 8)(x − 5) (r − 32)(r − 3) 69. y 2 − 72y + 140 (y − 70)(y − 2) 73. k 2 − 30k + 200 (q − 50)(q − 5) 62. r2 − 28r + 70 78. x2 − 29x + 120 (x − 24)(x − 5) 52. m2 − 20m + 51 (m − 17)(m − 3) 56. d2 − 17d + 66 (d − 11)(d − 6) 60. x2 − 15x + 56 (y − 20)(y − 5) prime 70. m2 − 30m + 144 (y − 26)(y − 10) (a − 36)(a − 2) 59. y 2 − 25y + 100 (g − 40)(g − 3) 74. y 2 − 36y + 260 48. a2 − 38a + 72 (c − 11)(c − 9) 66. g 2 − 43g + 120 (m − 24)(m − 6) (a − 10)(a − 4) 55. c2 − 20c + 99 (h − 35)(h − 2) prime 44. a2 − 14a + 40 (y − 23)(y − 2) 58. h2 − 37h + 70 (r − 18)(r − 3) (g − 16)(g − 5) 51. y 2 − 25y + 46 (g − 72)(g − 1) 57. r2 − 21r + 54 40. g 2 − 21g + 80 (c − 45)(c − 2) 54. g 2 − 73g + 72 (c − 54)(c − 1) (r − 22)(r − 2) 47. c2 − 47c + 90 (x − 19)(x − 4) 53. c2 − 55c + 54 36. r2 − 24r + 44 (p − 11)(p − 8) 50. x2 − 23x + 76 (w − 19)(w − 3) (t − 16)(t − 4) 43. p2 − 19p + 88 (x − 18)(x − 4) 49. w2 − 22w + 57 32. t2 − 20t + 64 (t − 30)(t − 2) 46. x2 − 22x + 72 (a − 9)(a − 10) (c − 9)(c − 5) 39. t2 − 32t + 60 (b − 15)(b − 5) 45. a2 − 19a + 90 28. c2 − 14c + 45 (c − 12)(c − 4) 42. b2 − 20b + 75 63. p2 − 12p + 50 67. n2 − 20n + 96 (n − 12)(n − 8) 71. a2 − 68a + 132 (a − 66)(a − 2) 75. h2 − 31h + 150 (h − 25)(h − 6) 79. a2 − 36a + 180 (a − 30)(a − 6) ALG catalog ver. 2.6 – page 175 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. prime (a − 6)(a − 5) 35. c2 − 16c + 48 (k − 40)(k − 2) 20. a2 − 12a + 24 24. a2 − 11a + 30 (d − 25)(d − 3) 38. k 2 − 42k + 80 (x − 20)(x − 3) prime 31. d2 − 28d + 75 (p − 21)(p − 2) 37. x2 − 23x + 60 19. a2 − 10a + 30 (t − 17)(t − 5) (k − 9)(k − 2) 34. p2 − 23p + 42 (w − 8)(w − 6) 16. t2 − 22t + 85 27. k 2 − 11k + 18 (n − 10)(n − 6) 33. w2 − 14w + 48 (k − 9)(k − 3) (p − 4)(p − 6) 30. n2 − 16n + 60 (p − 9)(p − 4) 12. k 2 − 12k + 27 23. p2 − 10p + 24 (x − 12)(x − 2) 29. p2 − 13p + 36 65. r2 − 35r + 96 prime p2 − 46p + 45 (p − 45)(p − 1) (b − 19)(b − 2) 26. x2 − 14x + 24 (g − 16)(g − 2) 8. 15. b2 − 21b + 38 (x − 6)(x − 2) 25. g 2 − 18g + 32 h2 − 65h + 64 (g − 7)(g − 5) 22. x2 − 8x + 12 (z − 10)(z − 2) 61. r2 − 16r + 40 18. x2 − 8x + 20 x2 − 13x + 12 (x − 12)(x − 1) 11. g 2 − 12g + 35 (y − 11)(y − 7) prime 4. (h − 64)(h − 1) 14. y 2 − 18y + 77 (k − 13)(k − 3) 77. q 2 − 55q + 250 7. (x − 5)(x − 3) 13. k 2 − 16k + 39 (k − 20)(k − 10) b2 − 21b + 20 10. x2 − 8x + 15 (r − 3)(r − 2) p2 − 6p + 5 (p − 5)(p − 1) (b − 20)(b − 1) r2 − 5r + 6 17. x2 − 5x + 15 3. (w − 7)(w − 1) (y − 27)(y − 1) 9. w2 − 8w + 7 (x − 8)(x − 7) prime 64. p2 − 20p + 75 68. h2 − 22h + 120 (h − 12)(h − 10) 72. c2 − 40c + 144 (c − 36)(c − 4) 76. g 2 − 37g + 300 (g − 25)(g − 12) 80. k 2 − 38k + 240 (k − 30)(k − 8) prime IE 81. y 2 − 46y + 240 (y − 40)(y − 6) 85. h2 − 57h + 350 (h − 50)(h − 7) 89. 14 − 15x + x2 (14 − x)(1 − x) 93. 8 − 6a + a2 (4 − a)(2 − a) 97. 85 − 22x + x2 (17 − x)(5 − x) 101. 24 − 11x + x2 (8 − x)(3 − x) 105. 30 − 17p + p2 (15 − p)(2 − p) 109. 44 − 15a + a2 (11 − a)(4 − a) 113. 90 − 23w + w2 (18 − w)(5 − w) 117. 120 − 26c + c2 (20 − c)(6 − c) 121. 210 − 29m + m2 (15 − m)(14 − m) 125. a4 − 7a2 + 6 (a2 − 6)(a2 − 1) 129. p8 − 18p4 + 45 (p4 − 15)(p4 − 3) 133. 96 − 20a5 + a10 (12 − a5 )(8 − a5 ) 137. w2 x2 − 6wx + 5 82. p2 − 44p + 160 (p − 40)(p − 4) 86. k 2 − 53k + 150 (k − 50)(k − 3) 90. 4 − 5y + y 2 (5 − w)(2 − w) 98. 51 − 20y + y 2 (17 − y)(3 − y) 102. 18 − 9r + r2 (6 − r)(3 − r) (16 − c)(4 − c) 110. 42 − 13x + x2 (7 − x)(6 − x) (18 − r)(4 − r) 118. 140 − 72y + y 2 (70 − y)(2 − y) 122. 180 − 63p + p2 (60 − p)(3 − p) 126. y 6 − 15y 3 + 14 − 1) 130. m6 − 19m3 + 90 − 9) 134. 56 − 18r4 + r8 (14 − r4 )(4 − r4 ) 138. 12 − 7by + b2 y 2 (wx − 5)(wx − 1) (4 − by)(3 − by) 141. 40 − 13k 3 m + k 6 m2 142. r4 q 8 − 21r2 q 4 + 54 (8 − k 3 m)(5 − k 3 m) 95. 15 − 8c + c2 (5 − c)(3 − c) 99. 91 − 20a + a2 (13 − a)(7 − a) 103. 40 − 14a + a2 107. 48 − 19m + m2 (16 − m)(3 − m) 111. 100 − 29m + m2 (25 − m)(4 − m) 114. 72 − 22r + r2 − 10)(m3 (x − 100)(x − 8) (10 − a)(4 − a) 106. 64 − 20c + c2 (m3 87. x2 − 108x + 800 (20 + w)(1 + w) 94. 10 − 7w + w2 − 14)(y 3 (x − 60)(x − 5) 91. 20 + 21w + w2 (4 − y)(1 − y) (y 3 83. x2 − 65x + 300 (r2 q 4 − 18)(r2 q 4 − 3) 115. 96 − 22a + a2 (16 − a)(6 − a) 119. 250 − 55k + k 2 (50 − k)(5 − k) 123. 600 − 50w + w2 (20 − w)(30 − w) 127. 16 − 10c2 + c4 (8 − c2 )(2 − c2 ) 131. 75 − 28k 5 + k 10 (25 − k 5 )(3 − k 5 ) 135. p12 − 38p6 + 105 (p6 − 35)(p6 − 3) 139. a4 c2 − 14a2 c + 24 (a2 c − 12)(a2 c − 2) 143. 16 − 10wx2 y + w2 x4 y 2 (8 − wx2 y)(2 − wx2 y) ALG catalog ver. 2.6 – page 176 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 84. p2 − 50p + 600 (p − 30)(p − 20) 88. z 2 − 110z + 1000 (z − 100)(z − 10) 92. 35 − 36r + r2 (35 − r)(1 − r) 96. 20 − 9w + w2 (5 − w)(4 − w) 100. 99 − 36k + k 2 (33 − k)(3 − k) 104. 32 − 12m + m2 (8 − m)(4 − m) 108. 60 − 17y + y 2 (12 − y)(5 − y) 112. 80 − 18x + x2 (10 − x)(8 − x) 116. 144 − 51k + k 2 (48 − k)(3 − k) 120. 160 − 44a + a2 (40 − a)(4 − a) 124. 300 − 37r + r2 (25 − r)(12 − r) 128. 24 − 14w3 + w6 (12 − w3 )(2 − w3 ) 132. 80 − 24y 2 + y 4 (20 − y 2 )(4 − y 2 ) 136. x10 − 25x5 + 144 (x5 − 9)(x5 − 16) 140. 22 − 13ar2 + a2 r4 (11 − ar2 )(2 − ar2 ) 144. b4 d2 h8 − 17b2 dh4 + 30 (b2 dh4 − 15)(b2 dh4 − 2) IF Topic: Factoring trinomials of the form: x2 + bx − c. Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. k 2 + 4k − 5 2. (k + 5)(k − 1) 5. r2 + 24r − 25 6. p2 + 17p − 18 (w + 3)(w − 2) 13. t2 + 2t − 15 14. a2 + 6a − 27 (t + 5)(t − 3) 21. r2 + 13r − 30 29. t2 + 4t − 45 (d + 30)(d − 2) prime 58. m2 + 30m − 60 62. y 2 + 33y − 70 (y + 35)(y − 2) 65. r2 + r − 210 66. u2 + u − 156 (r + 15)(r − 14) (u + 13)(u − 12) 69. x2 + 70x − 144 (x + 72)(x − 2) 73. p2 + 10p − 200 (p + 20)(p − 10) 77. m2 + 19m − 150 70. a2 + 18a − 144 (a + 24)(a − 6) 74. r2 + 5r − 150 (r + 15)(r − 10) 78. x2 + 13x − 300 (x + 25)(x − 12) 36. t2 + 8t − 65 (t + 13)(t − 5) 40. h2 + 12h − 64 (h + 16)(h − 4) 44. b2 + 15b − 54 (b + 18)(b − 3) 48. y 2 + 27y − 58 (y + 29)(y − 2) 52. q 2 + 14q − 120 (q + 20)(q − 6) 55. k 2 + 18k − 88 56. h2 + 3h − 88 (k + 22)(k − 4) prime 59. d2 + 34d − 70 63. w2 + 74w − 75 (w + 75)(w − 1) 67. p2 + 15p − 100 (p + 20)(p − 5) 71. d2 + 53d − 110 (d + 55)(d − 2) 75. h2 + 18h − 280 (h + 28)(h − 10) 79. r2 + 45r − 250 (r + 50)(r − 5) ALG catalog ver. 2.6 – page 177 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. prime (m + 12)(m − 4) (p + 40)(p − 3) (x + 32)(x − 3) 28. c2 + 8c − 30 32. m2 + 8m − 48 51. p2 + 37p − 120 54. x2 + 29x − 96 (r + 12)(r − 8) prime (p + 17)(p − 2) (h + 36)(h − 2) 53. r2 + 4r − 96 27. c2 + 14c − 20 (d + 12)(d − 3) 47. p2 + 15p − 34 50. h2 + 34h − 72 (d + 9)(d − 8) 24. d2 + 9d − 36 (w + 13)(w − 7) (d + 40)(d − 2) 49. d2 + d − 72 (c + 11)(c − 3) 43. w2 + 6w − 91 46. d2 + 38d − 80 (c + 10)(c − 8) 20. c2 + 8c − 33 (d + 25)(d − 3) (d + 11)(d − 9) 45. c2 + 2c − 80 (b + 8)(b − 3) 39. d2 + 22d − 75 42. d2 + 2d − 99 (x + 33)(x − 3) 16. b2 + 5b − 24 (r + 30)(r − 3) (y + 15)(y − 4) 41. x2 + 30x − 99 (y + 5)(y − 4) 35. r2 + 27r − 90 38. y 2 + 11y − 60 (w + 10)(w − 6) (x + 6)(x − 5) (b + 16)(b − 3) (a + 10)(a − 7) 37. w2 + 4w − 60 12. y 2 + y − 20 31. b2 + 13b − 48 34. a2 + 3a − 70 (x + 8)(x − 5) 61. d2 + 28d − 60 prime (w + 9)(w − 4) 33. x2 + 3x − 40 11. x2 + x − 30 (m + 16)(m − 2) 30. w2 + 5w − 36 (t + 9)(t − 5) 57. m2 + 25m − 40 26. w2 + 8w − 10 b2 + 48b − 49 (b + 49)(b − 1) 23. m2 + 14m − 32 (q + 15)(q − 3) prime 8. (g + 35)(g − 1) (q + 11)(q − 7) 22. q 2 + 12q − 45 (r + 15)(r − 2) g 2 + 34g − 35 19. q 2 + 4q − 77 (d + 13)(d − 2) a2 + 7a − 8 (a + 8)(a − 1) (q + 9)(q − 2) 18. d2 + 11d − 26 (a + 17)(a − 3) 4. 15. q 2 + 7q − 18 (a + 9)(a − 3) 17. a2 + 14a − 51 (m + 25)(m − 6) 7. 10. w2 + w − 6 (p + 4)(p − 3) c2 + 5c − 6 (c + 6)(c − 1) (p + 18)(p − 1) p2 + p − 12 25. w2 + 5w − 12 3. (w + 3)(w − 1) (r + 25)(r − 1) 9. w2 + 2w − 3 (h + 11)(h − 8) prime 60. d2 + 18d − 45 prime 64. b2 + 44b − 45 (b + 45)(b − 1) 68. h2 + 48h − 100 (h + 50)(h − 2) 72. c2 + 68c − 140 (c + 70)(c − 2) 76. c2 + 25c − 350 (c + 35)(c − 10) 80. w2 + 35w − 200 (w + 40)(w − 5) IF 81. r2 + 17r − 110 (r + 22)(r − 5) 85. b2 + 43b − 350 (b + 50)(b − 7) 89. p2 + 10p − 600 (p + 30)(p − 20) 82. w2 + 44w − 300 (w + 50)(w − 6) 86. k 2 + 47k − 150 (k + 50)(k − 3) 90. q 2 + 30q − 1000 83. m2 + 34m − 240 (m + 40)(m − 6) 87. c2 + 92c − 800 (c + 100)(c − 8) 91. g 2 + 90g − 1000 (q + 50)(q − 20) (g + 100)(g − 10) 93. 9 + 8y − y 2 94. 10 + 9r − r2 95. 25 + 24p − p2 (9 − y)(1 + y) (10 − r)(1 + r) 97. 27 + 6y − y 2 (9 − y)(3 + y) 101. 45 + 12y − y 2 (15 − y)(3 + y) 105. 75 + 10w − w2 (15 − w)(5 + w) 109. 51 + 14y − y 2 (17 − y)(3 + y) 113. 88 + 18w − w2 (22 − w)(4 + w) 117. 130 + 63a − a2 (65 − a)(2 + a) 121. 250 + 45k − k 2 (50 − k)(5 + k) 125. m4 + 6m2 − 7 (m2 + 7)(m2 − 1) 129. k 8 + 13k 4 − 48 (k 4 + 16)(k 4 − 3) 133. 44 + 7x5 − x10 (11 − x5 )(4 + x5 ) 137. x2 y 2 + 5xy − 6 (xy + 6)(xy − 1) 141. 40 + 6a3 x − a6 x2 (10 − a3 x)(4 + a3 x) 98. 14 + 5r − r2 (7 − r)(2 + r) 102. 36 + 9w − w2 (12 − w)(3 + w) 106. 64 + 12y − y 2 (16 − y)(4 + y) 110. 72 + 34p − p2 (36 − p)(2 + p) 114. 120 + 19a − a2 (24 − a)(5 + a) 118. 180 + 8w − w2 (18 − w)(10 + w) 122. 500 + 40y − y 2 (50 − y)(10 + y) 126. a6 + 11a2 − 12 (a3 + 12)(a3 − 1) 130. p6 + 27p3 − 90 (p3 + 30)(p3 − 3) 134. 85 + 12y 4 − y 8 (17 − y 4 )(5 + y 4 ) 138. 22 + 9cd − c2 d2 (25 − p)(1 + p) (g + 60)(g − 4) 88. w2 + 94w − 600 (w + 100)(w − 6) 92. t2 + 80t − 2000 (t + 100)(t − 20) 96. 45 + 44x − x2 (45 − x)(1 + x) 99. 20 + 8a − a2 100. 30 + x − x2 (10 − a)(2 + a) (6 − x)(5 + x) 103. 70 + 3m − m2 (10 − m)(7 + m) 107. 99 + 2m − m2 (11 − m)(9 + m) 111. 72 + 14a − a2 (18 − a)(4 + a) 115. 156 + w − w2 (13 − w)(12 + w) 119. 150 + 19y − y 2 (25 − y)(6 + y) 123. 200 + 17m − m2 104. 70 + 9a − a2 (14 − a)(5 + a) 108. 56 + w − w2 (8 − w)(7 + w) 112. 96 + 10r − r2 (16 − r)(6 + r) 116. 144 + 7x − x2 (16 − x)(9 + x) 120. 240 + 56p − p2 (60 − p)(4 + p) 124. 600 + 10w − w2 (25 − m)(8 + m) (30 − w)(20 + w) 127. 10 + 3r2 − r4 128. 24 + 5y 3 − y 6 (5 − r2 )(2 + r2 ) 131. 65 + 8w5 − w10 (13 − w5 )(5 + w5 ) 135. r12 + 15r6 − 100 (r6 + 20)(r6 − 5) 139. k 4 m2 + 2k 2 m − 35 (11 − cd)(2 + cd) (k 2 m + 7)(k 2 m − 5) 142. c4 y 8 + 11c2 y 4 − 42 143. 24 + 10nq 2 r − n2 q 4 r2 (c2 y 4 + 14)(c2 y 4 − 3) 84. g 2 + 56g − 240 (12 − nq 2 r)(2 + nq 2 r) ALG catalog ver. 2.6 – page 178 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (8 − y 3 )(3 + y 3 ) 132. 60 + 4a2 − a4 (10 − a2 )(6 + a2 ) 136. c10 + 32c5 − 144 (c5 + 36)(c5 − 4) 140. 32 + 14pr2 − p2 r4 (16 − pr2 )(2 + pr2 ) 144. x4 y 2 z 8 + 16x2 yz 4 − 36 (x2 yz 4 + 18)(x2 yz 4 − 2) IG Topic: Factoring trinomials of the form: x2 − bx − c. Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. x2 − 3x − 4 2. b2 − b − 2 (b − 2)(b + 1) 3. (x − 4)(x + 1) 5. 9. 6. k 2 − 14k − 15 (y − 12)(y + 1) (k − 15)(k + 1) p2 − 4p − 21 10. h2 − 2h − 8 (p − 7)(p + 3) 7. (y − 12)(y + 2) prime 25. y 2 − 8y − 20 (y − 17)(y + 3) 45. p2 − 7p − 44 (x − 16)(x + 6) 61. q 2 − 38q − 80 (q − 40)(q + 2) 54. y 2 − 15y − 50 58. m2 − 20m − 96 (m − 24)(m + 4) 62. k 2 − 18k − 40 (k − 20)(k + 2) 65. x2 − x − 132 66. r2 − r − 272 (x − 12)(x + 11) (r − 17)(r + 16) 69. t2 − 7t − 144 (t − 16)(t + 9) 73. w2 − 8w − 180 (w − 18)(w + 10) 77. a2 − 17a − 200 70. x2 − 32x − 144 (x − 36)(x + 4) 74. y 2 − 6y − 160 (y − 16)(y + 10) 78. b2 − 20b − 300 (b − 30)(b + 10) 40. w2 − 30w − 64 (w − 32)(w + 2) 44. g 2 − 21g − 46 (g − 23)(g + 2) 47. b2 − 16b − 80 48. r2 − 11r − 80 (b − 20)(b + 4) (r − 16)(r + 5) 51. a2 − 58a − 120 (d − 18)(d + 4) prime (x − 17)(x + 5) (x − 19)(x + 2) 50. d2 − 14d − 72 (k − 24)(k + 3) 36. x2 − 12x − 85 43. x2 − 17x − 38 (a − 22)(a + 2) 49. k 2 − 21k − 72 (r − 24)(r + 2) (d − 15)(d + 5) 46. a2 − 20a − 44 (p − 11)(p + 4) 32. r2 − 22r − 48 39. d2 − 10d − 75 (w − 19)(w + 3) 52. t2 − 19t − 120 (a − 60)(a + 2) prime 55. p2 − 28p − 80 (t − 24)(t + 5) prime 59. n2 − 19n − 66 (n − 22)(n + 3) 63. y 2 − 49y − 50 (y − 50)(y + 1) 67. m2 − 21m − 100 (m − 25)(m + 4) 71. n2 − 73n − 150 (n − 75)(n + 2) 75. t2 − 14t − 240 (t − 24)(t + 10) 79. d2 − 25d − 150 (d − 30)(d + 5) ALG catalog ver. 2.6 – page 179 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. prime (p − 8)(p + 4) (w − 18)(w + 5) 42. w2 − 16w − 57 24. a2 − 8a − 24 28. p2 − 4p − 32 35. w2 − 13w − 90 (a − 20)(a + 3) 41. y 2 − 14y − 51 prime (b − 8)(b + 6) 38. a2 − 17a − 60 (y − 12)(y + 5) 23. x2 − 5x − 10 (k − 21)(k + 3) 31. b2 − 2b − 48 (a − 14)(a + 5) 37. y 2 − 7y − 60 20. k 2 − 18k − 63 (r − 6)(r + 3) 34. a2 − 9a − 70 (d − 10)(d + 4) (t − 15)(t + 3) 27. r2 − 3r − 18 (c − 12)(c + 3) 33. d2 − 6d − 40 57. x2 − 10x − 96 prime 30. c2 − 9c − 36 (w − 15)(w + 3) 16. t2 − 12t − 45 (n − 18)(n + 3) (c − 10)(c + 3) 29. w2 − 12w − 45 (t − 5)(t + 2) 19. n2 − 15n − 54 26. c2 − 7c − 30 (y − 10)(y + 2) 53. x2 − 15x − 75 22. w2 − 7w − 12 12. t2 − 3t − 10 (n − 16)(n + 2) (c − 11)(c + 5) d2 − 20d − 21 (d − 21)(d + 1) 15. n2 − 14n − 32 18. c2 − 6c − 55 (m − 13)(m + 5) 8. (a − 7)(a + 2) (p − 4)(p + 3) 17. m2 − 8m − 65 g 2 − 44g − 45 11. a2 − 5a − 14 14. p2 − p − 12 w2 − 9w − 10 (w − 10)(w + 1) (g − 45)(g + 1) (h − 4)(h + 2) 13. y 2 − 10y − 24 (a − 25)(a + 8) 4. (k − 9)(k + 1) y 2 − 11y − 12 21. r2 − 9r − 20 k 2 − 8k − 9 56. b2 − 30b − 105 60. b2 − 5b − 66 (b − 11)(b + 6) 64. y 2 − 69y − 70 (y − 70)(y + 1) 68. r2 − 99r − 100 (r − 100)(r + 1) 72. y 2 − 78y − 160 (y − 80)(y + 2) 76. c2 − 15c − 250 (c − 25)(c + 10) 80. k 2 − 55k − 300 (k − 60)(k + 5) prime IG 81. b2 − 19b − 120 (b − 24)(b + 5) 85. c2 − 42c − 400 (c − 50)(c + 8) 89. y 2 − 195y − 1000 (y − 200)(y + 5) 82. r2 − 46r − 200 (r − 50)(r + 4) 86. x2 − 7x − 450 (x − 25)(x + 18) 90. y 2 − 10y − 2000 (y − 50)(y + 40) 93. 6 − 5x − x2 94. 4 − 3p − p2 (6 + x)(1 − x) (4 + p)(1 − p) 97. 15 − 2w − w2 (5 + w)(3 − w) 101. 32 − 14m − m2 (16 + m)(2 − m) 105. 90 − 9k − k 2 (15 + k)(6 − k) 109. 54 − 15a − a2 (18 + a)(3 − a) 113. 120 − 14m − m2 (20 + m)(6 − m) 117. 140 − 68c − c2 (70 + c)(2 − c) 121. 150 − 25p − p2 (30 + p)(5 − p) 125. y 4 − 7y 2 − 8 (y 2 − 8)(y 2 + 1) 129. p8 − 10p4 − 75 (p4 − 15)(p4 + 5) 133. 44 − 20y 5 − y 10 (22 + y 5 )(2 − y 5 ) 137. a2 b2 − 2ab − 3 (ab − 3)(ab + 1) 141. 60 − 7c3 d − c6 d2 (12 + c3 d)(5 − c3 d) 98. 8 − 2m − m2 (4 + m)(2 − m) 102. 48 − 8x − x2 (12 + x)(4 − x) 106. 80 − 16w − w2 (20 + w)(4 − w) 110. 64 − 30y − y 2 (32 + y)(2 − y) 114. 100 − 15k − k 2 (20 + k)(5 − k) 118. 200 − 10r − r2 (20 + r)(10 − r) 122. 600 − 10a − a2 (30 + a)(20 − a) 126. w6 − 14w3 − 15 (w3 − 15)(w3 + 1) 130. r6 − 22r3 − 75 (r3 − 25)(r3 + 3) 134. 140 − 4a4 − a8 (14 + a4 )(10 − a4 ) 138. 30 − 13xy − x2 y 2 (15 + xy)(2 − xy) 142. r4 s8 − 4r2 s4 − 32 (r2 s4 − 8)(r2 s4 + 4) 83. w2 − 36w − 160 (w − 40)(w + 4) 87. n2 − 95n − 500 (n − 100)(n + 5) 91. b2 − 85b − 1500 (b − 100)(b + 15) 95. 21 − 20w − w2 (21 + w)(1 − w) 99. 24 − 10p − p2 (12 + p)(2 − p) 103. 40 − 6w − w2 84. d2 − 54d − 360 (d − 60)(d + 6) 88. t2 − 10t − 600 (t − 30)(t + 20) 92. a2 − 88a − 1200 (a − 100)(a + 12) 96. 36 − 35r − r2 (36 + r)(1 − r) 100. 42 − a − a2 (7 + a)(6 − a) 104. 90 − 13c − c2 (10 + w)(4 − w) (18 + c)(5 − c) 107. 80 − 2r − r2 108. 72 − x − x2 (10 + r)(8 − r) (9 + x)(8 − x) 111. 72 − 21y − y 2 (24 + y)(3 − y) 115. 132 − p − p2 (12 + p)(11 − p) 119. 200 − 17x − x2 (25 + x)(8 − x) 123. 250 − 15k − k 2 (25 + k)(10 − k) 127. 12 − a2 − a4 (4 + a2 )(3 − a2 ) 131. 95 − 14k 5 − k 10 (19 + k 5 )(5 − k 5 ) 135. c12 − 26c6 − 120 (c6 − 30)(c6 + 4) 139. d4 h2 − 5d2 h − 36 112. 96 − 4a − a2 (12 + a)(8 − a) 116. 144 − 18w − w2 (24 + w)(6 − w) 120. 160 − 36m − m2 (40 + m)(4 − m) 124. 500 − 95r − r2 (100 + r)(5 − r) 128. 28 − 3m3 − m6 (7 + m3 )(4 − m3 ) 132. 56 − 26w2 − w4 (28 + w2 )(2 − w2 ) 136. m10 − 10m5 − 96 (m5 − 16)(m5 + 6) 140. 52 − 24mp2 − m2 p4 (d2 h − 9)(d2 h + 4) (26 + mp2 )(2 − mp2 ) 143. 20 − 8xy 2 z − x2 y 4 z 2 144. k 4 n2 r8 − 13k 2 nr4 − 48 (10 + xy 2 z)(2 − xy 2 z) ALG catalog ver. 2.6 – page 180 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (k 2 nr4 − 16)(k 2 nr4 + 3) IH Topic: Factoring trinomials of the form: ax2 + bx + c. Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. 5m2 + 6m + 1 2. 12x2 + 4x − 1 6. (6x − 1)(2x + 1) 9. 6a2 − a − 1 7. (3z + 11)(z − 1) 21. 5y 2 − 14y − 3 29. 5a2 + 12a + 4 (5a + 2)(a + 2) 33. 30m2 + 7m − 1 (10m − 1)(3m + 1) 37. 14x2 + 15x + 1 26. 3b2 + 12b + 7 16. 3a2 − 4a − 7 (3a − 7)(a + 1) 20. 13u2 − 27u + 2 (13u − 1)(u − 2) 23. 2a2 − 25a − 13 (3p − 1)(p + 7) prime (5r + 7)(r + 1) (5y + 1)(y + 3) 22. 3p2 + 20p − 7 (5y + 1)(y − 3) 12. 5r2 + 12r + 7 19. 5y 2 + 16y + 3 (2c − 1)(c − 11) 24. 11x2 + 32x − 3 (2a + 1)(a − 13) prime 30. 4r2 + 11r + 7 (4r + 7)(r + 1) 34. 21x2 − 4x − 1 (7x + 1)(3x − 1) 38. 24m2 − 25m + 1 27. 7m2 − 9m − 1 8c2 + 6c + 1 (4c + 1)(2c + 1) (13x − 5)(x + 1) 18. 2c2 − 23c + 11 (7d + 1)(d + 5) 8. 15. 13x2 + 8x − 5 (11h + 2)(h − 1) 17. 7d2 + 36d + 5 10m2 − 7m + 1 (7y − 2)(y − 1) 14. 11h2 − 9h − 2 13w2 + 12w − 1 (13w − 1)(w + 1) 11. 7y 2 − 9y + 2 (2n + 5)(n + 1) 13. 3z 2 + 8z − 11 4. (5m − 1)(2m − 1) 10. 2n2 + 7n + 5 (3x − 7)(x − 1) 5y 2 − 4y − 1 (5y + 1)(y − 1) (3a + 1)(2a − 1) 3x2 − 10x + 7 25. 2y 2 − 8y + 5 3. (11k − 1)(k − 1) (5m + 1)(m + 1) 5. 11k 2 − 12k + 1 (11x − 1)(x + 3) prime 31. 2p2 − 7p + 6 (2p − 3)(p − 2) 35. 10y 2 + 9y − 1 (10y − 1)(y + 1) 39. 28n2 + 16n + 1 28. 11c2 + c − 13 32. 6k 2 − 13k + 2 (6k − 1)(k − 2) 36. 15a2 − 14a − 1 (15a + 1)(a − 1) 40. 21y 2 − 10y + 1 (14x + 1)(x + 1) (24m − 1)(m − 1) (14n + 1)(2n + 1) (7y − 1)(3y − 1) 41. 5s2 − 13s − 6 42. 6y 2 − 11y − 7 43. 2x2 + 17x − 9 44. 9c2 + 18c − 7 (5s + 2)(s − 3) 45. 3w2 − 10w + 8 (3y − 7)(2y + 1) 46. 8u2 − 14u + 5 (2x − 1)(x + 9) 47. 7m2 − 27m + 26 (3w − 4)(w − 2) (4u − 5)(2u − 1) (7m − 13)(m − 2) 49. 15y 2 − y − 2 50. 2x2 − x − 21 51. 2p2 − 9p − 35 (5y − 2)(3y + 1) (2x − 7)(x + 3) 53. 4d2 + 9d + 2 54. 4y 2 + 8y + 3 (4d + 1)(d + 2) 57. 7a2 + 9a − 10 (7a − 5)(a + 2) 61. 4y 2 + 20y − 11 (2y + 11)(2y − 1) 65. 9x2 − 12x − 5 (3x − 5)(3x + 1) 69. 3k 2 + 28k + 49 (3k + 7)(k + 7) 73. 25a2 − 15a + 2 (5a − 2)(5a − 1) (2y + 1)(2y + 3) 58. 10n2 + 23n − 5 (5n − 1)(2n + 5) 62. 25a2 + 10a − 3 (5a + 3)(5a − 1) 66. 15c2 − 22c − 5 (5c + 1)(3c − 5) 70. 3a2 + 14a + 15 (3a + 5)(a + 3) 74. 4c2 − 24c + 11 (2c − 11)(2c − 1) (2p + 5)(p − 7) 55. 10a2 + 11a + 3 (2a + 1)(5a + 3) (3c + 7)(3c − 1) 48. 22q 2 − 35q + 3 (11q − 1)(2q − 3) 52. 26s2 − 21s − 5 (26s + 5)(s − 1) 56. 10c2 + 21c + 11 (10c + 11)(c + 1) 59. 8x2 + x − 7 60. 5w2 + w − 4 (8x − 7)(x + 1) (5w − 4)(w + 1) 63. 21p2 + 8p − 5 (7p + 5)(3p − 1) 67. 21w2 − 26w − 11 (7w − 11)(3w + 1) 71. 26z 2 + 41z + 3 (13z + 1)(2z + 3) 75. 13y 2 − 41y + 6 (13y − 2)(y − 3) ALG catalog ver. 2.6 – page 181 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. prime 64. 4h2 + 27h − 7 (4h − 1)(h + 7) 68. 5z 2 − 16z − 21 (5z − 21)(z + 1) 72. 5x2 + 57x + 22 (5x + 2)(x + 11) 76. 10p2 − 37p + 7 (2p − 7)(5p − 1) IH 77. 10p2 − 27p + 5 78. 25m2 − 20m + 3 (5p − 1)(2p − 5) (5m − 1)(5m − 3) 81. 5y 2 + 23y + 12 86. 18n2 − 5n − 7 (5x + 6)(x − 3) 89. 3c2 − 32c + 20 93. 24r2 + 7r − 5 (7m + 10)(m − 3) (2x − 3)(x − 12) 105. 48r2 + 35r + 2 (3x + 4)(x + 12) prime 113. 6y 2 + 19y + 10 (3y + 2)(2y + 5) 117. 4c2 + 9c − 9 (4c − 3)(c + 3) 121. 6x2 − 25x + 14 (3x − 2)(2x − 7) 125. 15k 2 − 26k − 8 (15k + 4)(k − 2) 129. 33c2 + c − 4 (11c + 4)(3c − 1) 133. 25v 2 − 5v − 6 (5v + 2)(5v − 3) 137. 8w2 − 42w + 27 (4w − 3)(2w − 9) 141. 12x2 + 40x + 25 (6x + 5)(2x + 5) 145. 20y 2 − 21y + 4 (4y − 1)(5y − 4) 149. 12y 2 − 19y − 21 (4y + 3)(3y − 7) 153. 5a2 + 33a + 40 (5a + 8)(a + 5) 157. 6x2 + 71x − 50 (3x − 2)(2x + 25) 110. 3t2 − 26t + 8 prime (5p + 8)(2p + 1) 118. 9x2 + 16x − 4 (9x − 2)(x + 2) 122. 14y 2 − 23y + 8 (7y − 8)(2y − 1) 126. 6a2 − a − 15 (3a − 5)(2a + 3) 130. 4p2 + 12p − 55 (2p + 11)(2p − 5) 134. 6y 2 − 13y − 15 (6y + 5)(y − 3) 138. 35p2 − 31p + 6 (7p − 2)(5p − 3) 142. 18a2 + 51a + 8 (6a + 1)(3a + 8) 146. 12p2 − 44p + 35 (6p − 7)(2p − 5) 150. 21x2 − 4x − 12 154. 30c2 + 31c + 7 (10c + 7)(3c + 1) 158. 40a2 + 59a − 8 (8a − 1)(5a + 8) 103. 5v 2 + v − 42 104. 42p2 + 11p − 3 (6p − 1)(7p + 3) 107. 36a2 + 27a + 5 (12a + 5)(3a + 1) 114. 10p2 + 21p + 8 (7x − 6)(3x + 2) (9 − 2n)(4 + n) (5v − 14)(v + 3) 106. 3x2 + 40x + 48 (16r + 1)(3r + 2) 100. 36 + n − 2n2 (7y − 12)(y + 3) 102. 2x2 − 27x + 36 (5a − 9)(a − 4) (2u + 15)(u − 3) 99. 7y 2 + 9y − 36 (5v + 1)(6v − 5) 101. 5a2 − 29a + 36 96. 2u2 + 9u − 45 (9b + 2)(5b − 1) 98. 30v 2 − 19v − 5 111. 14a2 + a − 5 prime (8x + 9)(x + 1) 119. 4a2 + 4a − 15 (2a + 5)(2a − 3) 123. 35s2 − 39s + 10 (7s − 5)(5s − 2) 127. 10w2 − 7w − 6 (5w − 6)(2w + 1) 131. 22a2 + 27a − 9 (11a − 3)(2a + 3) 135. 15m2 − 13m − 6 (5m − 6)(3m + 1) 139. 25z 2 + 50z + 9 (5z + 9)(5z + 1) 143. 9w2 + 36w + 20 (3w + 10)(3w + 2) 147. 9x2 − 23x + 14 (9x − 14)(x − 1) 151. 18m2 + 3m − 10 (6m + 5)(3m − 2) 155. 21x2 + 43x + 20 (7x + 5)(3x + 4) 159. 20n2 − 33n − 27 ALG catalog ver. 2.6 – page 182 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 108. 7w2 + 76w + 60 (7w + 6)(w + 10) 115. 8x2 + 17x + 9 (5n + 3)(4n − 9) 92. 24k 2 + k − 3 (3k − 1)(8k + 3) 95. 45b2 + b − 2 (7a + 12)(a − 2) 97. 7m2 − 11m − 30 (3y − 14)(y + 2) (11x − 12)(x + 2) 94. 7a2 − 2a − 24 (3r − 1)(8r + 5) 88. 3y 2 − 8y − 28 91. 11x2 + 10x − 24 (5a − 1)(4a − 7) 84. 5c2 − 42c + 16 (5c − 2)(c − 8) (7k − 2)(4k + 1) 90. 20a2 − 39a + 7 (3c − 2)(c − 10) 83. 16w2 − 32w + 7 87. 28k 2 − k − 2 (9n − 7)(2n + 1) 80. 3x2 − 20x + 33 (3x − 11)(x − 3) (4w − 7)(4w − 1) (6a + 13)(2a + 1) 85. 5x2 − 9x − 18 109. 10r2 + 3r + 2 (11r − 1)(3r − 2) 82. 12a2 + 32a + 13 (5y + 3)(y + 4) 79. 33r2 − 25r + 2 112. 11x2 − 14x − 6 prime 116. 9m2 + 21m + 10 (3m + 2)(3m + 5) 120. 15y 2 + 7y − 4 (5y + 4)(3y − 1) 124. 10d2 − 29d + 21 (2d − 3)(5d − 7) 128. 6u2 − 5u − 21 (3u − 7)(2u + 3) 132. 9y 2 + 52y − 77 (9y − 11)(y + 7) 136. 21x2 − 26x − 15 (7x + 3)(3x − 5) 140. 10m2 + 49m + 49 (5m + 7)(2m + 7) 144. 6y 2 + 29y + 20 (6y + 5)(y + 4) 148. 18a2 − 25a + 8 (9a − 8)(2a − 1) 152. 10n2 + 41n − 18 (5n − 2)(2n + 9) 156. 20y 2 + 53y + 35 (5y + 7)(4y + 5) 160. 36k 2 − 9k − 10 (12k + 5)(3k − 2) IH 161. 28z 2 + 71z + 18 162. 28k 2 + 51k + 20 (7z + 2)(4z + 9) 165. 84d2 + d − 15 166. 174. 11 + 23a + 2a2 178. 3 + 13y + 4y 2 185. 3 + 28y 186. 190. 18 + 5c − 2c2 (7 + 10x)(1 − 2x) 193. 24 + 26r + 2r2 194. 3 − 23y 201. 4 − 23y (4 − 15y)(1 − 2y) 205. 4x2 − 3xy − y 2 179. 7 − 16n + 4n2 (7 − 2n)(1 − 2n) 183. 8 + 15x − 2x2 (8 − x)(1 + 2x) 187. 21 − 17k + 30y 2 198. 7 − 17b + 10b2 202. 24 + 10a − 21a2 (4 − 3a)(6 + 7a) 206. 3a2 − 16ab + 5b2 − 11p − 5p2 (9 − 5p)(4 + p) (6 + 5m)(1 − 3m) 60 + 37x + 5x2 (12 + 5x)(5 + x) 207. 2c2 + 9cd − 11d2 (4x + y)(x − y) (a − 5b)(3a − b) (2c + 11d)(c − 1) 209. 8n2 + 25np + 3p2 210. 7x2 − 16xy − 15y 2 211. 12r2 − 32rw + 5w2 (8n + p)(n + 3p) 213. 11w2 + 10wx − 24x2 (11w − 12x)(w + 2x) 217. 16p2 − 26pr + 9r2 (8p − 9r)(2p − r) 221. 6k 2 + km − 40m2 (3k + 8m)(2k − 5m) 225. 5x4 − 9x2 − 2 (5x2 + 1)(x2 − 2) 229. 6 + 5w3 − 6w6 (3 − 2w3 )(2 + 3w3 ) 233. 18a8 + 3a4 − 10 (6a4 + 5)(3a4 − 2) 237. 6p2 r2 − pr − 2 (7x + 5y)(x − 3y) 214. 30c2 + 31cd + 7d2 (10c + 7d)(3c + d) 218. 8x2 + 27xy − 20y 2 (8x − 5y)(x + 4y) 222. 18n2 − 35nx + 12x2 (5 − 4c2 )(3 − 2c2 ) 238. 3 + 8ab + 4a2 b2 (3pr − 2)(2pr + 1) (3 + 2ab)(1 + 2ab) 241. 7a2 b2 + 22abc + 3c2 242. 8w2 − 2wxy − x2 y 2 (7ab + c)(ab + 3c) 245. 4a6 + 23a3 xy 2 + 15x2 y 4 247. 6w8 x2 + 17w4 xy 3 − 14y 6 (4w + xy)(2w − xy) (4a3 + 3xy 2 )(a3 + 5xy 2 ) (3w4 x − 2y 3 )(2w4 x + 7y 3 ) (5 + r)(1 − 7r) 180. 21 + 16c + 3c2 (3 + c)(7 + 3c) 184. 3 − 26a − 9a2 188. 3 + 2x − 33x2 192. 5 − 32p + 12p2 196. 7 + 6x − 40x2 200. 10 + 39q + 14q 2 (2 + 7q)(5 + 2q) 204. 20 − 11w − 42w2 (4 − 7w)(5 + 6w) 208. 7k 2 + 24km + 17m2 (7k + 17m)(k + m) 212. 28a2 + 40ab − 3b2 216. 40y 2 − 46yz + 13z 2 (2m − 15n)(m + 3n) 219. 21a2 − 19ab − 12b2 (7a + 3b)(3a − 4b) 223. 36a2 + 45ac + 14c2 227. 8m6 + 2m3 − 3 234. 15 − 22c2 + 8c4 176. 5 − 34r − 7r2 215. 2m2 − 9mn − 45n2 226. 7 − 10y 3 + 3y 6 (4p5 + 3)(p5 − 5) (13 + 5x)(1 − x) (14a − b)(2a + 3b) (12a + 7c)(3a + 2c) 230. 4p10 − 17p5 − 15 172. 13 + 8x − 5x2 (6r − w)(2r − 5w) (9n − 4x)(2n − 3x) (7 − 3y 3 )(1 − y 3 ) (12r − 5)(8r + 9) (7 + 20x)(1 − 2x) 199. 6 − 13m − 15m2 203. 168. 96r2 + 68r − 45 (5 − 2p)(1 − 6p) (7 + a)(4 + 3a) (7 − 10b)(1 − b) (2x − 7)(9x − 10) (3 + 11x)(1 − 3x) 191. 28 + 25a + 3a2 195. 36 164. 18x2 − 83x + 70 (3 + a)(1 − 9a) + 2k 2 (7 − k)(3 − 2k) (3 − 5y)(1 − 6y) (7 − 3x)(3 + 5x) + 30y 2 (13 − p)(1 + 3p) (9 − 2c)(2 + c) (12 + r)(2 + 2r) 197. 21 + 26x − 15x2 175. 13 + 38p − 3p2 (5 − 2a)(5 + a) (3 + 7y)(1 + 7y) 189. 7 − 4x − 20x2 (2 − 11y)(1 − y) (2 − 3m)(1 + 5m) 25 − 5a − 2a2 − 33x − 108 171. 2 − 13y + 11y 2 (3 + y)(1 + 4y) 182. 2 + 7m − 15m2 56x2 (8x + 9)(7x − 12) (11 + a)(1 + 2a) (2 + c)(5 − 11c) + 49y 2 167. (3 − 7a)(1 + a) (6 − k)(1 − 2k) 181. 10 − 17c − 11c2 − y − 21 170. 3 − 4a − 7a2 (7 − x)(1 − 3x) 177. 6 − 13k + 2k 2 60y 2 (12y + 7)(5y − 3) (5 + 2m)(1 + m) 173. 7 − 22x + 3x2 (3r − 10)(7r − 3) (7k + 4)(4k + 5) (12d − 5)(7d + 3) 169. 5 + 7m + 2m2 163. 21r2 − 79r + 30 (4m3 + 3)(2m3 − 1) 231. 3 − 32t4 + 20t8 (3 − 2t4 )(1 − 10t4 ) 235. 35x8 + 64x4 + 20 (7x4 + 10)(5x4 + 2) 239. 10w2 y 4 − 19wy 2 + 7 (5wy 2 − 7)(2wy 2 − 1) 243. 2k 2 m2 + kmr − 15r2 (2km − 5r)(km + 3r) 246. 12c10 − 17c5 d3 y − 5d6 y 2 248. 21a2 b4 − 37ab2 d + 12d2 ALG catalog ver. 2.6 – page 183 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (20y − 13z)(2y − z) 220. 15b2 + 51bc + 18c2 (5b + 2c)(3b + 9c) 224. 20b2 − 9by − 20y 2 (5b + 4y)(4b − 5y) 228. 6 − 7k 2 + 2k 4 (2 − k 2 )(3 − 2k 2 ) 232. 25d6 + 25d3 + 6 (5d3 + 3)(5d3 + 2) 236. 24 − p5 − 10p10 (8 + 5p5 )(3 − 2p5 ) 240. 2 + 9c3 d − 18c6 d2 (2 − 3c3 d)(1 + 6c3 d) 244. 3r2 − 25pqr + 8p2 q 2 (3r − pq)(r − 8pq) (4c5 + d3 y)(3c5 − 5d3 y) (7ab2 − 3d)(3ab2 − 4d) II Topic: Mixed practice and review (factoring). See also categories ID–IH. Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. x2 + 3x − 10 2. (x + 5)(x − 2) 5. 9. p2 − 6p + 8 (p − 4)(p − 2) 15 − 16y + y 2 6. (21 − b)(1 + b) t2 + 2t − 24 10. c2 − 3c − 28 (t + 6)(t − 4) 25. r2 + 20r + 30 prime 29. 42 − 17w + w2 26. x2 − x − 24 37. 50 + 27x + x2 prime 41. a2 + 18a − 63 (12 − h)(9 + h) (p − 28)(p − 2) 69. 105 + 38k + k 2 (35 + k)(3 + k) 73. y 2 − 28y + 132 (y − 22)(y − 6) 77. 112 + 54w − w2 66. n2 − 15n + 73 70. 108 − 21h + h2 (h − 12)(h − 9) 74. n2 + 23n + 112 (n + 16)(n + 7) 78. 130 − 63y − y 2 (65 + y)(2 − y) 48. x2 − 9x − 90 (d + 14)(d − 6) (x − 15)(x + 6) 51. 92 + 27y + y 2 52. 84 − 25w + w2 (21 − w)(4 − w) (23 + y)(4 + y) 55. k 2 − 8k − 105 56. x2 + 9x − 112 (k − 15)(k + 7) (x + 16)(x − 7) 59. 84 + 17x − x2 60. 56 − 10d − d2 (21 − x)(4 + x) (14 + d)(4 − d) 63. a2 − 21a + 90 (14 − x)(6 − x) prime (23 − k)(3 + k) 47. d2 + 8d − 84 62. 84 − 20x + x2 (12 + p)(7 + p) 44. 69 + 20k − k 2 (14 + x)(3 − x) (y + 13)(y − 4) 61. 84 + 19p + p2 (c + 18)(c + 2) 43. 42 − 11x − x2 58. y 2 + 9y − 52 (c − 17)(c + 4) 36. 130 − 3a − a2 40. c2 + 20c + 36 (14 + n)(8 − n) 57. c2 − 13c − 68 (p − 17)(p − 4) 39. p2 − 30p + 56 54. 112 − 6n − n2 64. y 2 + 22y + 57 (a − 15)(a − 6) prime 67. 85 − 20c − c2 71. x2 + 24x + 108 (x + 18)(x + 6) 75. 132 + 23x + x2 (12 + x)(11 + x) 79. x2 − 52x − 108 (x − 54)(x + 2) ALG catalog ver. 2.6 – page 184 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. prime 32. p2 − 21p + 68 38. 52 − 28k + k 2 (a + 22)(a + 3) 53. 108 + 3h − h2 28. 36 − 18p + p2 (13 + a)(10 − a) 50. a2 + 25a + 66 (k − 24)(k − 3) prime (14 − w)(10 + w) (12 − m)(7 + m) 49. k 2 − 27k + 72 27. 18 + 8m − m2 (y + 21)(y − 2) (m + 11)(m − 10) 46. 84 + 5m − m2 (13 + w)(6 − w) 24. y 2 + 19y − 42 35. 140 + 4w − w2 (y − 18)(y + 3) 45. 78 − 7w − w2 (7 + a)(6 − a) (k + 13)(k + 4) 42. y 2 − 15y − 54 (a + 21)(a − 3) 20. 42 − a − a2 31. k 2 + 17k + 52 (26 − k)(2 − k) (25 + x)(2 + x) (k + 9)(k + 7) (a − 34)(a + 2) 34. m2 + m − 110 (y − 10)(y + 9) 16. k 2 + 16k + 63 23. a2 − 32a − 68 (21 + c)(3 + c) 33. y 2 − y − 90 (10 + x)(5 − x) (9 − p)(p + 7) 30. 63 + 24c + c2 (14 − w)(3 − w) 12. 50 − 5x − x2 19. 63 + 2p − p2 (27 + d)(2 − d) a2 + 15a − 16 (a + 16)(a − 1) (a − 7)(a − 4) 22. 54 − 25d − d2 (18 − x)(2 + x) 8. 15. a2 − 11a + 28 (y + 8)(y − 7) 21. 36 + 16x − x2 x2 + 21x + 20 (6 − r)(5 + r) 18. y 2 + y − 56 (c − 9)(c + 6) 15 + 8k + k 2 (5 + k)(3 + k) 11. 30 + r − r2 (10 − w)(5 − w) 17. c2 − 3c − 54 4. (x + 20)(x + 1) 14. 50 − 15w + w2 (10 + u)(7 + u) (56 − w)(2 + w) 7. (c − 7)(c + 4) 13. 70 + 17u + u2 12 − 4m − m2 (6 + m)(2 − m) 21 + 20b − b2 (15 − y)(1 − y) 65. y 2 + 6y − 60 3. (y + 19)(y + 3) prime 68. 90 + 26x + x2 72. w2 − 22w + 105 (w − 15)(w − 7) 76. 112 − 22c + c2 (14 − c)(8 − c) 80. g 2 + 64g − 132 (g + 66)(g − 2) prime II 81. d2 − 27d + 110 82. x2 + 32x + 112 (d − 22)(d − 5) 86. 105 + 16a − a2 (26 + x)(5 − x) (8n − 5)(n − 1) 117. 30 + 19x − 11x2 (30 − 11x)(1 + x) 133. 8r2 + 23r + 14 (8r + 7)(r + 2) 137. 15 + 2u − 24u2 (3 + 4u)(5 − 6u) 141. 20k 2 − 17k − 24 (5k − 8)(4k + 3) 145. 42 − 37x + 8x2 (21 − 8x)(2 − x) 149. x6 − 15x3 + 36 (x3 − 3)(x3 − 12) 153. 33 + 8a6 − a12 (11 − a6 )(3 + a6 ) 157. m4 − 21m2 − 100 + 4)(m2 130. 2w2 − 5w − 10 134. 6d2 − 7d − 10 (6d + 5)(d − 2) 138. 40 − 18x − 9x2 (4 − 3x)(10 + 3x) 142. 12y 2 + 49y + 30 (3y + 10)(4y + 3) 146. 8 + 25y − 33y 2 (8 + 33y)(1 − y) 150. y 10 + y 5 − 30 (y 5 − 5)(y 5 + 6) 154. 85 − 22p2 + p4 (17 − p2 )(5 − p2 ) 158. a6 + 36a3 + 180 + 30)(a3 (7 + 11k)(1 − 2k) 120. 20y 2 − 16y + 3 (10y − 3)(2y − 1) 124. 12 + 35x − 13x2 (4 + 13x)(3 − x) 127. 10y 2 + 11y − 6 128. 6a2 + 19a + 10 (5y − 2)(2y + 3) prime 131. 14 − 15a + 3a2 135. 35 − 47w + 6w2 (7 + w)(5 + 6w) 139. 9x2 − 45x + 50 (3x − 5)(3x − 10) 143. 4 + 53a − 42a2 (4 − 3a)(1 + 14a) 147. 26u2 − 11u − 15 (26u + 15)(u − 1) 151. 36 − 5c4 − c8 (9 + c4 )(4 − c4 ) 155. w6 + 16w3 + 55 (w3 + 5)(w3 + 11) 159. 150 − 35k 7 + k 14 + 6) (15 − k 7 )(10 − k 7 ) 161. 4y 4 + 3y 2 − 1 162. 6c12 − 7c6 + 2 163. 1 − 9k 4 + 14k 8 (4y 2 − 1)(y 2 + 1) (3c6 − 2)(2c6 − 1) (1 − 7k 4 )(1 − 2k 4 ) − 25) (a3 (5 + 3a)(2 − a) (3 + 4n)(1 + 6n) (9 − 4r)(1 − 2r) prime 116. 7 − 3k − 22k 2 123. 3 + 22n + 24n2 126. 9 − 22r + 8r2 (4 + 3p)(1 − 2p) 115. 10 + a − 3a2 (2p + 3)(p − 6) (2h + 5)(h − 8) 125. 4 − 5p − 6p2 (10r − 1)(r − 1) 119. 2p2 − 9p − 18 122. 2h2 − 11h − 40 (12a − 7)(3a + 1) (m2 118. 5 + 18m + 16m2 (5 + 8m)(1 + 2m) 121. 36a2 − 33a + 7 112. 10r2 − 11r + 1 (6x + 1)(x − 1) 114. 8n2 − 14n + 5 (2c + 7)(c + 3) (5 + m)(1 + 7m) 111. 6x2 − 5x + 1 (1 + 3y)(1 + 5y) 113. 2c2 + 13c + 21 108. 5 + 36m + 7m2 (2 − a)(1 + 11a) 110. 1 + 8y + 15y 2 (1 + 4k)(1 − 2k) (x + 29)(x − 4) 107. 2 + 21a − 11a2 (7p + 2)(p − 1) 109. 1 + 2k − 8k 2 104. x2 + 25x − 116 (g − 28)(g + 5) 106. 7p2 − 5p − 2 (3y − 5)(y − 1) (14 − a)(10 − a) 103. g 2 − 23g − 140 (20 + m)(7 − m) 105. 3y 2 − 8y + 5 100. 140 − 24a + a2 (11 + x)(10 + x) 102. 140 − 13m − m2 (44 − z)(3 + z) (x − 30)(x + 4) 99. 110 + 21x + x2 (k + 56)(k + 2) 101. 132 + 41z − z 2 96. x2 − 26x − 120 (y + 28)(y − 4) 98. k 2 + 58k + 112 (n − 72)(n − 2) (n + 33)(n + 4) 95. y 2 + 24y − 112 (27 − c)(4 + c) 97. n2 − 74n + 144 92. 132 + 37n + n2 (44 − k)(3 − k) 94. 108 + 23c − c2 (35 + k)(4 − k) (y − 18)(y + 6) 91. 132 − 47k + k 2 (x − 24)(x − 5) 93. 140 − 31k − k 2 88. y 2 − 12y − 108 (w + 22)(w − 6) 90. x2 − 29x + 120 (g + 26)(g + 5) (20 − a)(7 − a) 87. w2 + 16w − 132 (21 − a)(5 + a) 89. g 2 + 31g + 130 84. 140 − 27a + a2 (25 + y)(4 + y) (x + 28)(x + 4) 85. 130 − 21x − x2 129. 4y 2 + 28y + 6 83. 100 + 29y + y 2 ALG catalog ver. 2.6 – page 185 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (2a + 5)(3a + 2) prime 132. 5 + x − 12x2 prime 136. 21 + 2k − 8k 2 (7 − 4k)(3 + 2k) 140. 25c2 + 25c + 4 (5c + 4)(5c + 1) 144. 6 − 43n + 20n2 (3 − 20n)(2 − n) 148. 16w2 + 43w + 22 (16w + 11)(w + 2) 152. 24 + 11d2 + d4 (8 + d2 )(3 + d2 ) 156. r20 − 8r10 − 65 (r10 − 13)(r10 + 5) 160. 250 + 15n4 − n8 (25 − n4 )(10 + n4 ) 164. 15x6 − 8x3 + y 2 (3x3 − 1)(5x3 − 1) II 165. 21 − n5 − 2n10 166. 8 + 2a2 − 15a4 (7 + 2n5 )(3 − n5 ) 169. c2 + 15cw + 14w2 (4 − 5a2 )(2 + 3a2 ) 170. n2 − 7nr − 8r2 (n + r)(n − 8r) (c + w)(c + 14w) 173. x2 y 2 − 26xy + 48 174. a2 b2 + 23ab + 60 (xy − 2)(xy − 24) 177. b2 + 21bx + 80x2 (ab + 3)(ab + 20) 178. c2 − 33cd − 70d2 (b + 16x)(b + 5x) (c − 35d)(c + 2d) 181. 48 − 2m2 p − m4 p2 182. 90 + 27wx2 − w2 x4 (8 + m2 p)(6 − m2 p) 185. c2 + 12cw3 + 35w6 (30 − wx2 )(3 + wx2 ) 186. k 8 − 13k 4 y 2 + 30y 4 (c + 5w3 )(c + 7w3 ) 189. 6b2 − 5bc − 6c2 (k4 171. a2 t2 + 15at − 16 172. h2 k 2 − 7hk + 6 (at − 1)(at + 16) 175. c2 − 3cd − 40d2 (hk − 1)(hk − 6) 176. k 2 + 11km − 60m2 (c + 5d)(c − 8d) 179. 76 + 23pr + p2 r2 (k − 4m)(k + 15m) 180. 88 − 3ay − a2 y 2 (11 + ay)(8 − ay) (19 + pr)(4 + pr) 183. d4 − 13d2 k + 40k 2 184. r2 + 17rs2 + 72s4 (d2 − 8k)(d2 − 5k) 187. a4 b6 + 7a2 b3 − 18 (a2 b3 − 2)(a2 b3 (r + 9s2 )(r + 8s2 ) 188. k 6 t2 − 12k 3 t + 27 (k 3 t − 3)(k 3 t − 9) + 9) (5x − 3y)(4x + 5y) 194. 2r4 − 11r2 p + 15p2 195. 14k 4 + 23k 2 x2 + 8x4 196. 10h6 − 3h3 n − 18n2 (2r2 − 5p)(r2 − 3p) 198. r2 − 2rp2 w − 15p4 w2 202. 5r2 + 19rpt2 + 18p2 t4 + 2x) (5r + 9pt2 )(r + 2pt2 ) 206. (y + 2)2 + 8(y + 2) − 20 (x − 6)(x − 2) 209. 3(r − 2)2 + 7(r − 2) + 2 (4x4 + 5)(3x4 + 1) + 7) (7m − n)(3m + 4n) 201. 15a4 y 2 + a2 xy − 2x2 205. (x − 1)2 − 6(x − 1) + 5 168. 12x8 + 19x4 + 5 (3a − 5b)(3a − b) (r + 3p2 w)(r − 5p2 w) − x)(5a2 y + 2)(6y 5 192. 20x2 + 13xy − 15y 2 (b2 c − 3d)(b2 c − 4d) (3a2 y (y 5 191. 21m2 + 25mn − 4n2 (7c + 3w3 )(5c − w3 ) 197. b4 c2 − 7b2 cd + 12d2 − 3y 2 ) 190. 9a2 − 18ab + 5b2 (3b + 2c)(2b − 3c) 193. 35c2 + 8cw3 − 3w6 − 10y 2 )(k 4 167. 6y 10 + 19y 5 + 14 y(y + 12) 210. 2(x + 1)2 − (x + 1) − 6 r(3r − 5) (2x + 5)(x − 1) 213. 18(h − k)2 − 11m(h − k) + m2 215. 3(x − y)2 + 7z(x − y) − 6z 2 (9h − 9k − m)(2h − 2k − m) (3x − 3y − 2z)(x − y + 3z) (2k 2 + x2 )(7k 2 + 8x2 ) 199. h8 + 4h4 kn2 − 21k 2 n4 (5h3 + 6n)(2h2 − 3n) 200. u2 x6 + 11ux3 y 2 + 18y 4 (h4 + 7kn2 )(h4 − 3kn2 ) (ux3 + 2y 2 )(ux3 + 9y 2 ) 203. 12b2 w2 − 13bcw − 14c2 204. 21a2 − 19adn − 12d2 n2 (3bw + 2c)(4bw − 7c) (7a + 3dn)(3a − 4dn) 207. (a − 3)2 + 10(a − 3) + 9 208. (w + 4)2 − 5(w + 4) − 24 (a + 6)(a − 2) 211. 4(c + 2)2 + 5(c + 2) − 6 (w + 7)(w − 4) 212. 6(k − 1)2 − 11(k − 1) + 3 (4c + 5)(c + 4) 214. 30a2 − 7a(b + c) − (b + c)2 216. 2d2 + 9d(h + p) + 10(h + p)2 ALG catalog ver. 2.6 – page 186 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (3k − 4)(2k − 5) (10a + b + c)(3a − b − c) (2d + 5h + 5p)(d + 2h + 2p) IJ Topic: Factoring differences of squares. Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. x2 − 1 (x − 1)(x + 1) 2. a2 − 9 5. c2 − 16 (c − 4)(c + 4) 6. k 2 − 49 9. x2 − 36 (x − 6)(x + 6) 10. d2 − 64 13. m2 − 121 3. m2 − 4 (m − 2)(m + 2) 4. r2 − 25 (r − 5)(r + 5) (k − 7)(k + 7) 7. y 2 − 81 (y − 9)(y + 9) 8. a2 − 64 (a − 8)(a + 8) (d − 8)(d + 8) 11. p2 − 100 (a − 3)(a + 3) 14. y 2 − 169 (y − 13)(y + 13) (m − 11)(m + 11) 17. r2 − 256 (r − 16)(r + 16) (p − 10)(p + 10) 15. x2 − 225 12. a2 − 144 (a − 12)(a + 12) 16. a2 − 196 (a − 14)(a + 14) 20. y 2 − 900 (y − 30)(y + 30) (x − 15)(x + 15) 18. w2 − 400 19. k 2 − 625 (k − 25)(k + 25) (w − 20)(w + 20) 21. 9 − a2 (3 + a)(3 − a) 25. 49 − m2 (7 + m)(7 − m) 29. 169 − w2 22. 1 − x2 (1 + x)(1 − x) 26. 16 − r2 (4 + r)(4 − r) 30. 121 − a2 (11 + a)(11 − a) (13 + w)(13 − w) 33. 289 − y 2 (17 + y)(17 − y) 23. 25 − c2 (5 + c)(5 − c) 24. 4 − a2 27. 64 − y 2 (8 + y)(8 − y) 28. 81 − d2 31. 144 − x2 (2 + a)(2 − a) (9 + d)(9 − d) 32. 100 − c2 (10 + c)(10 − c) 36. 225 − a2 (15 + a)(15 − a) 40. 625 − y 2 (25 + y)(25 − y) (12 + x)(12 − x) 34. 324 − r2 (18 + r)(18 − r) 35. 196 − n2 (14 + n)(14 − n) 37. 400 − k 2 (20 + k)(20 − k) 38. 256 − m2 39. 900 − x2 (16 + m)(16 − m) 41. −25 + w2 (w − 5)(w + 5) 42. −9 + y 2 (y − 3)(y + 3) (30 + x)(30 − x) 43. −a2 + d2 (d − a)(d + a) 44. −m2 + r2 (r − m)(r + m) 45. 64 + h2 prime 49. 25p2 − 81 46. a2 + 100 prime 47. x2 + y 2 50. 9r2 − 16 (3r − 4)(3r + 4) 51. 4a2 − 49 prime (2a − 7)(2a + 7) (5p − 9)(5p + 9) 53. 16 − 49x2 57. 121 − 196m2 (11 − 14m)(11 + 14m) 61. 144y 2 − 169 (12y − 13)(12y + 13) 65. −144 + 49k 2 (7k − 12)(7k + 12) 69. x2 − y 2 (x − y)(x + y) 55. 81 − 4d2 (9 − 2d)(9 + 2d) (5c − b)(5c + b) 58. 144 − 49k 2 (12 − 7k)(12 + 7k) 62. 400k 2 − 121 (20k − 11)(20k + 11) 66. −4p2 + 25q 2 (5q − 2p)(5q + 2p) 70. a2 − 9b2 (a − 3b)(a + 3b) 74. 64x2 − y 2 (8x − y)(8x + y) 77. 121c2 − d2 (11c − d)(11c + d) 52. 81c2 − 25 56. 9 − 64r2 (3 − 8r)(3 + 8r) (8 − 5w)(8 + 5w) 59. 100 − 169a2 (10 − 13a)(10 + 13a) 63. 196c2 − 225 (14c − 15)(14c + 15) 67. −n4 + 36r2 (6r − n2 )(6r + n2 ) 71. c2 − 36d2 (c − 6d)(c + 6d) 73. 25c2 − b2 prime (9c − 5)(9c + 5) 54. 64 − 25w2 (4 − 7x)(4 + 7x) 48. a2 + b2 78. 225x2 − y 2 (15x − y)(15x + y) 75. 4m2 − n2 (2m − n)(2m + n) 79. 169a2 − b2 (13a − b)(13a + b) ALG catalog ver. 2.6 – page 187 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 60. 64 − 225x2 (8 − 15x)(8 + 15x) 64. 625a2 − 256 (25a − 16)(25a + 16) 68. −81t2 + 169w2 (13w − 9t)(13w + 9t) 72. m2 − 81n2 (m − 9n)(m + 9n) 76. 16p2 − r2 (4p − r)(4p + r) 80. 100k 2 − m2 (10k − m)(10k + m) IJ 81. x2 − 25w2 82. y 2 − 49z 2 (x − 5w)(x + 5w) 83. c2 − 100d2 (y − 7z)(y + 7z) 85. 64x2 − 9y 2 (c − 10d)(c + 10d) 86. 25a2 − 81b2 (8x − 3y)(8x + 3y) 87. 4r2 − 49p2 (5a − 9b)(5a + 9b) 89. 36y 2 − 25w2 97. 36 − a2 b2 95. 400m2 − 121p2 (7r − 15n)(7r + 15n) 98. 64 − x2 y 2 (6 − ab)(6 + ab) 101. 9a2 + b2 99. m2 n2 − 25 102. c2 + 100d2 105. w2 x2 − y 2 106. a2 − b2 c2 prime (a − bc)(a + bc) 110. 1 − 169x2 (11r − 1)(11r + 1) 107. a2 b2 − c2 d2 (x2 − 7)(x2 + 7) 125. 1 − 25b8 122. 25 − a4 119. 49c2 d2 − 64k 2 (5 − a2 )(5 + a2 ) 126. 4w6 − 1 (2w3 129. 81 − 25m20 (3k 7 + 1) 130. 121a30 − 64 (9 − 5m10 )(9 + 5m10 ) 133. 144k 2 − 225p6 (11a15 − 8)(11a15 (b − 12 )(b + 12 ) ( dc − 6)( dc + 6) 1 − x2 9 142. 100 − + 8) ( 31 − x)( 13 + x) r2 s2 y x 10 )( 2 146. + − 0.7z 2 )(0.5w ( a8 − 5b )( a8 + 5b ) 139. 1 − a2 25 (1 − a5 )(1 + a5 ) 9 25 147. 1 2 9 w − y2 4 16 151. a6 − 6.25 (a3 (0.2 − y)(0.2 + y) 154. 1.69a8 − 0.81b2 + 0.7z 2 ) (1.3a4 − 0.9b)(1.3a4 124. c8 − 36 (c4 − 6)(c4 + 6) (1 − 7p5 )(1 + 7p5 ) (d2 h3 − 4)(d2 h3 + 4) 136. 256 − 121a4 c8 (16 − 11a2 c4 )(16 + 11a2 c4 ) 140. w2 −1 16 144. 4 − h2 49 148. 9 2 1 b − d2 49 81 ( w4 − 1)( w4 + 1) ( 72 − h)( 72 + h) (m − 35 )(m + 35 ) 150. 0.04 − y 2 153. 0.25w2 − 0.49z 4 (15ab − 4b)(15ab + 4b) 132. d4 h6 − 16 ( 21 w − 34 y)( 12 w + 34 y) (x − 0.3)(x + 0.3) 120. 225a2 b2 − 16c2 (30t3 − 13w2 )(30t3 + 13w2 ) 143. m2 − y 10 ) 149. x2 − 0.09 (0.5w a2 b2 − 64 25 (8wx − 5y)(8wx + 5y) + 1) 135. 900t6 − 169w4 (10 − rs )(10 + rs ) x2 y2 − 4 100 116. 64w2 x2 − 25y 2 (10 − x4 y)(10 + x4 y) (8r4 s − 20)(8r4 s + 20) 138. (1 − 9kp)(1 + 9kp) 128. 1 − 49p10 − 1)(3k7 131. 100 − x8 y 2 134. 64r8 s2 − 400 (12k − 15p3 )(12k + 15p3 ) (3 − y 3 )(3 + y 3 ) 127. 9k 14 − 1 − 1)(2w3 112. 1 − 81k 2 p2 (7cd − 8k)(7cd + 8k) 123. 9 − y 6 prime (mnp − 1)(mnp + 1) (10a − bc)(10a + bc) (6m − 7rp)(6m + 7rp) (1 − 5b4 )(1 + 5b4 ) ( x2 − 104. 25 + a2 b2 108. m2 n2 p2 − 1 115. 100a2 − b2 c2 118. 36m2 − 49r2 p2 (9k − 12mn)(9k + 12mn) 145. (ab − 7)(ab + 7) (6wx − 1)(6wx + 1) 9(3 − 2cd)(3 + 2cd) 117. 81k 2 − 144m2 n2 c2 − 36 d2 prime 111. 36w2 x2 − 1 114. 81 − 36c2 d2 (4wx − 7)(4wx + 7) 141. (13b − 30c)(13b + 30c) 100. a2 b2 − 49 103. 64x2 + y 2 (1 − 13x)(1 + 13x) 113. 16w2 x2 − 49 1 4 96. 169b2 − 900c2 (ab − cd)(ab + cd) 109. 121r2 − 1 137. b2 − (12c − 13d)(12c + 13d) (mn − 5)(mn + 5) (wx − y)(wx + y) 121. x4 − 49 92. 144c2 − 169d2 (20m − 11p)(20m + 11p) (8 − xy)(8 + xy) prime (3m − 10k)(3m + 10k) (9x − 12y)(9x + 12y) 94. 49r2 − 225n2 (10a − 9b)(10a + 9b) 88. 9m2 − 100k 2 91. 81x2 − 144y 2 (4b − 11c)(4b + 11c) 93. 100a2 − 81b2 (m − 12n)(m + 12n) (2r − 7p)(2r + 7p) 90. 16b2 − 121c2 (6y − 5w)(6y + 5w) 84. m2 − 144n2 − 2.5)(a3 152. 2.25 − c4 + 2.5) 155. 0.64 − d6 k 2 + 0.9b) (0.8 − d3 k)(0.8 + d3 k) ALG catalog ver. 2.6 – page 188 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ( 73 b − 19 d)( 73 b + 19 d) (1.5 − c2 )(1.5 + c2 ) 156. m2 p4 − 1.21 (mp2 − 1.1)(mp2 + 1.1) IJ 157. a4 − 1 (a2 158. 1 − x4 + 1)(a − 1)(a + 1) 161. 81 − y 4 162. u4 − 81 (9 + y 2 )(3 − y)(3 + y) 165. a4 − b4 (a2 + b2 )(a + b)(a − b) 169. y 8 − 1 (y 4 + 1)(y 2 (1 + x2 )(1 + x)(1 − x) (u2 + 9)(u + 3)(u − 3) 173. (a − 5)2 − 36 (a + 1)(a − 11) 177. (x + y)2 − z 2 (x + y + z)(x + y − z) 181. 4n4 − (n − 1)4 (n2 + 2n − 1)(3n2 − 2n + 1) (y 2 160. 16 − w4 + 4)(y + 2)(y − 2) 163. p4 − 625 (p2 + 25)(p + 5)(p − 5) 167. 81m4 − k 4 (x2 (9m2 + 4y 2 )(x + 2y)(x − 2y) (16 + a4 )(4 + a2 )(2 + a)(2 − a) 174. 49 − (x + 4)2 + 9)(x5 178. 1 − (a + b)2 179. (r − s)2 − t2 (y 2 + 4y + 1)(7y 2 + 4y + 1) − 3) 175. (c + 1)2 − 121 (c − 10)(c + 12) 182. (2y + 1)4 − 9y 4 (r − s + t)(r − s − t) 183. (a + b)2 − (a − c)2 (b + c)(2a + b − c) ALG catalog ver. 2.6 – page 189 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (4c2 + 9d2 )(2c + 3d)(2c − 3d) 172. w4 − x8 + 3)(x5 (3 − x)(11 + x) (1 + a + b)(1 − a − b) (25 + m2 )(5 + m)(5 − m) 168. 16c4 − 81d4 + k 2 )(3m + k)(3m − k) 171. x20 − 81 (x10 (4 + w2 )(2 + w)(2 − w) 164. 625 − m4 166. x4 − 16y 4 170. 256 − a8 + 1)(y + 1)(y − 1) 159. y 4 − 16 (w2 + x4 )(w + x2 )(w − x2 ) 176. 100 − (p − 8)2 (18 − p)(2 + p) 180. 9p2 − (q + 3r)2 (3p + q + 3r)(3p − q − 3r) 184. (k + 4)2 − (k − m)2 (m + 4)(2k − m + 4) IK Topic: Factoring perfect square trinomials (binomial squares). Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. x2 + 2x + 1 5. m2 + 14m + 49 (x + 1)2 2. y 2 + 4y + 4 6. k 2 + 10k + 25 (y + 2)2 (k + 5)2 3. a2 + 8a + 16 7. x2 + 12x + 36 (a + 4)2 (x + 6)2 4. p2 + 6p + 9 8. a2 + 16a + 64 (p + 3)2 (a + 8)2 (m + 7)2 9. y 2 + 20y + 100 (y 10. c2 + 18c + 81 (a + 13)2 15. w2 + 28w + 196 + 15)2 + 14)2 (w 18. p2 + 60p + 900 (x + 16)2 (m − 2)2 25. w2 − 10w + 25 16. c2 + 40c + 400 (c + 20)2 19. a2 + 100a + 2500 (p + 30)2 21. m2 − 4m + 4 (a + 50)2 22. x2 − 2x + 1 (x − 1)2 26. p2 − 14p + 49 (p − 7)2 − 5)2 23. k 2 − 6k + 9 20. y 2 + 80y + 1600 (y + 40)2 (k − 3)2 27. m2 − 16m + 64 24. c2 − 8c + 16 (c − 4)2 28. y 2 − 12y + 36 (y − 6)2 (m − 8)2 29. x2 − 18x + 81 (x − 9)2 30. a2 − 20a + 100 31. c2 − 24c + 144 (a − 10)2 34. w2 − 26w + 169 − 15)2 − 13)2 (w 37. a2 − 60a + 900 (m − 20)2 42. 9 + 6a + a2 40. y 2 − 100y + 2500 (c − 40)2 (3 + a)2 43. 1 + 2y + y 2 36. x2 − 28x + 196 (x − 14)2 39. c2 − 80c + 1600 (p − 16)2 (2 + x)2 (x − 11)2 35. m2 − 40m + 400 38. p2 − 32p + 256 (a − 30)2 32. x2 − 22x + 121 (c − 12)2 33. y 2 − 30y + 225 41. 4 + 4x + x2 12. x2 + 24x + 144 (x + 12)2 14. y 2 + 30y + 225 (y 17. x2 + 32x + 256 (y 11. p2 + 22p + 121 (p + 11)2 13. a2 + 26a + 169 (w (c + 9)2 + 10)2 (y − 50)2 (1 + y)2 44. 25 + 10m + m2 (5 + m)2 45. 16 + 8a + a2 (4 + a)2 46. 64 + 16x + x2 (8 + x)2 47. 49 + 14w + w2 48. 81 + 18c + c2 (9 + c)2 (7 + w)2 49. 36 + 12k + k 2 (6 + k)2 50. 144 + 24r + r2 51. 100 + 20a + a2 (12 + r)2 53. 121 + 22w + w2 (11 + w)2 (14 + a)2 61. 9 − 6w + w2 54. 400 + 40c + c2 58. 1600 + 80 + m2 65. 64 − 16m + m2 62. 4 − 4y + y 2 56. 900 + 60y + y 2 (13 + r)2 (30 + y)2 59. 256 + 32x + x2 (40 + m)2 (3 − w)2 (15 + p)2 55. 169 + 26r + r2 (20 + c)2 57. 196 + 28a + a2 52. 225 + 30p + p2 (10 + a)2 60. 2500 + 100p + p2 (16 + x)2 (y − 2)2 66. 16 − 8c + c2 (4 − c)2 (50 + p)2 63. 25 − 10x + x2 (5 − x)2 64. 1 − 2a + a2 67. 81 − 18x + x2 (9 − x)2 68. 49 − 14y + y 2 (1 − a)2 (8 − m)2 69. 144 − 24p + p2 70. 36 − 12n + n2 (12 − p)2 73. 400 − 40m + m2 (20 − m)2 77. 1600 − 80n + n2 (40 − n)2 (6 − n)2 71. 225 − 30a + a2 (15 − a)2 74. 121 − 22y + y 2 (11 − y)2 78. 196 − 28x + x2 (14 − x)2 75. 900 − 60x + x2 (30 − x)2 79. 2500 − 100p + p2 (50 − p)2 ALG catalog ver. 2.6 – page 190 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 72. 100 − 20w + w2 (10 − w)2 76. 169 − 26a + a2 (13 − a)2 80. 256 − 32y + y 2 (16 − y)2 (7 − y)2 IK 81. y 2 + 3y + 9 prime 85. x2 + 2xy + y 2 (x + y)2 82. 49 + 7a + a2 prime 86. a2 − 2ab + b2 (a − b)2 83. x2 − 11x + 121 prime 87. c2 − 4cd + 4d2 (2m − n)2 (2r 93. x2 + 6xy + 9y 2 (w 97. 16q 2 − 8qr + r2 (a + 6b)2 (11r − p)2 − 9k)2 (3c + 2d)2 113. 16x2 − 56xy + 49y 2 (4x − 7y)2 − 3r)2 (7c + 4k)2 117. 25a2 + 60ay + 36y 2 (5a + 6y)2 118. 36x2 − 60xy + 25y 2 (10k − 3m)2 (3c + 10d)2 125. 4r2 + 44rx + 121x2 + 11x)2 126. 121x2 − 44xy + 4y 2 (12a − 5y)2 (5m + 12k)2 133. 49b2 − 21by + 9y 2 prime 134. 25a2 + 55ax + 121x2 (8a + 7b)2 (3c − 15x)2 138. 49c2 − 112cd + 64d2 145. 81c2 + 180cd + 100d2 (9c + 10d)2 + 3w)2 149. 121x2 − 88xy + 16y 2 (11x − 4y)2 − 9x)2 119. 4a2 − 28ac + 49c2 150. 16c2 + 88cx + 121x2 123. 49m2 + 84mn + 36n2 124. 36p2 − 84ps + 49s2 (6p − 7s)2 127. 64a2 − 48ab + 9b2 128. 9k 2 + 48kp + 64p2 (3k + 8p)2 131. 49p2 + 140pr + 100r2 132. 100x2 − 140xy + 49y 2 (10x − 7y)2 135. 25x2 − 50xy + 100y 2 139. 169g 2 − 52gk + 4k 2 − 2k)2 136. 9a2 + ab + 81b2 prime (5a + 7b)2 (1 + x4 )2 159. u6 + 2u3 + 1 157. 1 − 2w3 + w6 (1 − w3 )2 158. 1 + 2x4 + x8 161. a10 + 2a5 + 1 (a5 + 1)2 162. m14 − 2m7 + 1 163. 1 − 2x6 + x12 − 1)2 ALG catalog ver. 2.6 – page 191 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 148. 4r2 + 60rp + 225p2 (2r + 15p)2 151. 25a2 + 70ab + 49b2 155. 1 − 2a5 + a10 144. 400a2 − 120ab + 9b2 (20a − 3b)2 147. 225m2 − 60mn + 4n2 (x2 − 1)2 140. 4m2 + 40mn + 100n2 (2m + 10n)2 143. 9x2 + 120xy + 400y 2 154. x4 − 2x2 + 1 (m7 120. 49d2 + 28dy + 4y 2 (7d + 2y)2 (15m − 2n)2 (4c + 11x)2 (y 2 + 1)2 116. 4w2 − 36wx + 81x2 (2w − 9x)2 (3x + 20y)2 146. 100w2 − 180wx + 81x2 (10w 112. 4a2 + 20ak + 25k 2 (2a + 5k)2 115. 81p2 + 36pr + 4r2 (13g 142. 225r2 + 90rw + 9w2 (15r 111. 25u2 − 20uw + 4w2 prime (7c − 8d)2 141. 9c2 − 90cx + 225x2 108. 400x2 + 40xy + y 2 (20x + y)2 (7p + 10r)2 prime 137. 64a2 + 112ab + 49b2 107. 169w2 − 26wy + y 2 (8a − 3b)2 130. 25m2 + 120mk + 144k 2 104. m2 − 24mn + 144n2 (m − 12n)2 (7m + 6n)2 (11x − 2y)2 129. 144a2 − 120ay + 25y 2 103. x2 + 20xy + 100y 2 (2a − 7c)2 122. 9c2 + 60cd + 100d2 100. 49x2 + 14xy + y 2 (7x + y)2 (9p + 2r)2 (6x − 5y)2 121. 100k 2 − 60km + 9m2 99. 64c2 − 16cd + d2 (5u − 2w)2 114. 49c2 + 56ck + 16k 2 96. n2 + 8nk + 16k 2 (n + 4k)2 (13w − y)2 110. 4w2 − 12wr + 9r2 (2w 95. a2 − 8ay + 16y 2 (x + 10y)2 106. 225a2 + 30ac + c2 92. 9a2 − 6ac + c2 (3a − c)2 (8c − d)2 (15 + c)2 109. 9c2 + 12cd + 4d2 + m)2 (a − 4y)2 102. g 2 − 18gk + 81k 2 (g 105. 121r2 − 22rp + p2 153. y 4 + 2y 2 + 1 − 3x)2 (5b + w)2 101. a2 + 12ab + 36b2 (2r (3k 98. 25b2 + 10bw + w2 − r)2 (x + 2y)2 91. 9k 2 + 6km + m2 + p)2 94. w2 − 6wx + 9x2 (x + 3y)2 (4q 90. 4r2 + 4rp + p2 prime 88. x2 + 4xy + 4y 2 (c − 2d)2 89. 4m2 − 4mn + n2 84. 100 − 50n + n2 152. 49x2 − 70xw + 25w2 (7x − 5w)2 (1 − a5 )2 (u3 + 1)2 (1 − x6 )2 156. 1 + 2c2 + c4 (1 + c2 )2 160. y 8 − 2y 4 + 1 (y 4 − 1)2 164. 1 + 2c10 + c20 (1 + c10 )2 IK 165. w4 + 10w2 + 25 (w2 166. k 4 − 6k 2 + 9 (k 2 − 3)2 167. x4 − 14x2 + 49 + 5)2 (x2 169. 4 − 4y 2 + y 4 170. 64 + 16x2 + x4 (2 − y 2 )2 (w4 185. 9x8 + 30x4 + 25 (x2 (wx3 194. a8 + 2a4 b2 c3 + b4 c6 197. 9a4 − 48a2 b2 + 64b4 201. a2 + a + 1 4 (k 3 m5 202. x2 − 5x + 25 4 9 25 206. 9c2 + 8c + 16 9 (a − 4 2 16 p − p + 16 9 3 214. ( 32 p − 4)2 y2 7y + + 49 64 4 (x − 52 )2 203. w2 − 3w + 207. 218. 200. 4w4 + 60w2 y 4 + 225y 8 (2w2 + 15y 4 )2 9 4 204. k 2 + 7k + (w − 32 )2 1 2 p + 4p + 100 25 3 9 211. y 2 − y + 2 16 208. 49 4 (k + 72 )2 25 2 r − 15r + 36 16 ( 45 r − 6)2 2 1 212. w2 + w + 3 9 (y − 34 )2 (w + 31 )2 9 2 10 ) 25 2 40 y + y + 64 36 3 215. 9n2 + x2 5x − + 25 16 2 24 16 n+ 5 25 216. 81x2 − (3n + 45 )2 ( 56 y + 8)2 ( y8 + 7)2 (w2 x4 − y)2 ( 15 p + 10)2 9 81 210. a2 − a + 5 100 (x + 56 )2 196. w4 x8 − 2w2 x4 y + y 2 − n4 )2 199. 25c6 + 60c3 x + 36x2 (3c + 43 )2 5 25 209. x2 + x + 3 36 (x6 − y 4 )2 (5c3 + 6x)2 (a + 12 )2 (5m − 35 )2 192. x12 − 2x6 y 4 + y 8 + n7 )2 195. k 6 m10 − 2k 3 m5 n4 + n8 (7x − 10y 2 )2 205. 25m2 − 6m + (10 + 3m3 )2 191. m10 + 2m5 n7 + n14 + b2 c3 )2 198. 49x2 − 140xy 2 + 100y 4 (3a2 − 8b2 )2 217. (a3 + b)2 (m5 (a4 (3 − n5 )2 188. 100 + 60m3 + 9m6 (7 − 2a6 )2 190. a6 + 2a3 b + b2 − y 2 )2 184. 9 − 6n5 + n10 (8 + c4 )2 187. 49 − 28a6 + 4a12 − y 3 )2 193. w2 x6 − 2wx3 y 2 + y 4 213. 183. 64 + 16c4 + c8 (2y 3 − 11)2 189. x4 − 2x2 y 3 + y 6 (11 + 5x2 )2 + 10)2 186. 4y 6 − 44y 3 + 121 (3x4 + 5)2 180. 121 + 110x2 + 25x4 (7 − 4y 2 )2 182. w8 + 20w4 + 100 − 6)2 (3d2 − 12)2 179. 49 − 56y 2 + 16y 4 (2 − 11x2 )2 181. a6 − 12a3 + 36 (6 − c2 )2 176. 9d4 − 72d2 + 144 (5x2 + 7)2 178. 4 − 44x2 + 121x4 (10 + 3k 2 )2 (a3 175. 25x4 + 70x2 + 49 (2z 2 + 9)2 177. 100 + 60k 2 + 9k 4 172. 36 − 12c2 + c4 (9 + a2 )2 174. 4z 4 + 36z 2 + 81 (3w2 − 2)2 (n2 + 10)2 171. 81 + 18a2 + a4 (8 + x2 )2 173. 9w4 − 12w2 + 4 168. n4 + 20n2 + 100 − 7)2 ( x4 − 5)2 219. ( 2c 3 − 7 2 12 ) (9x − 4cw w2 4c2 − + 9 15 25 220. w 2 5) 21 49 x+ 2 144 b 8br 16r2 + + 49 21 9 ( 7b + 4r 2 3 ) Fractions and decimals 221. d2 − 0.8d + 0.16 222. h2 + 1.6h + 0.64 (d − 0.4)2 (h + 0.8)2 225. 9t2 + 6.6t + 1.21 226. 4w2 − 2.8w + 0.49 (3t + 1.1)2 229. 0.36y 2 − 0.84y + 0.49 (2w − 0.7)2 (0.6y − 0.7)2 231. 0.04n2 + 0.02n + 0.0025 (0.2n + 0.05)2 233. (x − 2)2 + 10(x − 2) + 25 235. 9 − 6(r + 2) + (r + 2)2 (x + 3)2 (1 − r)2 237. 16 − 8(a + b) + (a + b)2 239. (c − d)2 + 16(c − d) + 64 (4 − a − b)2 (c − d + 8)2 223. p2 + 0.2p + 0.01 224. k 2 + 2.4k + 1.44 (p + 0.1)2 (k + 1.2)2 227. 100u2 + 26u + 1.69 228. 25a2 − 3a + 0.09 (10u + 1.3)2 230. 0.16c2 + 0.72c + 0.81 (5a − 0.3)2 (0.4c + 0.9)2 232. 0.09x2 − 0.03x + 0.0025 234. (y + 4)2 − 14(y + 4) + 49 (0.3x − 0.05)2 (y − 3)2 236. 36 + 12(a − 10) + (a − 10)2 238. 1 − 2(m − r) + (m − r)2 240. (x + y)2 − 18(x + y) + 81 ALG catalog ver. 2.6 – page 192 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (a − 4)2 (1 − m + r)2 (x + y − 9)2 IL Topic: Combined methods (factoring). Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. 2y 2 − 18 2(y − 3)(y + 3) 2. 5a2 − 125 3. 5(a + 5)(a − 5) 5. 81p − p3 p(9 − p)(9 + p) 6. 49w3 − w5 108c2 − 3 4. 3(6c + 1)(6c − 1) 7. x3 − 25x 12(m − 2)(m + 2) x(x − 5)(x + 5) 8. w3 (7 − w)(7 + w) 9. 3a2 − 12b2 10. 4x2 − 36y 2 3(a − 2b)(a + 2b) 14. 50r2 s − 8s 5y(x − 5y)(x + 5y) 18. 14k − 56k 5 m2 19q(2p − q 2 )(2p + q 2 ) 22. x4 yz 2 − x2 y 3 x2 y(xz ab(bc − a)(bc + a) 25. 99x3 y 2 − 44xy 4 12h2 k(k 29. 20mp4 − 20m 33. 8xy 9 − 128x5 y 37. 4 2 1 k − 5 5 1 5 (2k 41. a2 b3 (1 + a4 b4 )(1 + a2 b2 )(1 − ab)(1 + ab) 38. 25 4 (3w 20. 48w3 z − 75wz 5 3wz(4w − 5z 2 )(4w + 5z 2 ) 36u(2u − x)(2u + x) 23. km5 − h2 km3 24. n2 pr3 − n4 p3 r km3 (m − h)(m + h) n2 pr(r − np)(r + np) 27. 5y 2 z 4 − 80y 4 z 2 5y 2 z 2 (z 28. 64a2 b5 − 36a2 b3 42. 196 2 100 2 a − b 3 3 4 3 (7a − 5b)(7a + 5b) − x)(3w + x) 31. 2a5 − 162a 32. 3xy 2 − 3xy 6 2a(a2 + 9)(a − 3)(a + 3) 5m2 (m4 + p4 )(m2 + p2 )(m − p)(m + p) 36. 81c14 d2 − c2 d2 c2 d2 (9c6 + 1)(3c3 − 1)(3c3 + 1) 2 2 8 y − 3 3 40. 39. 2 3 (y − 2)(y + 2) 43. 9 36 2 4 − d h 7 7 9 7 (1 − 2dh)(1 + 2dh) 46. 0.04xy 5 − 0.01x3 y 47. 0.25p − 0.81m2 p3 p(0.5 − 0.9mp)(0.5 + 0.9mp) 48. 1.21h3 − 0.64hk 2 53. 2x2 + 20x + 42 2(x + 3)(x + 7) 57. 60 + 10y − 10y 2 10(3 − y)(2 + y) 50. 4 2 4 2 πr − πR 3 3 4 3 π(r − R)(r + R) 54. 6x2 − 30x + 24 6(x − 1)(x − 4) 58. 84 − 2r − 2r2 2(6 − r)(7 + r) 61. 5k 2 + 50k + 125 62. 72p2 − 48p + 8 + 5)2 8(3p − 1)2 5(k 65. a3 − 11a2 + 28a a(a − 7)(a − 4) 66. c4 − 8c3 − 33c2 c2 (c − 11)(c + 3) 9 25 2 − a 2 2 1 2 (3 − 5a)(3 + 5a) a(0.4b2 − 0.3c)(0.4b2 + 0.3c) 2πh(R − r)(R + r) 3xy 2 (1 + y 2 )(1 − y)(1 + y) 34. 5m10 − 5m2 p8 45. 0.16ab4 − 0.09ac2 49. 2πR2 h − 2πr2 h 4a2 b3 (4b − 3)(4b + 3) − 4y)(z + 4y) 1 10 (3 + r)(3 − r) − 1)(2k + 1) 225 2 25 2 w − x 4 4 9 1 − r2 10 10 3cd(c − 3d)(c + 3d) 19. 144u3 − 36ux2 2r(4 + r2 )(2 − r)(2 + r) 8xy(y 2 − 2x)(y 2 + 2x)(y 4 + 4x2 ) 16. 3c3 d − 27cd3 2p(4p − 3w)(4p + 3w) − 4)(k + 4) 30. 32r − 2r5 20m(p2 + 1)(p − 1)(p + 1) 2(3m − 2y)(3m + 2y) 15. 32p3 − 18pw2 − y)(xz + y) 26. 12h2 k 3 − 192h2 k 11xy 2 (3x − 2y)(3x + 2y) 12. 18m2 − 8y 2 4(5a − b)(5a + b) 14k(1 − 2k 2 m)(1 + 2k 2 m) 21. ab3 c2 − a3 b 35. a2 b3 − a10 b11 11. 100a2 − 4b2 2s(5r − 2)(5r + 2) 17. 76p2 q − 19q 5 k 6 − 100k 4 k 4 (k − 10)(k + 10) 4(x − 3y)(x + 3y) 13. 5x2 y − 125y 3 12m2 − 48 51. 2πV 3 − 8πV 2πV (V − 2)(V + 2) 55. 3c2 + 27c − 66 3(c − 2)(c + 11) 59. 70 + 49x + 7x2 7(2 + x)(5 + x) 63. 2 − 28m + 98m2 2(1 − 7m)2 67. a3 + 15a2 − 16a a(a + 16)(a − 1) ALG catalog ver. 2.6 – page 193 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 44. 16 4 2 144 m p − 5 5 16 2 2 5 (m p − 3)(m p + 3) xy(0.2y 2 − 0.1x)(0.2y 2 + 0.1x) h(1.1h − 0.8k)(1.1h + 0.8k) 52. 50πav 2 − 2πa 2πa(5v − 1)(5v + 1) 56. 4p2 − 28p − 72 4(p − 9)(p + 2) 60. 42 − 27c + 3c2 3(2 − c)(7 − c) 64. 12 + 24x + 12x2 12(x + 1)2 68. x5 + 14x3 + 24x x(x2 + 12)(x2 + 2) IL 69. 48p3 + 2p5 − p7 70. 30r − 17r2 + r3 p3 (8 − p2 )(6 + p2 ) 74. 25w3 − 10w4 + w5 a(8 + a)2 w3 (5 − w)2 77. 2y 3 + 2y 2 − 12y 2y(y + 3)(y − 2) 81. 28m2 − 28m3 + 7m4 − 8)(m2 + 1) 82. 300a + 60a2 + 3a3 7m2 (2 − m)2 3a(10 + a)2 85. 6x2 − 6xy − 72y 2 86. 5a2 + 10ab − 40b2 6(x − 4y)(x + 3y) 5(a + 4b)(a − 2b) 89. 10ax2 + 10ax − 20a 90. 105b − 6by − 3by 2 10a(x + 2)(x − 1) 3b(5 − y)(7 + y) 93. 45x2 − 30x3 + 5x4 94. 27m + 18mp + 3mp2 5x2 (x − 3)2 3m(3 + p)2 97. w4 z + 8w3 z 2 + 15w2 z 3 99. 42cd5 − c2 d3 − c3 d w2 z(w + 3z)(w + 5z) cd(7d2 + c)(6d2 − c) 101. 5a2 b2 + 90ab2 + 325b2 5b2 (a + 13)(a + 5) 103. 5a3 m + 30a2 m2 − 80am3 105. 60 + 4x − 8x2 5am(a + 8m)(a − 2m) 106. 30m2 + 84m + 54 4(3 − x)(5 + 2x) 6(5m + 9)(m + 1) 109. 8y 4 − 19y 3 + 6y 2 y 2 (8y 110. 5r + 21r2 − 26r3 − 3)(y − 2) r(5 + 26r)(1 − r) 113. 6c + 22c2 + 20c3 114. 105k 5 − 27k 3 − 6k 3k(5k 2 − 2)(7k 2 + 1) 2c(3 + 5c)(1 + 2c) 117. 18x3 z 4 + 3x3 z 2 − 3x3 3x2 (2x2 + 1)(3z 2 118. 4a2 + 16a2 y − 84a2 y 2 4a2 (1 − 3y)(1 + 7y) − 1) 121. 45by − 60by 2 − 25by 3 5by(3 + y)(3 − 5y) 123. 50km5 − 40km3 + 6km 125. 6x2 + 8xy − 8y 2 2mk(5m2 − 1)(5m2 − 3) 2(3x − 2y)(x + 2y) 127. 30b2 − 5by 2 − 5y 4 5(2b − y 2 )(3b + y 2 ) 129. 18h4 − 48h2 k + 32k 2 131. 50x2 − 120xy 3 + 72y 6 133. 9a2 + 54ab + 45b2 2(3h2 − 4k)2 2(5x − 6y 3 )2 9(a + 5b)(a + b) 135. 30m2 − 78mn + 36n2 6(5m − 3n)(m − 2n) m(6 + m)(2 − m) 75. x6 − 6x4 + 9x2 76. p4 + 22p3 + 121p2 x2 (x2 − 3)2 78. 3m5 − 21m3 − 24m 3m(m2 72. 12m − 4m2 − m3 k 2 (3 + k)(5 + k) r(15 − r)(2 − r) 73. 64a + 16a2 + a3 71. 15k 2 + 8k 3 + k 4 p2 (p + 11)2 79. 2x4 + 4x3 − 48x2 80. 6a3 − 12a2 − 48a 2x2 (x + 6)(x − 4) 6a(a − 4)(a + 2) 83. 5c3 + 40c2 + 80c 84. 3y 6 − 36y 4 + 108y 2 5c(c + 4)2 3y 2 (y 2 − 6)2 87. 12n2 − 24mn − 36m2 88. 100c2 + 54cd + 2d2 12(n − 3m)(n + m) 2(25 + d)(2 + d) 91. 2t3 − 30t2 + 72t 92. 3x4 + 63x3 + 60x2 3x2 (x + 20)(x + 1) 2t(t − 12)(t − 3) 95. 4h2 k 2 + 40h2 k + 100h2 4h2 (k 96. 2y 6 − 48y 4 + 288y 2 + 5)2 2y 2 (y 2 − 12)2 98. 8x2 y + 2x2 y 2 − x2 y 3 x2 y(4 − y)(2 + y) 100. a6 b3 − 15a4 b4 + 36a2 b5 a2 b3 (a2 − 12b)(a2 − 3b) 102. 4m3 r − 12m2 r2 − 40mr3 4mr(m − 5r)(m + 2r) 104. 2x2 y − 14x2 y 2 + 20x2 y 3 2x2 y(1 − 5y)(1 − 2y) 107. 70 + 10y − 80y 2 108. 48d2 − 88d − 56 10(7 + 8y)(1 − y) 8(2d + 1)(3d − 7) 111. 24a5 + 19a3 + 2a a(8a2 + 1)(3a2 112. 3k 2 − 35k 4 + 22k 6 k 2 (3k 2 − 2)(k 2 − 11) + 2) 115. 8x + 54x2 − 14x3 116. 32y 4 + 104y 3 + 60y 2 4y 2 (2y + 5)(4y + 3) 2x(1 + 7x)(4 − x) 119. 9n2 r2 + 42n2 r + 45n2 3n2 (3r 120. 66c3 − 50b2 c3 + 4b4 c3 2c3 (11 − b2 )(3 − 2b2 ) + 5)(r + 3) 122. 25r3 w3 + 65r3 w2 − 30r3 w 124. 30p2 x − 99p2 x2 − 21p2 x3 126. 12a4 − 40a2 b + 28b2 3p2 x(5 + x)(2 − 7x) 4(3a2 − 7b)(a2 − b) 128. 24w2 − 32wz 3 − 56z 6 130. 12bc2 + 36b2 c + 27b3 5r3 w(5w − 2)(w + 3) 8(3w − 7z 3 )(w + z 3 ) 3b(2c + 3b)2 132. 75r3 + 90mr2 + 27m2 r 3r(5r + 3m)2 134. 18x2 + 36xy − 14y 2 2(3x + 7y)(3x − y) 136. 90a2 − 75ac − 90c2 15(2a − 3c)(3a + 2c) 137. 3x3 − 8x2 y − 35xy 2 x(3x + 7y)(x − 5y) 138. 12a3 + 7a2 b − 10ab2 139. 3c3 d − 4c2 d2 − 4cd3 cd(3c + 2d)(c − 2d) 140. 2k 2 m3 + 11k 3 m2 + 5k 4 m ALG catalog ver. 2.6 – page 194 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. a(3a − 2b)(4a + 5b) k 2 m(2m + 5k)2 IL 141. a4 − 24a2 − 25 143. y 4 + y 2 − 20 (a2 + 1)(a − 5)(a + 5) (y 2 + 5)(y − 2)(y + 2) 145. 2p4 − 7p2 − 4 (2p2 + 1)(p − 2)(p + 2) 147. 3 − 10m2 − 8m4 (3 + 2m2 )(1 − 2m)(1 + 2m) 149. 8a5 − 198a3 − 50a 151. k 5 r − 8k 3 r3 − 9kr5 2a(4a2 + 1)(a − 5)(a + 5) kr(k2 + r2 )(k − 3r)(k + 3r) 142. 10 − 9x2 − x4 (10 + x2 )(1 − x)(1 + x) 144. 27 + 6n2 − n4 (3 + n2 )(3 − n)(3 + n) 146. 5c4 − 3c2 d2 − 2d4 148. 18x4 + 25x2 − 3 (5c2 + 2d2 )(c − d)(c + d) (2x2 + 3)(3x − 1)(3x + 1) 150. 12c3 − 19c5 + 4c7 c3 (3 − 4c2 )(2 − c)(2 + c) 152. 64b2 + 28a2 b4 − 2a4 b6 2b2 (2 + a2 b2 )(4 − ab)(4 + ab) 153. 36 − 13y 2 − y 4 (3 − y)(3 + y)(2 − y)(2 + y) 154. c4 − 29c2 + 100 (c − 5)(c + 5)(c − 2)(c + 2) 155. 16 − 17r2 + r4 (4 − r)(4 + r)(1 − r)(1 + r) 156. x4 − 37x2 + 36 (x − 6)(x + 6)(x − 1)(x + 1) 157. w4 − 2w2 + 1 (w − 1)2 (w + 1)2 158. y 4 − 8y 2 + 16 (y − 2)2 (y + 2)2 159. 81 − 18c2 + c4 (3 − c)2 (3 + c)2 160. 16 − 8a2 + a4 (2 − a)2 (2 + a)2 ALG catalog ver. 2.6 – page 195 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. IM Topic: Factoring by grouping. Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. (m + 3)2 − 12m 3. 4xy + (x − y)2 5. x(y + 2) + 3(y + 2) 7. (w − z)5u − (w − z)7 9. h(m2 + 3m) − (m2 + 3m) (m − 3)2 (x + y)2 (x + 3)(y + 2) 11. 3u(w − z) + (w − z) 13. a(y − 1) − b(1 − y) (w − z)(5u − 7) (h − 1)(m2 + 3m) (3u + 1)(w − z) (a − b + c)(r + s) 19. b2 (b2 + 1) + b(b2 + 1) + 4(b2 + 1) 4. (a + b)2 − 4ab 6. r(p2 + 5) − s(p2 + 5) 8. k(h2 − k) + 4(h2 − k) (k + 4)(h2 − k) 10. (rx − 5) + 2r(rx − 5) (1 + 2r)(rx − 5) 12. (r3 + 1) − (r3 + 1)4p (1 − 4p)(r3 + 1) (r + 2)2 (a − b)2 (r − s)(p2 + 5) (y − z)(x − y) 16. (x − 2y)2a + (2y − x) (3c + 1)(2c − d) 17. a(r + s) − b(r + s) + c(r + s) 8r + (r − 2)2 14. (x − y)y + (y − x)z (a + b)(y − 1) 15. 3c(2c − d) − (d − 2c) 2. (b2 + b + 4)(b2 + 1) 21. k(k − 1) + km(k − 1) + m(k − 1) − 2(k − 1) (k + km + m − 2)(k − 1) (2a − 1)(x − 2y) 18. m2 (n − 3) + m(n − 3) − (n − 3) 20. 2s(s + t) − t(s + t) − (s + t) (m2 + m − 1)(n − 3) (2s − t − 1)(s + t) 22. a(x + y) − 3b(x + y) + 5c(x + y) − d(x + y) (a − 3b + 5c − d)(x + y) 23. (u − 2w)r3 − (u − 2w)3r2 + (u − 2w)r + (u − 2w) 24. (2a + 3)by + (2a + 3)c − (2a + 3)bx − (2a + 3)y (2a + 3)(by + c − bx − y) (u − 2w)(r3 − 3r2 + r + 1) 25. (x − y + z)2x − (x − y + z)y + (x − y + z)3z (x − y + z)(2x − y + 3z) 26. mr(r + p − 2) + m2 (r + p − 2) + (r + p − 2) (mr + m2 + 1)(r + p − 2) 27. 4a(2x + y − 3) − 3b(2x + y − 3) + cd(2x + y − 3) (4a − 3b + cd)(2x + y − 3) 28. (n2 + n − 1) + (n2 + n − 1)2n − (n2 + n − 1)n2 (n2 + n − 1)(1 + 2n − n2 ) Two-and-two grouping 29. 5x − 5y + x2 − xy 31. ac + bc + ad + bd 33. a2 − a − ac + c (5 + x)(x − y) (c + d)(a + b) (a − c)(a − 1) 35. ax − bx − ay + by (x − y)(a − b) 30. km + 7k + 2m + 14 (k + 2)(m + 7) 32. w2 − wz + 6w − 6z (w + 6)(w − z) 34. k 2 − 5k − mk + 5m (k − m)(k − 5) 36. pr − 3p − 8r + 24 (p − 8)(r − 3) 37. 2nr + 3p2 + 6pr + pn (2r + p)(n + 3p) 38. 4x2 − 5y − xy + 20x 39. 50k 2 − 10kr + 5k − r (10k + 1)(5k − r) 40. 9a2 + 3ab + 3a + b 41. 4xy + 30 − 5y − 24x 43. 8y − 3z 2 − 12z + 2yz 45. 7c3 − 28c2 + 3c − 12 (4x − 5)(y − 6) (2y − 3z)(z + 4) (7c2 + 3)(c − 4) (x + 5)(4x − y) (3a + 1)(3a + b) 42. 11a2 − 3b + 33a − ab (a + 3)(11a − b) 44. 5mp − 18pm − 2m2 + 45p2 46. 4d5 + d3 + 8d2 + 2 (d3 + 2)(4d2 + 1) 47. 3w2 − 7wx + 3wx2 − 7x3 (w + x2 )(3w − 7x) 48. k 3 n + k 2 n3 + k + n2 49. 12ab + 5c + 48a2 b + 20ac (12ab + 5c)(4a + 1) 50. 2m3 − 6m2 r + 9m − 27r 51. abc + 7a2 + 2b2 c + 14ab (bc + 7a)(a + 2b) (k 2 n + 1)(k + n2 ) 52. −40ab − 3ac + 15bc + 8a2 ALG catalog ver. 2.6 – page 196 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (m + 9p)(5p − 2m) (2m2 + 9)(m − 3r) (a − 5b)(8a − 3c) IM 53. 6pr2 − pw2 − 3rw + 2p2 rw 55. n2 r2 + n3 p + r3 p + np2 r (2pr − w)(pw + 3r) (n2 + rp)(r2 + np) 54. a2 bc − ab2 d + ac2 d − bcd2 56. x2 y 3 − xyz − xy 2 z 2 + z 3 57. 3p2 r2 + 12p2 r + 5pr2 + 20pr pr(3p + 5)(r + 4) 58. 2a5 + 6a2 − 4a4 − 3a3 59. −8x2 y + 2xy 2 + 28x2 − 7xy x(7 − 2y)(4x − y) 60. 12w4 + 6w3 − 4w2 − 2w 61. 2k 4 − 2k 3 n − k 3 − k 2 n k 2 (k − n)(2k − 1) 63. a2 c2 − 6ac2 + ac3 − 6c3 c2 (a + c)(a − 6) 65. 2ab2 c + 8ab2 − 4b3 c − 16b3 2b2 (c + 4)(a − 2b) 67. 12ax2 − 48axy − 16bxy + 4bx2 4x(x − 4y)(3a − b) (ab + cd)(ac − bd) (xy − z 2 )(xy 2 − z) a2 (a − 2)(2a2 − 3) 2w(3w2 − 1)(2w + 1) 62. 2x2 y − 10xy + 6x2 − 30x 2x(y + 3)(x − 5) 64. 60am − 20mx − 30ax + 10x2 10(x − 2m)(x − 3a) 66. 10r2 x − 5rwx − 10r2 w + 5rw2 68. 14nr2 + 21nr − 14r2 s − 21rs 5r(x − w)(2r − w) 7r(n − s)(2r + 3) Three-and-one grouping 69. a2 + 4a + 4 − x2 (a + 2 + x)(a + 2 − x) 70. b2 − 8b + 16 − c2 71. x2 − 6x + 9 − y 2 (x − 3 + y)(x − 3 − y) 72. m2 + 10m + 25 − n2 (b − 4 + c)(b − 4 − c) (m + 5 + n)(m + 5 − n) 73. x2 − 2xy + y 2 − 9w2 (x − y + 3w)(x − y − 3w) 74. r2 + 2rw + w2 − 36z 2 75. a2 + 2ab + b2 − 25n2 (a + b + 5n)(a + b − 5n) 76. c2 − 2cd + d2 − 4b2 (c − d + 2b)(c − d − 2b) 77. y 2 − a2 − 6a − 9 (y + a + 3)(y − a − 3) 78. n2 − b2 − 8b − 16 79. x2 − c2 + 4c − 4 (x + c − 2)(x − c + 2) 80. p2 − m2 + 2mn − n2 81. 4c2 − 4c + 1 − 9d2 (2c − 1 + 3d)(2c − 1 − 3d) 83. w2 − 10wy + 25y 2 − 64 85. p2 − m2 − n2 + 2mn 87. a2 − 2ac − c2 − b2 (w − 5y + 8)(w − 5y − 8) (p + m − n)(p − m + n) (a − c + b)(a − c − b) 89. x2 − 64 + y 2 + 2xy (x + y + 8)(x + y − 8) 91. m2 + n2 − 81 − 2mn (m − n + 9)(m − n − 9) 93. 3x2 y − 6xy 2 + 3y 3 − 3yz 2 3y(x − y + z)(x − y − z) (r + w + 6z)(r + w − 6z) (n + b + 4)(n − b − 4) (p + m − n)(p − m + n) 82. a2 + 6ab + 9b2 − 25c2 (a + 3b + 5c)(a + 3b − 5c) 84. 25b2 + 10bx + x2 − d2 (5b + x + d)(5b + x − d) 86. w2 − 2xy − x2 − y 2 88. 2ab − a2 + n2 − b2 90. h2 + 2hk − 49 + k 2 (w + x + y)(w − x − y) (n + a − b)(n − a + b) (h + k + 7)(h + k − 7) 92. 100 − 4r2 − w2 + 4rw (10 + 2r − w)(10 − 2r + w) 94. 7k 2 r2 − 28kmr2 + 28m2 r2 − 7r4 7r2 (k − 2m + r)(k − 2m − r) 95. 50n3 + 20n2 p + 2np2 − 2nt2 2n(5n + p + t)(5n + p − t) 96. 20a2 b2 − 60ab3 + 45b4 − 5b2 c2 5b2 (2a − 3b + c)(2a − 3b − c) Three-and-two grouping, and other variations 97. a2 + 2ab + b2 + ac + bc (a + b)(a + b + c) 98. x2 − 2xy + y 2 + wx − wy 99. c2 − 2cd + d2 − 4c + 4d (c − d)(c − d − 4) 100. m2 + 2mr + r2 − m − r 101. a3 − a(c − d)2 103. x(x − y)2 − 9x a(a + c − d)(a − c + d) x(x − y + 3)(x − y − 3) 105. x2 − 16 − (x − 4)2 8(x − 4) 107. a2 − b2 − (a + b)2 −2b(a + b) 109. (m − 2)(m2 − 7) + 3(m − 2) 102. 3(b − c)2 − 12 104. 4k − k(m − r)2 (m + r)(m + r − 1) 3(b − c + 2)(b − c − 2) k(2 + m − r)(2 − m + r) 106. 9 − w2 − (3 − w)2 108. m2 − p2 − (m − p)2 (m − 2)2 (m + 2) (x − y)(w + x − y) 2w(3 − w) 2p(m − p) 110. (a2 + 1)(a + 3) − 2(a + 3) ALG catalog ver. 2.6 – page 197 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (a + 3)(a + 1)(a − 1) IM 111. (p2 − 8)(p + 1) − (p + 1) 113. y(y 2 − 1) − 2(y + 1) (p + 1)(p + 3)(p − 3) 114. a(a2 − 4) − 3(a − 2) (y + 1)2 (y − 2) 115. c(c2 − x2 ) − 2x2 (c − x) 112. (x − 4) + (x2 − 5)(x − 4) (a − 2)(a − 1)(a + 3) 116. 2a2 (a − b) − b(a2 − b2 ) (c − x)2 (c + 2x) (x − 4)(x + 2)(x − 2) (a − b)2 (2a + b) 117. a(a + 1)(a + 2) − 3(a + 1) (a + 1)(a − 1)(a + 3) 118. 6(m − 2) + m(m − 5)(m − 2) 119. r(r + 1)(r − 6) + 8(r + 1) (r + 1)(r − 2)(r − 4) 120. k(k + 5)(k − 3) − 10(k + 5) 121. 25(c + 7) − c2 (c + 7) (c + 7)(5 + c)(5 − c) 123. 4a2 (a − b) − b2 (a − b) 125. (c − d)3 + 4cd(c − d) (a − b)(2a + b)(2a − b) 129. (y 2 − 4)2 − (y − 2)2 (1 − x + 3y)(1 + x − 3y)(x + 3y)2 133. 4a2 (2a − 1) − 4a(2a − 1) + (2a − 1) (2a − 1)3 (k + 5)(k − 5)(k + 2) (y − 3z)(x + 3y)(x − 3y) (w + 6)(4w + 1)(4w − 1) (a − 1)(a − 2)(a − 3) 128. (r + 2)3 − 9(r + 2) (x + y)(x − y)2 (y + 1)(y + 3)(y − 2)2 131. (x + 3y)2 − (x2 − 9y 2 )2 124. 16w2 (w + 6) − (w + 6) 126. (a − 2)3 − (a − 2) (c − d)(c + d)2 127. (x + y)3 − 4xy(x + y) 122. x2 (y − 3z) − 9y 2 (y − 3z) (m − 2)2 (m − 3) (r + 2)(r + 5)(r − 1) 130. (w2 − 9)2 − (w − 3)2 (w + 2)(w + 4)(w − 3)2 132. (4m2 − 1)2 − (2m + 1)2 4m(m − 1)(2m + 1)2 134. k 2 (3k + 1) − 2k(3k + 1) − 8(3k + 1) (3k + 1)(k + 2)(k − 4) 135. c2 (c2 − 4) + 4c(c2 − 4) + 4(c2 − 4) 137. a2 + 2ab + b2 − c2 + 6c − 9 (c − 2)(c + 2)3 (a + b − c + 3)(a + b + c − 3) 136. y 2 (y 2 − 9) + 5y(y 2 − 9) + 6(y 2 − 9) 138. x2 − 2xy + y 2 − w2 − 10w − 25 (x − y − w − 5)(x − y + w + 5) 139. 4a2 + 4ab + b2 − c2 − 6cd − 9d2 (2a + b − c − 3d)(2a + b + c + 3d) 141. a2 + 2ax + x2 − a4 + 2a2 x2 − x4 (a + x)2 (1 − a + x)(1 + a − x) 143. x2 y 2 − 3x2 y + 2x2 − 4y 2 + 12y − 8 (x − 2)(x + 2)(y − 2)(y − 1) 140. x2 − 8xy + 16y 2 − 9w2 + 6wz − z 2 (x − 4y − 3w + z)(x − 4y + 3w − z) 142. c4 − 2c2 d2 + d4 − c2 + 2cd − d2 (c − d)2 (c + d − 1)(c + d + 1) 144. a2 b2 − 5ab2 + 4b2 − 9a2 + 45a − 36 (b − 3)(b + 3)(a − 4)(a − 1) ALG catalog ver. 2.6 – page 198 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (y + 2)(y − 3)(y + 3)2 IN Topic: Factoring sums and differences of cubes. Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. x3 + 1 (x + 1)(x2 − x + 1) 2. y 3 + 27 (y 5. a3 − 27 6. (a − 3)(a2 9. x3 − 64 10. 1 + k 3 (2 + y)(4 − 2y 7. (1 + k)(1 − k + k 2 ) 14. 27 − x3 18. k 3 + 125 − 5)(r2 + 5)(k 2 (k + 5r + 25) (p − 10)(p2 (c + 10)(c2 + 10p + 100) − 10c + 100) 34. 125 − 8y 3 + 4y 2 ) 38. 27m3 + 64 + xy + y2 ) 45. m3 + 8n3 (a − b)(a2 46. 8x3 + y 3 (m + 2n)(m2 − 2mn + 4n2 ) 49. a3 − 27b3 (a − 3b)(a2 50. 64p3 − q 3 + 3ab + 9b2 ) 53. 125x3 + 8y 3 (4p − q)(16p2 57. y 3 − w3 x3 − wx)(y 2 + 4pq 58. a3 b3 − c3 + wxy + w2 x2 ) 24. k 3 − 216 (k − 6)(k 2 + 6k + 36) 28. 1000 − a3 (10 + x)(100 − 10x + x2 ) (ab − c)(a2 b2 32. 1 − 27p3 (4r (1 − 3p)(1 + 3p + 9p2 ) 36. 216w3 + 125 − 3)(16r2 (6w + 5)(36w2 − 30w + 25) + 12r + 9) 40. 27 − 64y 3 (10 + 3x)(100 − 30x + 9x2 ) (3 − 4y)(9 + 12y + 16y 2 ) 44. a3 + b3 (x + y)(x2 − xy + y2 ) (a + b)(a2 − ab + b2 ) 48. 8k 3 − w3 (r − 2p)(r2 + 2rp + 4p2 ) (3w (2k − w)(4k 2 + 2kw + w2 ) 52. m3 + 216n3 + x)(9w2 − 3xw + x2 ) (m + 6n)(m2 − 6mn + 36n2 ) 56. 27c3 − 64d3 (4n − 5r)(16n2 + 20nr + 25r2 ) 59. k 3 + m3 n3 + abc + c2 ) (10 − a)(100 + 10a + a2 ) (1 + 2a)(1 − 2a + 4a2 ) 55. 64n3 − 125r3 (2a + 3b)(4a2 − 6ab + 9b2 ) (5 + w)(25 − 5w + w2 ) (r + 6)(r2 − 6r + 36) 51. 27w3 + x3 + q2 ) 54. 8a3 + 27b3 (5x + 2y)(25x2 − 10xy + 4y 2 ) (5 − y)(25 + 5y 47. r3 − 8p3 (2x + y)(4x2 − 2xy + y 2 ) (2 − y)(4 + 2y + y 2 ) 20. 125 + w3 43. x3 + y 3 + ab + b2 ) (3 + x)(9 − 3x + x2 ) + y2 ) 39. 1000 + 27x3 (3m + 4)(9m2 + 12m + 16) 42. a3 − b3 (x − y)(x2 (k + mn)(k 2 (3c − 4d)(9c2 + 12cd + 16d2 ) 60. p3 r3 + q 3 − kmn + m2 n2 ) 61. 27y 3 + w3 x3 (3y + wx)(9y 2 − 3wxy + w2 x2 ) 62. a3 b3 + 8c3 63. 64k 3 − m3 n3 (4k − mn)(16k 2 + 4kmn + m2 n2 ) 64. p3 r3 − 125q 3 (pr − 5q)(p2 r2 + 5prq + 25q 2 ) (x2 + 1)(x4 − x2 + 1) 66. 1 + y 6 67. a6 − 8 (a2 − 2)(a4 − 2a2 + 4) 68. 8 − m6 (2 − m2 )(4 + 2m2 + m4 ) 69. y 6 − 1 (y + 1)(y − 1)(y 4 + y 2 + 1) 70. 1 − a6 (1 + a)(1 − a)(1 + a2 + a4 ) (2 + w)(2 − w)(16 + 4w2 + w4 ) 72. x6 − 64 ALG catalog ver. 2.6 – page 199 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (pr + q)(p2 r2 − prq + q 2 ) (ab + 2c)(a2 b2 − 2abc + 4c2 ) 65. x6 + 1 71. 64 − w6 (c − 2)(c2 + 2c + 4) 16. 8 − y 3 35. 64r3 − 27 (5 − 2y)(25 + 10y (5a − 2)(25a2 + 10a + 4) 41. x3 − y 3 c3 − 8 (1 − m)(1 + m + m2 ) 31. 1 + 8a3 (3x + 1)(9x2 − 3x + 1) (3 + 4x)(9 − 12x + 16x2 ) 37. 125a3 − 8 8. 12. 27 + x3 27. 1000 + x3 30. 27x3 + 1 33. 27 + 64x3 11. 64 + m3 23. r3 + 216 (6 − w)(36 + 6w + w2 ) (2y − 1)(4y 2 + 2y + 1) (y − 5k + 25) 26. c3 + 1000 29. 8y 3 − 1 (y − 1)(y 2 + y + 1) 19. 125 − y 3 22. 216 − w3 (6 + y)(36 − 6y + y 2 ) 25. p3 − 1000 (m + 4)(m2 − 4m + 16) − 2a + 4) 15. 1 − m3 (3 − x)(9 + 3x + x2 ) 17. r3 − 125 21. 216 + y 3 y3 − 1 m3 + 64 (4 + m)(16 − 4m + m2 ) (4 − a)(16 + 4a + a2 ) (r 4. + 4x + 16) + y2 ) 13. 64 − a3 a3 + 8 (a + 2)(a2 − 3y + 9) (x − 4)(x2 + 3a + 9) 8 + y3 3. + 3)(y 2 (1 + y 2 )(1 − y 2 + y 4 ) (x + 2)(x − 2)(x4 + 4x2 + 16) IN 73. a9 + 1 (a + 1)(a2 − a + 1)(a6 − a3 + 1) 74. p9 − 1 75. 1 + y 9 (1 + y)(1 − y + y 2 )(1 − y 3 + y 6 ) 76. 1 − w9 (1 − w)(1 + w + w2 )(1 + w3 + w6 ) (a3 + b)(a6 − a3 b + b2 ) 77. x3 − y 6 (x − y 2 )(x2 + xy 2 + y 4 ) 78. a9 + b3 79. w6 − x9 (w2 − x3 )(w2 + wx3 + x6 ) 80. c12 + d3 (p − 1)(p2 + p + 1)(p6 + p3 + 1) (c4 + d)(c8 − c4 d + d2 ) 81. 8m9 + n12 (2m3 + n4 )(4m6 − 2m3 n4 + n8 ) 82. c12 − 27d6 83. 64a3 + b12 (4a + b4 )(16a2 − 4ab4 + b8 ) 84. x15 − 125y 3 85. w6 − x3 y 9 (w2 − xy 3 )(w4 + w2 xy 3 + x2 y 6 ) 86. a3 b15 + c9 87. 8m6 − n12 p3 89. a12 − 64 (2m2 − n4 p)(4m4 − 2m2 n4 p + n8 p2 ) (a2 − 2)(a2 + 2)(a8 + 4a4 + 16) (c4 − 3d2 )(c8 + 3c4 d2 + 9d4 ) (x5 − 5y)(x10 + 5x5 y + 25y 2 (ab5 + c3 )(a2 b10 − ab5 c3 + c6 ) 88. c3 d9 + 27k 6 90. 64 − c12 (cd3 + 3k 2 )(c2 d6 − 3cd3 k 2 + 9k4) (2 + c2 )(2 − c2 )(16 + 4c4 + c8 ) 91. x12 − 1 (x − 1)(x + 1)(x2 + 1)(x4 + x2 + 1)(x4 − x2 + 1) 92. 1 − y 12 93. x4 − 8x x(x − 2)(x2 + 2x + 4) 94. 15 + 15m3 (1 − y)(1 + y)(1 + y 2 )(1 + y 2 + y 4 )(1 − y 2 + y 4 ) 15(1 + m)(1 − m + m2 ) 95. 27k 2 − k 5 k 2 (3 − k)(9 + 3k + k 2 ) 96. 2a3 + 128 97. 3y + 81y 4 3y(1 + 3y)(1 + 3y + 9y 2 ) 98. 250t5 − 16t2 2t2 (5t − 2)(25t2 + 10t + 4) 3w(3 − 2x)(9 + 6x + 4x2 ) 2(a + 4)(a2 − 4a + 16) 99. 2bc + 128bc4 2bc(1 + 4c)(1 + 4c + 16c2 ) 100. 81w − 24wx3 101. a6 + 2a3 − 3 (a3 + 3)(a − 1)(a2 + a + 1) 102. x6 − 3x3 − 40 103. y 6 + 16y 3 + 15 105. p6 + 7p3 − 8 107. 8k 6 − 9k 3 + 1 (y 3 + 15)(y + 1)(y 2 − y + 1) (p + 2)(p − 1)(p2 − 2p + 4)(p2 + p + 1) (2k − 1)(k − 1)(4k 2 + 2k + 1)(k 2 + k + 1) 104. c6 + 6c3 − 16 (x3 + 5)(x − 2)(x2 + 2x + 4) (c3 − 2)(c + 2)(c2 − 2c + 4) 106. x6 − 26x3 − 27 108. 27y 6 + 35y 3 + 8 ALG catalog ver. 2.6 – page 200 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (x + 1)(x − 3)(x2 − x + 1)(x2 + 3x + 9) (3y + 2)(y + 1)(9y 2 − 6y + 4)(y 2 − y + 1) IO Topic: Factoring expressions with variable exponents. Directions: 11—Factor. 12—Factor, if possible. 13—Factor completely. 14—Factor, then check answer by multiplying. 1. xn+2 + xn xn (x2 + 1) 2. x3n + x2n x2n (xn + 1) 3. y 2k+n + y 3k+2 4. y x+3 (1 − y 4 ) y 2k (y n + y k+2 ) 5. 4x3r+2 + 8x4r 4x3r (x2 9. 6. + 2xr ) 5k b (3k 4b ay b3y+1 + ay+1 b2y 18. 36 − 9w2a − w4a (a2x − 4)(a2x + 5) (12 + w2a )(3 − w2a ) 22. 10c2d − 9cd + 2 (5 − 7y x )(1 + 2y x ) 25. 3x2n − 8xn y − 3y 2 (5cd (nx + 3)(nx − 3) − 2)(2cd − 1) 26. 8r4 + 15r2 pn + 7p2n (3xn + y)(xn − 3y) 29. n2x − 9 prn (pr2n (8r2 + 7pn )(r2 + pn ) 30. 25 − r2a (5 − ra )(5 + ra ) 8. 15. 3 + 4y n + y 2n 12. 50x2k y n − 30xk+3 y 2n 10xk y n (5xk − 3x3 y n ) 16. r2u − 9ru + 14 (3 + y n )(1 + y n ) 19. m8n − 7m4n + 6 (ru − 7)(ru − 2) 20. 1 − 2y 4x − 3y 8x (m4n − 6)(m4n − 1) 23. 2a2c − 9ac − 5 (2ac + 1)(ac (1 − 3y 4x )(1 + y 4x ) 24. 6 − 13pr + 6p2r (3 − 2pr )(2 − 3pr ) − 5) 27. a2x − 3ax+y + 2a2y 28. 5a4 + 4a2+n − a2n (ax − ay )(ax − 2ay ) 31. 1 − x10a (5a2 − an )(a2 + an ) 32. y 8n − 36 (1 − x5a )(1 + x5a ) 33. x2y − x6 34. m2 − n4r (xy − x3 )(xy + x3 ) 37. a2x + 2a + 1 (ax + 1)2 35. a2x − b2x 41. x6a − 4x3a + 4 (ax − bx )(ax + bx ) 38. 25 − 10k n + k 2n 39. 1 − 2x4n + x8n (xa 46. r2x + rx+2 + r4 − xb )2 (rx 49. xm+2 − xm 53. x2a+1 + 2xa+1 − 3x x(xa + 3)(xa − 5)(ax y(y n 67. y 8x − 1 + 2)(y n rx (rx + 4) + 1)(rx − 6) 62. x4n − 2x2n − 8 (ax − 1)(ax + 1)(a2x + 3) 65. b4x − c4 + 2) 58. r3x − 5r2x − 6rx − 2) 61. a4x + 2a2x − 3 − 2)(y n 54. y 2n+1 + 6y n+1 + 8y − 1) 57. a3x − 7a2x + 10ax ax (ax 3y(y n (xn − 2)(xn + 2)(x2n + 2) (bx − c)(bx + c)(b2x + c2 ) (y x − 1)(y x + 1)(y 2x + 1)(y 4x + 1) (a3k − 7)2 43. 9y 2x + 30y x + 25 44. 16k 2 − 8kmn + m2n (4k − mn )2 47. x2a + 2xa ax + a2x (xa + r2 )2 50. 3y 2n+1 − 12y xm (x − 1)(x + 1) 40. a6k − 14a3k + 49 (3y x + 5)2 (10 + p2r )2 45. x2a − 2xa+b + x2b (xy − y x )(xy + y x ) (1 − x4n )2 42. 100 + 20p2r + p4r (x3a − 2)2 (y 4n − 6)(y 4n + 6) 36. x2y − y 2x (m − n2r )(m + n2r ) (5 − k n )2 48. k 6 − 2k 3 nk + n2k + ax )2 (k 3 − nk )2 51. 45ax − 5a3x 52. m3a − ma+2 5ax (3 + ax )(3 − ax ) 55. p2n+1 + 10pn+1 + 25p p(pn ma (ma − m)(ma + m) 56. u2x+1 − 14ux+1 + 49u u(ux − 7)2 + 5)2 59. a3k − 2a2k + ak ak (ak 60. x3y + 4x2y + 4xy xy (xy + 2)2 − 1)2 63. a4x − 2a2x + 1 64. x4n − 18x2n + 81 (ax − 1)2 (ax + 1)2 66. 16 − a4n 68. 1 − r8u ALG catalog ver. 2.6 – page 201 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. xa y − x2a y a+2 xa y(1 − xa y a+1 ) + 1) 12a2 n2 (2nx − 3ax ) − 3) 21. 5 + 3y x − 14y 2x p2 r3n + prn pk rn+1 (pr − pk ) (5 − ax )(2 + ax ) 17. a4x + a2x − 20 7. 11. 24a2 nx+2 − 36ax+2 n2 14. 10 + 3ax − a2x 13. x2n − xn − 6 + 2)(xn − 7k 5 ) 10. pk+1 rn+2 − p2k rn+1 ay b2y (by+1 + a) (xn 15k 5b − 35k b+5 y x+3 − y x+7 (xn − 3)2 (xn + 3)2 (2 − an )(2 + an )(4 + a2n ) (1 − ru )(1 + ru )(1 + r2u )(1 + r4u ) JA Topic: Using zero-product rule. Directions: 15—Solve. 1. 5w = 0 0 5. k(k − 5) = 0 9. −3m(13 + m) = 0 124—Solve over IR. 0, 5 2. 10r3 = 0 6. −p(p − 9) = 0 3. −9h = 0 0, 9 7. z(z + 3) = 0 0, −7 11. −4a(11 − a) = 0 0 10. 4x(7 + x) = 0 0 0, −3 0, 11 4. 3a2 = 0 8. −y(y + 14) = 0 0 12. 2p(9 − p) = 0 0, −14 0, 9 0, −13 13. (x − 3)(x + 5) = 0 14. (a − 7)(a + 4) = 0 3, −5 15. (c + 2)(c − 9) = 0 7, −4 17. (k − 7)(k − 1) = 0 18. (y − 4)(y − 8) = 0 7, 1 16. (m + 5)(m − 7) = 0 −2, 9 4, 8 −5, 7 19. (w + 10)(w + 3) = 0 20. (g + 8)(g + 11) = 0 −10, −3 21. (u + 5)(u + 5) = 0 22. (p + 9)(p + 9) = 0 −5 −9 −8, −11 23. (h − 12)(h − 12) = 0 24. (k − 6)(k − 6) = 0 6 12 25. (b − 12)(b + 12) = 0 26. (a − 7)(a + 7) = 0 ±7 27. (b + 1)(b − 1) = 0 ±1 28. (a + 10)(a − 10) = 0 ±12 ±10 29. (h + 4)2 = 0 30. (k + 7)2 = 0 −4 33. (12 + h)(8 + h) = 0 −1, −13 37. (7 − w)(11 − w) = 0 41. (y + 30)(1 − y) = 0 53. 4y(1 + 3y) = 0 0, 46. −5m2 (m + 2) = 0 7 4 50. p(5 − 9p) = 0 54. 3x(8x + 1) = 0 0, − 13 −1, 61. (1 − 6q)(2 + 5q) = 0 3 2 66. (5u + 8)(5u + 8) = 0 ±16 47. −7x(x − 5)2 = 0 48. 5r(r + 4)3 = 0 0, 5 51. b(25b + 1) = 0 1 0, − 25 55. p2 (3 − 8p) = 0 0, 52. 2c(1 + 16c) = 0 0, 4 9 60. (5 + p)(5 − 8p) = 0 4 9 −5, 5 8 64. (6a − 9)(4a − 7) = 0 63. (3b + 2)(3b + 1) = 0 − 23 , − 13 67. (4w + 3)2 = 0 1 0, − 16 56. 4m3 (9m − 4) = 0 8 3 59. (4 − 9r)(6 + r) = 0 −6, 0, −4 9 7 6, 4 68. (6m − 7)3 = 0 − 34 7 6 − 85 5 4 70. (5k − 18)(7k − 4) = 0 69. (3u + 25)(8u + 3) = 0 − 23 , − 38 18 4 5 , 7 5, ±7 79. −3y 2 (y + 1)(y + 4)(y − 7) = 0 1 12 , 7 72. (3m + 5)(3m − 5) = 0 ± 27 ± 53 0, 5, −8 76. −2h2 (h − 6)(h − 8) = 0 0, −1, −9 0, 71. (7d − 2)(7d + 2) = 0 74. g(g − 5)(g + 8) = 0 0, −2, 3 77. (m − 5)(m + 7)(m − 7) = 0 81. q(12q − 1)(7 − q) = 0 0, − 18 − 58 , 12 65. (4x − 5)(4x − 5) = 0 75. 5c(c + 1)(c + 9) = 0 5 9 62. (5 + 8g)(1 − 2g) = 0 2 1 6,−5 73. −p(p + 2)(p − 3) = 0 0, 0, 2 58. (y + 1)(2y − 3) = 0 5 3 7, 2 44. (z − 16)(16 + z) = 0 ±25 0, −7 57. (3k − 5)(k + 8) = 0 −8, 43. (y − 25)(25 + y) = 0 −4, 13 45. 10y 2 (y − 7) = 0 40. (y − 7)(2 − y) = 0 5, 3 42. (z + 4)(13 − z) = 0 −30, 1 7, −3 39. (x − 5)(3 − x) = 0 22, 3 8 36. (w − 7)(3 + w) = 0 4, −6 38. (22 − x)(3 − x) = 0 7, 11 32. (p − 8)2 = 0 15 35. (u − 4)(6 + u) = 0 34. (1 + c)(13 + c) = 0 −12, −8 49. k(4k − 7) = 0 31. (m − 15)2 = 0 −7 0, −1, −4, 7 0, 6, 8 78. (w + 6)(w − 6)(w + 9) = 0 80. 5x(x + 4)(x − 9)(x − 2) = 0 82. −g(8 − g)(10g − 1) = 0 ALG catalog ver. 2.6 – page 202 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ±6, −9 0, −4, 9, 2 0, 8, tf 110 JA 83. −3w(5w − 12)(w − 15) = 0 0, 85. −5k(4k − 5)(10k − 9) = 0 87. 7h2 (1 − 5h)(11 + 6h) = 0 0, 54 , 91. (3a − 4)(3a + 4)(a + 3) = 0 −3, 4 95. (4y − 1)2 (4y + 1)2 = 0 97. (x2 − 1)(x2 + 16) = 0 99. (25p2 − 1)(p2 + 25) = 0 9 10 0, 15 , − 11 6 89. (4x − 3)(15x − 1)(2x + 7) = 0 93. (c + 3)2 (c − 4)3 = 0 12 5 , 15 ± 14 ±1 ± 15 7 3 1 4 , 15 , − 2 ± 43 , −3 84. 6z(z − 11)(3z − 8) = 0 0, 11, 8 3 86. 7u(3u − 2)(5u − 7) = 0 0, 23 , 7 5 88. −2k 2 (5 + 13k)(5 − 6k) = 0 5 0, − 13 , 90. (5y − 4)(8y + 7)(11y − 1) = 0 92. (4c − 9)(7c − 2)(7c + 2) = 0 94. (r − 5)4 (r + 6)2 = 0 98. (y 2 + 9)(y 2 − 4) = 0 100. (9r2 + 1)(9r2 − 1) ALG catalog ver. 2.6 – page 203 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 7 1 4 5 , − 8 , 11 9, ± 27 5, −6 96. (y + 10)3 (10y − 1)2 = 0 ±2 ± 13 −10, 5 6 1 10 JB Topic: Simple quadratic equations (factorable). See also category JC. Directions: 15—Solve. 1. x2 − 9x = 0 5. 0 = 10y + y 2 9. m2 + m = 0 0, 9 13. 0 = 2y 2 − y 0, −10 4. 0 = 2k − k 2 0, 2 0, −7 7. 11x + x2 = 0 0, −11 8. a2 + 6a = 0 0, −6 14. 0 = w + 8w2 0, − 18 15. 3a2 + a = 0 0, − 43 29. 0 = 35a − 21a2 y2 10 0, 14 1 2 0, 25. 6w2 + 8w = 0 45. y = 0 = w2 + 7w 0 = a2 − 14a 11. 0 = x2 − x 0, 18. 3m2 − 4m = 0 22. 0 = 2y + 6y 2 1 2 34. w2 = −w 38. 9c = c2 0, −14 46. − 0, 10 49. c2 + 4c − 5 = 0 0, 0, − 13 23. 3c2 + 15c = 0 0, −5 −5, 1 k2 =k 4 0, 4 7 0, − 52 47. x = − 0, −4 50. m2 − 3m − 10 = 0 61. 0 = w2 − 6w + 10 65. 0 = r2 + 13r − 30 Ø 18, 1 73. r2 + 8r − 48 = 0 −12, 4 77. 0 = x2 + 28x + 75 −25, −3 81. 0 = 3y 2 + 24y + 45 −3, −5 85. 5y 2 − 20y − 60 = 0 6, −2 89. 3x2 − 21x − 90 = 0 10, −3 13 5 0, 1 0, −6 0, 1 15 0, 8 52. 0 = y 2 − 18y + 45 −10, 3 60. 0 = k 2 + k − 20 4, −5 4, −3 Ø −6, 5 63. y 2 − y + 15 = 0 Ø 67. 0 = a2 − 8a − 33 11, −3 70. m2 + 9m + 18 = 0 −6, −3 74. 0 = a2 − 19a − 20 20, −1 78. 0 = y 2 − 20y + 64 16, 4 82. 0 = 2k 2 − 24k + 70 7, 5 86. 0 = 4x2 + 32x − 80 2, −10 90. 0 = 5w2 + 45w − 180 −12, 3 y2 =y 8 0, 56. c2 + 7c − 30 = 0 59. m2 − m − 12 = 0 −15, 2 69. 0 = n2 − 19n + 18 32. 15x2 − 39x = 0 15, 3 −10, 7 62. n2 + 5n + 10 = 0 66. 0 = y 2 + y − 30 0, − 45 48. 0, −5 55. r2 + 3r − 70 = 0 −12, −2 28. 0 = 16c + 20c2 44. 15w2 = w 0, − 13 0, − 67 0, 3 40. −6m = m2 0, 20 1 5 24. 12x − 4x2 = 0 36. −y = −y 2 0, −1 −3, −7 58. a2 + 14a + 24 = 0 27, 1 x2 5 2 5 51. 0 = x2 + 10x + 21 10, −4 57. 0 = y 2 − 28y + 27 0, − 72 43. −n = 3n2 1 0, − 12 54. n2 − 6n − 40 = 0 10, −5 31. 42r + 12r2 = 0 39. y 2 = 20y 0, 9 −2, 5 53. a2 − 5a − 50 = 0 0, 0, −1 0, 20. 0 = 7k 2 + 6k 10 3 27. 0 = 25y 2 − 10y 35. −5a2 = 5a 0, −1 42. −12a2 = a 1 2 16. y − 5y 2 = 0 0, − 13 19. 0 = 10r − 3r2 30. 0 = 8y 2 + 20y 5 3 0, 12. 0 = 10c + 10c2 0, 1 4 3 0, 26. 12m − 21m2 = 0 0, 1 0, 6. 124—Solve over IR. 3. 0, 5 0, 1 21. 0 = 10a2 − 5a 41. r = 2r2 5y − y 2 = 0 10. 3y − 3y 2 = 0 0, − 25 37. p2 = −14p 2. 26—Solve by any method. 0, −1 17. 2x + 5x2 = 0 33. 8k = 8k 2 23—Solve by factoring. 71. c2 + 18c + 32 = 0 64. 0 = x2 + 3x + 20 Ø 68. 0 = p2 − 6p − 55 11, −5 72. 0 = y 2 − 12y + 32 8, 4 −16, −2 75. 0 = r2 − 11r − 60 15, −4 79. a2 + 21a + 90 = 0 −15, −6 83. 6a2 + 48a − 54 = 0 −1, 9 87. 0 = 2x2 + 22x + 48 −8, −3 91. 2y 2 + 4y − 96 = 0 −8, 6 ALG catalog ver. 2.6 – page 204 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 76. k 2 + 16k − 36 = 0 −18, 2 80. y 2 − 19y + 88 = 0 11, 8 84. 8p2 − 8p − 48 = 0 −2, 3 88. 3w2 − 45w + 42 = 0 14, 1 92. 0 = 4x2 − 28x − 240 12, −5 JB 93. 0 = 6k 2 + 84k + 270 94. 2x2 + 34x + 132 = 0 −9, −5 95. 3c2 − 72c + 240 = 0 −11, −6 97. 0 = 4x2 + 8x − 480 20, 4 98. 0 = 2c2 − 16c − 168 −12, 10 129. 81 = c2 126. 9 − c2 = 0 ±5 130. 144 = r2 ±9 137. 63 − 7p2 = 0 ±3 138. 24y 2 − 24 = 0 145. a2 + 25 = 0 146. 0 = y 2 + 100 132. w2 = 100 ±20 139. 0 = −15m2 + 60 ±1 143. 14 − 14a2 = 0 ±7 147. −c2 = 64 Ø 150. 36 − 12m + m2 = 0 −2 128. 0 = p2 − 36 ±4 ±7 135. x2 − 400 = 0 ±11 142. 0 = 196 − 4m2 Ø 149. w2 + 4w + 4 = 0 131. a2 = 49 ±12 134. 0 = 121 − k 2 30, −10 127. 0 = 16 − m2 ±3 ±14 ±11 124. 0 = 300 − 20y − y 2 −50, 10 133. 0 = 196 − y 2 141. 0 = −2w2 + 242 −25, −8 123. 0 = 500 + 40k − k 2 −20, 12 125. a2 − 25 = 0 120. 0 = c2 + 33c + 200 30, 6 122. 240 + 8a − a2 = 0 20, −7 12, −8 119. y 2 − 36y + 180 = 0 16, 10 121. 140 − 13x − x2 = 0 116. 0 = r2 − 4r − 96 −15, 7 118. 0 = a2 − 26a + 160 −10, −15 27, −1 115. 0 = a2 + 8a − 105 −20, 4 117. x2 + 25x + 150 = 0 112. w2 − 26w − 27 = 0 −38, 2 114. 80 + 16n − n2 = 0 −40, 3 −10, −9 111. 0 = k 2 + 36k − 76 −18, 2 113. 120 + 37k − k 2 = 0 108. 0 = m2 + 19m + 90 −20, −6 110. 36 + 16y − y 2 = 0 46, −1 16, −5 107. w2 + 26w + 120 = 0 56, 2 109. 0 = 46 − 45a − a2 104. 0 = x2 − 11x − 80 20, −4 106. 0 = y 2 − 58y + 112 30, 2 −9, 8 103. a2 − 16a − 80 = 0 −18, 3 105. r2 − 32r + 60 = 0 100. 6p2 + 6p − 452 = 0 32, −2 102. c2 + 15c − 54 = 0 −17, 3 14, 3 99. 3y 2 − 90y − 192 = 0 14, −6 101. 0 = m2 + 14m − 51 96. 0 = 4p2 − 68p + 168 6 ±2 ±10 136. c2 − 169 = 0 ±13 140. 0 = 48 − 3r2 ±4 144. 7x2 − 175 = 0 ±1 148. −49 = k 2 Ø 151. 0 = 25 + 10r + r2 ±6 −5 ±5 Ø 152. 0 = k 2 − 20k + 100 10 153. 0 = 9 − 6a + a2 154. 0 = a2 + 24a + 144 3 155. n2 − 14n + 49 = 0 7 156. 81 + 18c + c2 = 0 −9 −12 157. 0 = 128 + 32w + 2w2 158. 0 = 8y 2 − 16y + 8 1 −8 160. 3x2 − 24x + 48 = 0 4 −11 161. 0 = x2 − 40x + 400 162. k 2 − 18k + 81 = 0 9 163. r2 + 26r + 169 = 0 164. 0 = y 2 + 16y + 64 −8 −13 20 165. p2 + 5p + 25 = 0 166. 0 = u2 − 2u + 4 Ø 169. 7w2 − 8w + 1 = 0 1, 1 7 173. 0 = 2a2 + 7a + 3 −3, − 12 177. 6p2 − 11p − 7 = 0 7 3 181. 0 = 3 + 13m + 4m2 −3, − 14 Ø 170. 0 = 11k 2 + 10k − 1 −1, − 12 , 159. 0 = 242 + 44y + 2y 2 1 11 174. 3r2 + 20r − 7 = 0 −7, 1 3 178. 8x2 − 14x + 5 = 0 1 5 2, 4 182. 0 = 2 + 7y − 15y 2 2 1 3,−5 167. 0 = 9 + 3x + x2 Ø 171. 0 = 2a2 + 7a + 5 168. 49 − 7a + a2 = 0 Ø 172. 3x2 − x − 2 = 0 1, − 23 −1, − 52 175. 2c2 − 23c + 11 = 0 11, 1 2 179. 0 = 21h2 − 4h − 1 1 1 3,−7 183. 11 + 23x + 2x2 = 0 −11, − 12 ALG catalog ver. 2.6 – page 205 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 176. 0 = 5x2 − 64x − 13 13, − 15 180. 0 = 24y 2 − 25y + 1 1, 1 24 184. 3 − 4x − 7x2 = 0 −1, 3 7 JB 185. 10x2 + 23x − 5 = 0 − 52 , 15 189. 0 = 3t2 + 14t + 15 −3, − 53 193. 0 = 20c2 + 11c − 3 1 3 5,−4 197. 2y 2 − 27y + 36 = 0 12, 3 2 201. 0 = 10r2 − 81r + 8 8, 1 10 205. 3 − 23p + 30p2 = 0 1 3 6, 5 209. 35a2 − 31a + 6 = 0 3 2 5, 7 186. 0 = 14m2 + m − 3 3 1 7,−2 190. 25y 2 − 20y + 3 = 0 194. 0 = 18a2 − 5a − 7 7 9 198. 3p2 + 40p + 48 = 0 −12, − 43 202. 9c2 + 16c − 4 = 0 −2, 2 9 206. 0 = 25 − 5w − 2w2 −5, 5 1 3,−5 191. 4r2 − 24r + 11 = 0 1 11 2, 2 1 3 5, 5 − 12 , 187. 0 = 15c2 − 22c − 5 5 2 210. 0 = 18y 2 + 51y + 8 − 83 , − 16 195. 12y 2 + 7y − 5 = 0 −1, 5 12 199. 0 = 40c2 − 11c − 2 1 2 5,−8 203. 14p2 − 23p + 8 = 0 1 8 2, 7 207. 0 = 7 − 17a + 10a2 1, 7 10 211. 12x2 − 44x + 35 = 0 5 7 2, 6 ALG catalog ver. 2.6 – page 206 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 188. 8u2 + 11u + 3 = 0 − 38 , −1 192. 0 = 12m2 + 32m + 13 − 12 , − 13 6 196. 7x2 − 11x − 30 = 0 3, − 10 7 200. 0 = 42h2 + h − 5 5 1 3 , − 14 204. 0 = 6m2 − 13m − 15 3, − 56 208. 18 + 5x − 2x2 = 0 −2, 9 2 212. 0 = 21r2 − 4r − 12 − 23 , 6 7 JC Topic: Advanced quadratic equations (factorable). See also category JB. Directions: 15—Solve. 23—Solve by factoring. 26—Solve by any method. 1. s2 + 32 = 153 ±11 2. u2 = 2u2 − 49 5. x2 + 3x = 10 −5, 2 6. −y 2 = 15 − 16y ±7 15, 1 124—Solve over IR. 3. 4a2 + 25 = 5a2 ±5 4. −11 = −m2 + 70 7. 12 − m2 = 4m −6, 2 8. x2 + 20 = −21x ±9 −20, −1 9. t2 = −2t + 24 10. 30 − r2 = −r −6, 4 −5, 6 11. 70 = −17y − y 2 12. a2 = 11a − 28 7, 4 −10, −7 13. r2 − 6r = −9 14. −x2 + 10x = 25 3 17. 3y 2 − 8y = −5 1, 18. 2 + 21a = 11a2 5 3 5 1 2, − 11 15. d2 + 16 = −8d 16. 12z + 36 = −z 2 −4 19. 7w2 + 3 = −10w 20. 16k = 5k 2 + 3 −6 3, 1 5 −1, − 37 21. −8k 2 = −1 − 2k 22. 5x = 6x2 − 1 1, − 16 23. c − 3c2 = −10 24. 13r − 2 = 15r2 2, − 53 1 2 5, 3 − 14 , 12 25. c2 − 3c − 50 = 4 26. 10 = 46 + 16x − x2 −6, 9 −2, 18 29. 4 − 3w = 46 − 20w + w2 30. k 2 + 30k = 13k − 52 −13, −4 14, 3 33. −2c2 − 8 = 56 − 3c2 34. p2 + 10p = 10p + 144 ±8 ±12 37. 13r2 − 28 = 4r2 − 12 38. 32t2 − 46 = 7t2 − 45 ± 43 ± 15 41. −2c2 − 3c = 10c + 21 42. 10 − a = 3a2 − 2a −3, − 72 2, − 53 45. 44 + 27x + 2x2 = x2 − 6 49. t2 − 10t + 15 = 10t − 85 28. a2 − 27a − 68 = 5a −7, 8 −2, 34 31. 2y − 15 = y 2 + y − 105 32. x − 120 = 3x − x2 10, −9 12, −10 35. 3h + 10 = h2 + 3h + 1 36. 4a2 + 48 = 5a2 − 52 ±3 ±10 39. 25x2 − 13x + 4 = 7x 40. −16a2 − 6a = 18a + 9 2 5 − 34 43. 5x2 − 30 = 19x − 6x2 −1, 44. 2p2 − 24 = 9p − 6 30 11 6, − 32 46. 3p2 − 5p = 4p2 − 35p + 56 −2, −25 47. −4a2 + 3 = −3a2 + 18a − 60 27. 56 + 3p − p2 = 2p −21, 3 28, 2 48. 21 − 11x − 2x2 = −x2 − 21 −14, 3 50. 3y 2 + 4y + 49 = 2y 2 − 10y 10 51. −u2 + 8u = −2u2 + 32u − 144 53. −k 2 + 7k + 3 = −20k + 75 12 3, 24 52. 5z − 47 = z 2 + 21z + 17 −7 −8 54. 64 + 3h − 2h2 = −h2 − 44 −9, 12 55. 6c2 − 5c = 5c2 + 3c + 105 −7, 15 56. 100 − 5x = 16 − 22x + x2 −4, 21 57. 4p2 + 16p − 49 = 16p + 32 ± 92 58. −24t2 − t + 36 = 25t2 − t ± 67 60. −45d − 74 = 4d2 − 9d + 7 − 92 59. 5y 2 − 6y − 1 = −4y 2 − 2 1 3 61. 3x2 − 21x + 21 = x2 − 4x 7, 3 2 63. −4p2 − 44p − 12 = −7p2 + 3 65. 22 − p = 6p2 + 4p + 18 4 1 2,−3 67. 36a2 − 25a + 2 = 8a − 5 69. 9k 2 + 5k + 1 = −25k − 24 7 1 12 , 3 − 53 15, − 13 62. 12 − 16y = 13y 2 + 44y − 13 −5, 64. 6 − 11m = 8m2 + 19m + 13 − 14 , − 72 66. 3n2 + 12 = 9 − 22n − 21n2 68. 7y 2 − 1 = −3y 2 − 11y + 5 − 34 , − 16 − 32 , 70. 72a − 2 = −100a2 + 12a − 11 ALG catalog ver. 2.6 – page 207 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 5 13 2 5 3 − 10 JC 71. 66p2 − 14 = −15p2 + 18p − 15 73. 35 − 3w + w2 = −50w − 5w2 75. 10 + 4u2 + 8u = 25u2 + 7u 77. x(x + 4) = 12 1 9 −7, − 56 11 4 74. −2r2 − 2r = 6r2 + 21r + 14 −2, − 78 76. 12u + 5 = −26u2 + u + 20 5 2 7,−3 78. −8 = x(x − 6) 2, −6 72. −16t2 + 90t − 22 = 2t + 99 2, 4 79. 0 = k(8 + k) + 15 3, 5 −1, 15 26 80. 21 − b(b − 20) = 0 21, −1 81. x(7 − 9x) − 10x = 0 82. 0 = 8y − 3y(y + 6) 0, − 13 0, − 10 3 85. 5(x − 3) = 2x(x − 3) 3, 0, 86. x(x − 5) + 5(5 − x) = 0 5 5 2 89. 0 = 4x(4x − 1) − 4x + 1 91. x(x + 3) − 5x = x + 10 83. −4x(x − 5) = 11x 84. 2x = x(7x + 11) 87. 0 = 2x(3x + 4) − (x − 2) 88. 2(10 − x) = (x − 3)(x) 5, −4 −1, − 23 90. 4(x + 6) + 3x = 2(x2 − 3) 1 4 92. 3a − 15 + 2(a2 − 5a) = 0 5, −2 6, − 52 5, − 32 93. 3(x2 + x + 1) − x(x − 2) = x2 + x −1, −3 94. 6x2 = x(9x + 13) − 2(x2 − x + 8) 95. 8(2x2 + 3x − 2) = 4x(3x + 7) − 16 1, 0 96. −3x(2x − 5) + 5(x2 − 3x + 6) = 5 97. (r − 2)(r − 2) = 36 98. 49 = (p + 5)(p + 5) 8, −4 101. 121 = (m + 6)2 2, −12 5, −17 8, −2 105. (x − 3)(x − 4) = 2 2, −6 109. (2x − 3)(2x + 3) = 7 ± 53 113. (x + 1)(2x + 1) = 3 −2, 117. (4a − 1)2 + 2 = 8a −1, 2 3 107. −4 = (x + 2)(x + 7) 111. 24 = (4x + 1)(4x − 1) 115. (2m − 1)(m − 3) = 18 119. (p + 3)2 − p = 15 122. −y − 14 = (y + 4)(3y − 2) −2, − 32 −4, −5 112. 5 = (11x − 2)(11x + 2) 3 ± 11 116. (4n − 3)(2n + 1) = 7 −1, 1, − 12 −3, − 23 2 124. 4y + 23 = (3y + 5)(y + 3) 125. (x − 3)(x + 3) = 2x2 − 18 ±3 126. 4a2 + 10a − 24 = (3a − 5)(a + 4) 129. (2n − 6)2 = 10(2n − 6) − 25 −2, −4 131. 33 + 5(2y − 7) = 9y + 3(y − 2)2 2, 133. 5(x2 + 1) − (4x − 1)(x − 1) = 0 −1, −4 2 3 1, −4 2, 14 −1 132. 10n − (2n − 3)2 = (n + 4)(n − 4) + 15 7 3 135. 11r + (r + 2)(2 − r) = 33 − (4r − 3)2 −4, 128. x2 + 9x − 43 = (2x + 3)(x − 5) 130. 0 = (2x − 1)2 − 3x(x − 2) 11 2 5 4 120. 3x2 + x = (x + 1)2 123. (y + 8)(y − 4) = 2y 2 − 28 127. (3x − 2)(2x + 5) = 5x2 + 5x − 18 6 2 5,−5 108. (x + 8)(x + 1) = −12 1, −6 0, − 53 121. (x + 2)(x − 6) = 5x2 + 10x 104. (5w − 2)2 = 16 5, − 32 118. 25 − 8x2 = (2x + 5)2 1 3 4, 4 ±8 ± 54 114. −2 = (x − 1)(3x + 4) 1 2 ±5 100. 55 = (y − 3)(y + 3) −3, −6 110. (3x + 7)(3x − 7) = −24 ±2 103. 0 = (3w + 2)2 − 9 1, −16 1 5 3,−3 106. 7 = (x − 1)(x + 5) 2, 5 99. (x − 8)(x + 8) = 17 ±9 102. (x − 3)2 − 25 = 0 0, − 97 9 4 134. 6 − (3x − 4)(x + 3) = −2x(2x + 8) 5 4 3,−5 136. (x − 7)(2x + 5) − (x − 4)2 = 9x − 27 ALG catalog ver. 2.6 – page 208 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 4, 2 5 −2, −9 −2, 12 JD Topic: Higher order equations (factorable). Directions: 15—Solve. 1. 15n = −n3 5. 3k 4 + 9k 3 = 0 −3, 0 9. −8p4 = −12p3 3 2,0 0 13. n3 − 9n = 0 17. 4x4 = 16x2 r4 + 8r2 = 0 6. −7x4 = 28x3 0 −4, 0 10. 0 = 20c3 − 45c4 14. y 3 = 49y ±3, 0 22. 9p2 = 49p4 ± 15 , 0 25. a3 + 15a2 − 16a = 0 4 9,0 ±5, 0 ± 37 , 0 26. c4 − 3c3 − 28c2 = 0 −16, 1, 0 7, −4, 0 29. 0 = w4 − 18w3 + 72w2 −2, −18, 0 33. 0 = 7h3 − 7h2 − 42h 38. 0 = s3 + 14s2 + 49s −7, 0 3, 0 41. 7a3 − 5a2 − 2a = 0 −5, − 17 , 0 45. 5x3 − 14x2 + 8x = 0 −1, 49. 0 = 20y 4 − 16y 3 + 3y 2 1 10 , 0 54. −y 4 = 19y 3 − 42y 2 −8, 7, 0 61. y 4 − 16 = 0 ± 94 , 0 27. 0 = k 4 + 16k 3 + 63k 2 24. 144w3 = w 62. −x4 = −81 65. 0 = a4 − 26a2 + 25 ±2, ±3 69. 81k 4 − 18k 2 + 1 = 0 70. 0 = 16n4 − 8n2 + 1 ± 13 75. t3 + 2t2 − 9t − 18 = 0 7, ±2 −2, ±3 77. 0 = a3 + 5a2 + 3a + 15 1 −5 1 ± 12 ,0 −10, 5, 0 31. p3 − 13p2 − 68p = 0 32. m4 + m3 − 110m2 = 0 −11, 10, 0 35. 3d3 + 33d2 + 72d = 0 36. 0 = 6y 4 + 12y 3 − 48y 2 −4, 2, 0 39. 0 = t4 − 10t3 + 25t2 40. z 3 + 20z 2 + 100z = 0 −10, 0 43. 2b4 − 5b3 + 3b2 = 0 44. 0 = 3n3 + 8n2 − 11n 3 2,0 1, − 11 3 ,0 47. 0 = 14p3 + p2 − 3p 48. 0 = 6x4 + 7x3 + 2x2 − 23 , − 12 , 0 51. 0 = 7w − 3w2 − 22w3 52. 5n2 + 18n3 + 16n4 = 0 − 12 , − 58 , 0 55. 42a2 = a3 + a4 −7, 6, 0 56. d3 = 25d2 + 54d 59. g 3 − 23g 2 = 140g 60. 132y + 41y 2 = y 3 63. 1 − 81h4 = 0 −3, 44, 0 64. 16m4 = 1 ± 13 67. 0 = x4 − 20x2 + 64 71. y 4 − 2y 2 + 1 = 0 ±1, ±3 72. 0 = u4 − 8u2 + 16 ±1 74. 0 = r3 + 8r2 − r − 8 −8, ±1 76. 0 = d3 − 3d2 − 25d + 75 3, ±5 78. m3 − 10m2 + 6m − 60 = 0 80. r3 + 2r2 + 9r + 18 = 0 ALG catalog ver. 2.6 – page 209 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ± 12 68. w4 − 10w2 + 9 = 0 ±2, ±4 ± 12 73. x3 − 7x2 − 4x + 28 = 0 79. 0 = y 3 − y 2 + 4y − 4 ±3 66. c4 − 13c2 + 36 = 0 ±1, ±5 ±8, 0 28. 0 = x3 − 5x2 − 50x −5, 28, 0 2, 72, 0 ±2 ±6, 0 27, −2, 0 58. −144n2 = n4 − 74n3 −10, −11, 0 − 16 3 ,0 20. 5u4 − 320u2 = 0 ±4, 0 −21, 2, 0 57. 21x3 + 110x2 = −x4 7, 0 16. −r4 = −36r2 ±10, 0 7 1 2 , − 11 , 0 − 13 , − 15 , 0 53. y 3 + y 2 = 56y 42h3 = 6h4 0 12. 6s4 + 32s3 = 0 − 56 , 0 23. 16u4 − 81u2 = 0 8. − 12 , 37 , 0 50. y + 8y 2 + 15y 3 = 0 1 3 2 , 10 , 0 19. −3s3 = −48s 1, 46. 10r4 + 9r3 − r2 = 0 2, 45 , 0 11. 18y 3 = −15y 2 5, 0 0 = t4 + 12t2 5, 0 42. 0 = 5h2 + 36h3 + 7h4 1, − 27 , 0 0 = 11x4 − 55x3 4. −8, −3, 0 1, 9, 0 37. r4 − 6r3 + 9r2 = 0 7. 0 −4, 17, 0 34. 5x4 − 50x3 + 45x2 = 0 −2, 3, 0 s3 = −6s −9, −7, 0 30. 0 = c3 + 20c2 + 36c 6, 12, 0 3. 15. 0 = c4 − 100c2 ±7, 0 18. 0 = −7t3 + 175t ±2, 0 21. 0 = y − 25y 3 2. −2 10 ±2 JE Topic: Solving for other variables (factorable equations). See also categories GH (first degree equations) and LM (rational equations). Directions: 15—Solve. 1. A = P + Prt; for P 2. A 1 + rt 5. bx = c + ax; for x 6. 10 C +1 13. A = 2`w + 2wh + 2`h; for h 2V − IR ; for I 2I r` − a ; for r r−` 29. x2 − 3ax = 0; for x nE − rI ; for n nI r` − a ; for ` r−` 30. ay 2 − y = 0; for y 2D 2t − ` V − 3c 3c + 3 S − 2bc 2b + 2c Rr ; for R R−r 20. I = ad ; for a a+c−d 27. ay + 1 = y(b − c); for y 24. F = 0, 3a 31. at2 + bt = 0; for t 0, − 33. y 2 − 6ay + 5a2 = 0; for y 34. 2x2 + bx − b2 = 0; for x b 2 ad ; for d a+c−d Fa + Fc F +a 28. d(n + 1) = c(d − 1); for d c c−n−1 1 − a−b+c 1 a nE ; for n R + nr IR E − Ir Fd − Fc F −d 0, 2at − a` ; for a 2 12. D = 15. S = 2(ab + bc + ac); for a 16. V = 3(c + cd + d); for d 23. F = c+y a+b −b, 180(n − 2) ; for n n kr K −r 26. ax − y = c − bx; for x a, 5a bz − cd = az; for z 8. cd b−a 19. K = a + sr s+r y−c a−x r 1−r 360 180 − a rI E − RI 22. s = an = cm − bn; for n 11. a = A − 2wh 2w + 2h s` − a s−` 25. ab + c = xb + y; for b T1 − T 2 ; for T1 T1 18. R = S − Sr = r; for S 4. cm a+b 14. A = 2`w + 2wh + 2`h; for ` 2V 2r + R 21. s = 7. T2 1−E A − 2`w 2w + 2` 17. r = c + ay = dy; for y 10. E = Ft = mv1 − mv2 ; for m Ft v1 − v2 c d−a 10 − r ; for r r C= 3. E r+R c b−a 9. E = Ir + IR; for I 32. w2 + 2bw = 0; for w 0, −2b b a 35. c2 − 2cd − 3d2 = 0; for c 36. p2 − 5pw + 4w2 = 0; for w p, p −d, 3d 4 37. k 2 − ak − k + a = 0; for k 38. n2 + an − bn − ab = 0; for n −a, b a, 1 39. y 2 − cy − dy + cd = 0; for y c, d 40. a2 + ac + a + c = 0; for a 41. 16a2 − b2 = 0; for a 43. 0 = x2 − 36y 2 ; for y 44. −9p2 + q 2 = 0; for q ± 42. 0 = 4x2 − c2 ; for c 45. 0 = y 2 + 2ay + a2 ; for y 46. c2 − 2cd + d2 = 0; for c −a 49. x2 − 8rx = 20r2 ; for r x ± 6 ±2x b 4 d 53. x2 + 4x − 3xy − 12y = 0; for x a a ,− 8 3 −4, 3y 55. 2my + 5m − 8y 2 − 20y = 0; for y ±3p 47. x2 − 4xy + 4y 2 = 0; for x 48. 0 = a2 + 6ab + 9b2 ; for b 2y 50. a2 = 24t2 + 5at; for t x x ,− 10 2 −c, −1 5 m ,− 4 2 51. 5cy = y 2 − 14c2 ; for y − 52. d2 + 12x2 = 8dx; for d 7c, −2c 54. 3s2 − 6s + st − 2t = 0; for s 2x, 6x 2, − 56. 4n2 t − nt + 12n − 3 = 0; for n ALG catalog ver. 2.6 – page 210 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. a 3 t 3 1 3 ,− 4 t JF Topic: Word problems involving factoring. See also category NH (quadratic formula). Directions: 0—(No explicit directions.) 16—Solve and check. 40—Write an equation and solve. 39—Translate and solve. 1. Find a positive number whose square is 12 more than the number itself. 4 2. Find a negative number whose square is 20 more than the number itself. −4 3. Find a negative number whose square is 2 more than the number itself. −1 4. Find a positive number whose square is 30 more than the number itself. 6 5. The sum of two numbers is 19. The sum of their squares is 193. Find the numbers. 7, 12 6. The sum of two numbers is 14. The sum of their squares is 100. Find the numbers. 6, 8 7. The sum of two numbers is 3. The sum of their squares is 89. What are the numbers? 8, −5 8. The sum of two numbers is 16. The sum of their squares is 416. What are the numbers? 20, −4 9. The difference of two numbers is 6. The sum of their squares is 116. Find the numbers. 4, 10 10. The difference of two numbers is 12. The sum of their squares is 170. Find the numbers. 1, 13 11. A positive number is one-half of another number. The sum of the numbers is 28 less than the square of the smaller number. What are the numbers? 7, 14 12. A positive number is one-third of another number. The sum of the numbers is 5 less than the square of the larger number. What are the numbers? 1, 3 13. When the square of a number is subtracted from 11 times the number, the difference is 18. Find the number. 9 14. When the square of a number is subtracted from 8 times the number, the difference is 12. Find the number. 6 15. Seven less than the square of a positive number is the same as 6 times the number. What is the number? 16. 22 less than the square of a positive number is the same as 9 times the number. What is the number? 7 11 17. If twice the square of a positive number is decreased by 5 times the number, the difference is 12. Find the number. 4 18. If one-half the square of a positive number is decreased by twice the number, the difference is 16. Find the number. 8 19. Five times the square of a negative number is 48 more than the number. What is the number? 20. Eight times a negative number is 20 less than the square of the number. What is the number? −2 −3 Consecutive integers 21. Find two consecutive integers whose product is 306. 17, 18 or −18, −17 23. The product of two consecutive integers is 210. Find two pairs of numbers that satisfy this condition. 14, 15 or −15, −14 22. Find two consecutive integers whose product is 182. 13, 14 or −14, −13 24. The product of two consecutive integers is 380. Find two pairs of numbers that satisfy this condition. 19, 20 or −20, −19 25. Find two consecutive even integers whose product is 288. 16, 18 or −18, −16 26. Find two consecutive odd integers whose product is 143. 11, 13 or −13, −11 27. Find two consecutive odd integers whose product is 168. not possible 28. Find two consecutive even integers whose product is 255. not possible 29. Find two consecutive odd integers such that the sum of their squares is 130. 7, 9 or −9, −7 30. Find two consecutive even integers such that the sum of their squares is 244. 10, 12 or −12, −10 31. The square of the sum of two consecutive integers is 529. What are the integers? 11, 12 or −12, −11 32. The square of the sum of two consecutive integers is 1681. What are the integers? 20, 21 or −21, −20 33. Find two consecutive odd integers such that the sum of their squares is 164. not possible 34. Find two consecutive even integers such that the square of their sum is 225. not possible 35. Find two consecutive positive integers such that the difference of their squares is 25. 12, 13 36. Find two consecutive negative integers such that the difference of their squares is 29. −14, −15 ALG catalog ver. 2.6 – page 211 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. JF 37. Find two consecutive odd integers such that the square of the first, increased by the second, is 32. 5, 7 38. Find two consecutive even integers such that the square of the second, decreased by the first, is 92. 8, 10 39. When the first of two consecutive integers is added to the square of the second, the result is 5. What are the integers? −4, −3 or 1, 2 40. When the first of two consecutive integers is added to the square of the second, the result is −1. What are the integers? −2, −1 or −1, 0 41. The product of two consecutive integers is 8 more than twice their sum. What are the integers? 42. The sum of two consecutive integers is 19 less than half their product. What are the integers? 5, 6 or −2, −1 8, 9 or −5, −4 43. Find two consecutive even integers such that the square of the smaller is 4 more than 10 times the larger. 12, 14 or 0, −2 44. Find two consecutive odd integers such that the square of the larger is 3 less than 12 times the smaller. 7, 9 or 1, 3 45. Twice the square of an integer is 20 more than the product of the integer and the next consecutive integer. What are the integers? 5, 6 or −4, −3 46. Half the square of an integer is 15 more than the sum of the the integer and the next consecutive integer. What are the integers? 8, 9 or −4, −3 47. Find three consecutive integers such that the square of the third, added to the first, is 130. 48. Find three consecutive integers such that the square of the second, added to the third, is 133. 9, 10, 11 or −14, −13, −12 10, 11, 12 or −13, −12, −11 49. Find three consecutive odd integers such that the first times the second is 8 more than 5 times the third. 7, 9, 11 50. Find three consecutive even integers such that the first times the third is 4 less than 12 times the second. 10, 12, 14 51. Find four consecutive positive integers such that the sum of the squares of the second and third is 85. 52. Find four consecutive negative integers such that the square of the sum of the first and fourth is 289. 5, 6, 7, 8 −10, −9, −8, −7 53. Find four consecutive even integers such that the product of the first and second is 10 less than the sum of the third and fourth. 0, 2, 4, 6 54. Find four consecutive odd integers such that the sum of the first three integers is 10 less than the square of the fourth. −5, −3, −1, 1 55. Find three consecutive integers such that the product of the first and third is 1 less than the square of the middle integer. any three consec. integers 56. Find four consecutive integers such that the product of the first and fourth is 2 less than product of the middle integers. any four consec. integers Area, perimeter 57. A rectangular driveway is 12 meters longer than it is wide. Its area is 1260 square meters. Find its length and width. 42, 30 m 58. A rectangular garden is 3 feet longer than it is wide. Its area is 54 square feet. Find its length and width. 59. The area of a rectangular carpet is 165 sq ft. The width is 4 ft less than the length. What are the dimensions? 11 × 15 ft 60. The area of a rectangular parking lot is 1800 sq m. The width is 14 m less than the length. What are the dimensions? 36 × 50 m 61. The length of a rug is twice its width. Its area is 12.5 m2 . Find the dimensions of the rug. 2.5 × 5 m 62. The length of a corridor is 4 times its width. Its area is 121 ft2 . Find the dimensions of the corridor. 9, 6 ft 5.5 × 22 ft 63. The width of a rectangle is one-third of the length. If the area is 108 cm2 , what is the width and length? 6, 18 cm 64. The width of a rectangle is one-half of the length. If the area is 128 sq ft, what is the width and length? 8, 16 ft 65. The length of a rectangle is 2 inches more than three times the width. Find the length and width if the area is 85 in2 . 17, 5 in. 66. The length of a rectangle is 5 cm less than twice the width. Find the length and width if the area is 88 sq cm. 11, 8 cm 67. The width of a rectangular walkway is 12 ft less than half the length. What are the dimensions of the walkway if the area is 1080 ft2 ? 18 × 60 ft 68. The width of a rectangular playground is 4 meters more than one-third of the length. What are the dimensions of the playground if the area is 3060 sq m ? 34 × 90 m ALG catalog ver. 2.6 – page 212 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. JF 69. The perimeter of a building is 112 m. It covers an area of 720 sq m. Find the dimensions of the building (assume it is rectangular). 20 × 36 m 70. The perimeter of a garden is 34 ft. It covers an area of 60 ft2 . Find the dimensions of the garden (assume it is rectangular). 5 × 12 ft 71. A rectangular piece of wood has an area of 315 sq in. and a perimeter of 81 in. Find its length and width. 72. A rectangular counter top has an area of 6 m2 and a perimeter of 11 m. Find its length and width. 30, 10.5 in. 4, 1.5 m 73. The base of a triangle is 4 in. more than the height. The area is 6 sq in. Find the base and height. 6, 2 74. The base of a triangle is 5 m less than the height. The area is 33 m2 . Find the base and height. 6, 11 75. The height of a triangle is 3 cm more than twice the base. The area is 45 cm2 . Find the base and height. 76. The height of a triangle is 1 foot less than twice the base. The area is 95 sq ft. Find the base and height. 6, 13 10, 19 77. The length and width of 3 × 5 in. rectangle are both increased by the same amount in order to form a rectangle with an area of 48 sq in. By how much were the length and width increased? 3 in. 78. The length and width of 4 × 9 cm rectangle are both increased by the same amount in order to form a rectangle with an area of 66 cm2 . By how much were the length and width increased? 2 cm 79. The length and width of 10 × 12 ft rectangle are both decreased by the same amount in order to form a rectangle with an area of 35 sq ft. By how much were the length and width decreased? 5 ft 80. The length and width of 8 × 20 m rectangle are both decreased by the same amount in order to form a rectangle with an area of 28 m2 . By how much were the length and width decreased? 6 ft 81. A room is 2 ft longer than it is wide, and the ceiling is 9 ft high. If the total area of the walls and ceiling is 516 sq ft, find the dimensions of the room. 82. A room is 2 m longer than it is wide, and the ceiling is 3 m high. If the total area of the walls and ceiling is 84 m2 , find the dimensions of the room. 6 × 4 × 3 m 12 × 10 × 9 ft 83. A room is twice a long as it is wide, and the ceiling is 8.5 ft high. If the total area of the walls and ceiling is 621 sq ft, find the dimensions of the room. 18 × 9 × 8.5 ft 84. A room is twice a long as it is wide, and the ceiling is 3.5 m high. If the total area of the walls and ceiling is 198 m2 , find the dimensions of the room. 12 × 6 × 3.5 m Borders 85. A photograph is 11 × 14 in. A frame of uniform width is placed around the photograph. The area of the frame is 150 in2 . Find the width of the frame. 86. A painting is 25 × 40 cm. A frame of uniform width is placed around the painting. The area of the frame is 504 cm2 . Find the width of the frame. 3.5 cm 2.5 in. 87. The outer dimensions of a picture frame are 20 × 12 cm. The area of the picture that is exposed is 84 sq cm. What is the width of the frame? 3 cm 88. The outer dimensions of a picture frame are 14 × 18 in. The area of the picture that is exposed is 192 in2 . What is the width of the frame? 1 in. 89. A city lot is 16 m wide and 34 m long. How wide a strip must be cut off one end and one side to make the area of the lot 360 m2 ? 4 m 90. A piece of wood is 16 in. wide and 30 in. long. How wide a strip must be cut off one end and one side to make the area of the wood 275 sq in.? 5 in. 91. A sidewalk of uniform width is built around three sides of a rectangular lot (one of the shorter sides is left alone). The dimensions of the lot are 30 × 10 ft. The total area of the lot and sidewalk is 528 ft2 . What is the width of the sidewalk? 3 ft 92. A sidewalk of uniform width is built around three sides of a rectangular building (one of the longer sides is left alone). The dimensions of the building are 40 × 28 m. The total area of the building and sidewalk is 1320 m2 . What is the width of the sidewalk? 2 m 93. A painting is 5 inches longer than it is wide. If a 2 inch border is added to all sides, then the total area will be 414 sq in. What are the dimensions of the painting itself? 14 × 19 in. 94. A photograph is 3 cm longer than it is wide. If a 4 cm border is added to all sides, then the total area will be 460 sq cm. What are the dimensions of the photograph itself? 12 × 15 cm 95. When a border of uniform width is placed around an 8 × 10 in. photograph, the area is increased by 243 sq in. What is the width of the border? 4.5 in. 96. When a border of uniform width is placed around a 9 × 12 m carpet, the area is increased by 100 sq m. What is the width of the border? 2 m ALG catalog ver. 2.6 – page 213 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. JF 97. A rectangular swimming pool is 10 m wide and 15 m long. The pool is surrounded by a deck of uniform width, whose area is equal to the area of the pool. How wide is the deck? 2.5 m 98. A rectangular garden is 12 ft wide and 15 ft long. The garden is surrounded by a dirt path of uniform width, whose area is half the area of the garden. How wide is the path? 1.5 m 99. A table cloth is 30 inches long and 20 inches wide. The cloth is going to be enlarged by adding a border of uniform width to all sides. How wide should the border be, in order to double the area of the cloth? 100. A warehouse platform is 10 meters long and 3 meters wide. The platform is going to be enlarged by adding a strip of uniform width to all sides. How wide should the strip be, in order to double the area of the platform? 1 m 5 in. 101. A rectangular patio is surrounded on three sides by a fence (the remaining side is up against the house). If the area of the patio is 150 ft2 , and the total length of fence is 35 ft, what is the length and width of the patio? 20, 7.5 ft 102. A rectangular patio is surrounded on three sides by a fence (the remaining side is up against the house). If the area of the patio is 45 m2 , and the total length of fence is 19 m, what is the length and width of the patio? 10, 4.5 m FENCE1.PCX FENCE1.PCX 103. A rectangular flower bed, whose dimensions are 4 × 11 m, has one of its longer sides against a house. The remaining three sides are to be increased by a strip of uniform width, so that the area of the garden is increased by 75%. How wide should that strip be? 1.5 ft 104. A rectangular flower bed, whose dimensions are 6 × 15 ft, has one of its longer sides against a house. The remaining three sides are to be increased by a strip of uniform width, so that the area of the garden is increased by 50%. How wide should that strip be? 1.5 ft GARDEN1.PCX GARDEN1.PCX Volume 105. The length of a rectangular piece of sheet metal is 3 cm less than twice the width. A 4 cm square is cut from each corner of the metal, and the sides are bent up so that the metal forms an open box. If the volume of the box is 208 cm3 , what are the original dimensions of the metal? 12 × 21 cm 106. The length of a rectangular piece of sheet metal is 5 inches less than twice the width. A 2 inch square is cut from each corner of the metal, and the sides are bent up so that the metal forms an open box. If the volume of the box is 132 in3 , what are the original dimensions of the metal? 10 × 15 in. MAKBOX2.PCX MAKBOX2.PCX 107. A box is formed by cutting an 4 cm square from each corner of a square piece of cardboard, and then folding the sides. If the volume of the resulting box is 64 cm3 , what is the original size of the cardboard? 12 × 12 cm 108. A box is formed by cutting an 3 inch square from each corner of a square piece of cardboard, and then folding the sides. If the volume of the resulting box is 48 in3 , what is the original size of the cardboard? 10 × 10 in. ALG catalog ver. 2.6 – page 214 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. JF 109. A rectangular piece of sheet metal is twice as long as it is wide. Squares measuring 5 inches on a side are cut from each corner of the metal, and the sides are folded to form a box. If the volume of the box is 2040 in3 , what are the original dimensions of the sheet metal? 22 × 44 in. 111. A rectangular piece of cardboard is 6 cm longer than it is wide. When an 2 cm square is cut out of each corner, and the sides folded up, the resulting box has a volume of 135 cm3 . What are the original dimensions of the cardboard? 13 × 19 cm 110. A rectangular piece of sheet metal is three times as long as it is wide. Squares measuring 2 cm on a side are cut from each corner, and the sides are folded to form a metal pan. If the volume of the pan is 312 cm3 , what are the original dimensions of the sheet metal? 10 × 30 cm 112. A rectangular piece of cardboard is 2 inches longer than it is wide. When a 5 inch square is cut out of each corner, and the sides folded up, the resulting box has a volume of 70 in3 . What are the original dimensions of the cardboard? 15 × 17 in. Complementary & supplementary angles 113. Find two complementary angles which meet this condition: the first angle measure is 18 ◦ more than the square of the second angle measure. 82 ◦, 8 ◦ 114. Find two complementary angles which meet this condition: the first angle measure is 20 ◦ less than the square of the second angle measure. 80 ◦, 10 ◦ 115. Find two supplementary angles such that the square of the first angle measure is 80 ◦ more than twice the second angle measure. 20 ◦, 160 ◦ 116. Find two supplementary angles such that the square of the first angle measure is 5 ◦ more than four times the second angle measure. 25 ◦, 155 ◦ 117. The two angles are complementary. If a = x2 + 6x and b = 10x + 10, solve for x and find the measure of each angle. 4; 40, 50 ◦ 118. If a = x2 and b = 10x + 15, solve for x and find the measure of each angle. 5; 25, 65 ◦ COMPL02.PCX 119. The two angles are supplementary. If c = x2 + 12x and d = 7x + 30, solve for x and find the measure of each angle. 6; 108, 72 ◦ COMPL02.PCX 120. If c = x2 + 6x and d = x + 10, solve for x and find the measure of each angle. 10; 160, 20 ◦ SUPPL02.PCX ALG catalog ver. 2.6 – page 215 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. SUPPL02.PCX KA Topic: Proportions. Directions: 15—Solve. 1. a 1 = 18 2 5. w 32 = 40 25 9. 15 3 = 10 k 13. 45 12 = r 120 17. 33—Solve each proportion. 2. b 1 = 4 32 3. y 3 = 8 88 33 4. x 3 = 65 5 39 6. x 27 = 36 20 7. c 21 = 8 24 7 8. a 48 = 16 7 21 10. 4 16 = n 12 11. 12 4 = 18 r 6 12. 5 15 = p 12 4 32 14. 48 12 = x 112 28 15. 105 15 = 140 a 20 16. 65 15 = 104 c 24 28 y = 4 36 252 18. a 36 = 9 45 180 19. h 33 = 121 11 363 20. b 52 = 169 13 676 21. 42 25 = c 75 126 22. 25 63 = 50 y 126 23. 4 52 = 36 d 24. 56 7 = m 42 25. w 2 = 6 15 4 5 26. 20 5 = 3 h 27. 8 p = 40 2 2 5 28. 4 32 = r 5 29. 9 6 = 4 x 30. r 3 = 6 8 31. 5 3 = n 8 40 3 32. 7 h = 3 5 33. 15 p = 28 7 34. 5 35 = c 17 35. a 5 = 26 12 65 6 36. 27 15 = y 7 63 5 37. y 0.2 = 30 3 38. 6 12 = 0.5 x 39. 56 7 = n 0.5 4 40. 0.3 a = 2 20 3 41. 3 36 = 0.25 c 3 42. r 0.25 = 32 2 4 43. 0.75 x = 9 48 4 44. 56 7 = y 0.75 45. 18 6 = x 0.8 2.4 46. 0.6 y = 4 18 2.7 47. r 0.7 = 12 4 2.1 48. 4 16 = 0.8 w 3.2 49. a 58 = 6 0.9 8.7 50. 0.8 4 = n 62 12.4 51. 4 0.7 = 64 y 11.2 52. x 63 = 0.7 3 14.7 53. k 3/4 = 5 20 3 54. 3 16 = 3/4 y 4 55. x 1/4 = 12 3 1 56. 15 5 = m 2/3 2 57. 24 6 = x 5/8 5 2 58. a 7/8 = 24 6 7 2 59. 5 28 = 3/7 r 12 5 60. 5/7 y = 4 35 25 4 61. p 2/3 = 6 1/2 62. 2/3 1/3 = x 9 63. w 2/5 = 1/4 15 24 64. k 16 = 3/8 2/3 65. 12 a = 9/4 5/8 66. c 3/8 = 16 5/9 67. 1/3 3/4 = x 21 68. 2/3 12 = 3/4 y 69. 3 3x = 4 16 4 70. 4b 2 = 18 3 3 71. 2 3 = 24 4y 72. 2 2 = 3a 15 73. 8 16 = 7 2c 7 74. 24 8 = 3y 5 5 75. 3 3a = 8 16 76. 2d 3 = 28 7 77. 21 7 = 16n 4 78. 2 3 = 16 40x 79. 25w 5 = 12 6 80. 18 9y = 7 2 9 20 2 8 3 15 4 2 8 2 3 3 4 8 15 3 3 4 9 4 17 7 1 18 54 5 3 5 ALG catalog ver. 2.6 – page 216 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 468 28 3 9 2 2 5 336 5 8 35 3 6 9 27 2 5 6 4 7 KB Topic: Writing and simplifying ratios. Directions: 46—Write each ratio in simplest form. 1. 30 to 42 5:7 2. 51 to 18 5. 7 to 84 1 : 12 6. 90 to 6 9. 132 to 48 11 : 4 13. 50 to 5000 17. 1 2 to 5 3 4 to 5 8 33. 0.05 to 0.3 1 : 10 1:6 37. 20 cents to 1 dollar 2 : 15 4. 120 to 45 7. 11 to 99 1:9 8. 64 to 4 11. 90 to 162 14. 2 to 3000 1 : 1500 15. 150,000 to 75 26. 6:5 10 to 75 3 : 10 1 5 6 7 to 3 14 19. 7 to 3 12 15 : 1 22. 12 to 2 41 3:4 29. 3.2 to 32 15 : 1 3. 10. 75 to 250 18. 3 to 1 : 10 21. 7 12 to 10 25. 1 : 100 17 : 6 16 : 3 4:1 23. 4 5 27. 3 10 to 12. 168 to 72 5:9 2000 : 1 16. 300 to 90,000 20. 16 to 2 32 2:1 4:3 9 20 7:3 2:3 24. 2 3 28. 1 18 to 10 3 to 1 : 300 6:1 1:5 1 14 7:9 100 : 1 31. 1.5 to 450 1 : 300 32. 64 to 0.08 800 : 1 34. 2.4 to 0.6 4:1 35. 0.7 to 1.54 5 : 11 36. 8.4 to 10.5 4:5 38. 15 cents to 5 dollars 39. 1.25 dollars to 45 cents 3 : 100 40. 95 cents to 1 dollar 25 : 9 42. 50 cents to 3.5 dollars 1 : 1000 19 : 20 43. 200 cents to 1 dollar 1:7 45. 18 hours to 2 days 3 5 16 : 1 30. 75 to 0.75 1:5 41. 1 cents to 10 dollars to 8:3 44. 8 dollars to 30 cents 2:1 80 : 3 46. 3 minutes to 112 seconds 45 : 28 47. 100 minutes to 24 hours 5 : 72 48. 1 hour to 1 week 49. 4 21 minutes to 312 seconds 45 : 52 50. 6 12 days to 44 hours 51. 24 seconds to 1 hour 52. 2.75 hours to 132 minutes 5 : 4 53. 100 m to 60 km 54. 2.5 kg to 750 g 3:8 57. 750 cm to 5 m 1 : 600 3:2 61. 0.3 km to 1500 cm 39 : 11 1 : 150 10 : 3 58. 32 cm to 0.32 m 1:1 62. 5 km to 4500 mm 20 : 1 55. 48 g to 1.8 kg 15 : 7 73. 2 m2 to 80 cm2 20 : 3 1 : 250 to 25 : 4 5 mm2 200000 : 1 77. 1 cm3 to 1 m3 78. 1 cm3 to 1000 mm3 1 : 1000000 1 : 10 1:1 86. 1 foot to 80 inches 3 : 20 89. 2 miles to 10000 feet 132 : 125 90. 0.5 miles to 1320 feet 2:1 93. 21000 inches to 2 miles 25 : 144 97. 16 oz. to 5 lbs. 82. 10 feet to 24 yards 5 : 36 85. 14 feet to 168 inches 94. 16 yards to 100 inches 144 : 25 1:5 98. 3.5 lbs. to 2.4 oz. 70 : 3 60. 5 m to 150 cm 10 : 3 64. 10 mm to 10 km 1 : 1000000 67. 60 m to 270 mm 68. 6600 mm to 2.4 m 11 : 4 71. 2.4 L to 240 mL 75. 1000 m2 to 10 : 1 1 km2 72. 0.5 L to 900 mL 76. 1 cm2 to 1 mm2 5:9 100 : 1 1 : 1000 79. 2 cm3 to 50 mm3 40 : 1 1:1 81. 3 feet to 10 yards 1000 : 1 2000 : 9 70. 5 L to 800 mL 74. 56. 25 km to 25 m 1:1 66. 3.6 mm to 4.5 cm 1 m2 50 : 1 63. 0.7 km to 70000 cm 2 : 25 69. 1 L to 150 mL 2 : 75 59. 18 m to 36 cm 10000 : 9 65. 3 cm to 14 mm 1 : 168 80. 5000 cm3 to 3 m3 1 : 600 83. 18 yards to 8 feet 27 : 4 87. 6 inches to 60 feet 1 : 120 91. 1 mile to 26400 feet 1:5 84. 6 yards to 18 feet 1:1 88. 5 feet to 36 inches 5:3 92. 1 mile to 1 foot 1 : 5280 95. 250 yards to 250 inches 36 : 1 96. 24 inches to 24 miles 99. 1500 lbs. to 2 tons 100. 8 tons to 640 lbs. 3:8 ALG catalog ver. 2.6 – page 217 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 : 63360 25 : 1 KB 101. 6 fluid oz. to 1 cup 3:4 105. 60 cups to 1 gallon 15 : 4 109. 1 square foot to 1 square inch 144 : 1 102. 3 quarts to 6 gallons 1:8 106. 16 fluid oz. to 1 quart 1:2 110. 40 square inches to 2 square feet 5 : 36 103. 4 fluid oz. to 5 pints 1 : 20 107. 4.5 cups to 13.5 fluid oz. 104. 1 gallon to 68 fluid oz. 32 : 17 108. 1.5 quarts to 3 cups 8:3 111. 100 square feet to 1 square mile 2:1 112. 5 square yards to 25 square feet 9 : 5 1 : 278784 113. 8 cubic inches to 1 cubic foot 1 : 216 114. 12 cubic feet to 1 cubic yard 4 : 9 115. 1 cubic yard to 27 cubic feet 1 : 1 ALG catalog ver. 2.6 – page 218 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 116. 1 cubic foot to 80 cubic inches 108 : 5 KC Topic: Ratios derived from equations. Directions: 72—Find the ratio of x to y. 1. 9x = 3y 5. 48x = 80y 9. x y = 63 14 1/3 5/3 2/9 13. 36y − 45x = 0 17. 72y = 36x 7y = 28x 6. 105y = 56x 10. y x = 8 20 1/4 15/8 5/2 14. 0 = 56y − 48x 4/5 18. 21x = 105y 2/1 21. 9x − 4y = y 2. 24x = 18y 3/4 4. 42y = 77x 6/11 7. 17x = 85y 5/1 8. 96y = 12x 8/1 11. x y = 121 55 5/11 12. y x = 85 10 15. 0 = 65x − 26y 7/6 19. 5x − 5y = 0 5/1 22. 2x = 26x − 3y 5/9 3. 16. 12x − 30y = 0 2/5 20. 0 = x − y 1/1 23. 3x − 7y = x + y 1/8 2/17 4/1 5/2 1/1 24. 9y − 8x = 12x − 3y 3/5 25. 4(x + y) = 6y 26. 3x = −9(x − y) 1/2 3/4 27. 8x − 5y = 5(x + y) 28. 7(y − x) = 21x − y 10/3 29. −3(x − y) = −7(x − y) 30. 2(x − y) = 6(y − x) 1/1 31. 5(x + 3y) = 17(x − y) 1/1 33. 3x 2y = 5 7 37. 5y 25x = 4 16 41. 3x 2y = 2 3 45. 3x + 2y 2 = 5y 3 2/7 32. 2(y − 5x) = −2(x + 7y) 8/3 2/1 10/21 34. 7 5 y= x 3 4 28/15 35. 2 8 x= y 9 3 12/1 36. 11 5 y= x 20 2 4/5 38. 4y 2x = 9 3 2/3 39. 2y 2x = 7 7 1/1 40. 10 30 x= y 13 39 1/1 42. 4x 5y = 5 4 25/16 43. 5 10 = 7y 21x 44. 1 1 = 18x 45y 5/2 46. 7 x − 2y = 12 2y 47. 7y + 15 5x + 10 = 3 2 48. x+8 5y + 4 = 6 3 52. 3x − y = −9 3y − x 56. 12y 9x = 5 − 4y 2 − 3x 4/9 4/9 19/6 2/3 11/50 10/1 14/15 49. y =2 10x − 7y 53. 1 4 = 5x − 2y x + 6y 50. −1 = 3/4 54. 16x 4x − 5y 51. 8 = 1/4 2 7 = 6y + x 9x − y 4/1 55. 14x + 3y x + 3y 7/2 3x 9y = 2x + 1 6y + 1 3/1 13/3 8/15 14/19 57. 49x2 = y 2 58. 225y 2 = x2 1/7 61. 36x2 − 121y 2 = 0 11/6 59. 16y 2 = 25x2 15/1 62. 0 = 81y 2 − 64x2 9/8 60. 4x2 = 9y 2 4/5 63. 0 = 16x2 − 169y 2 13/4 3/2 64. 144y 2 − 225x2 = 0 4/5 65. y 4x = 9y 4x 3/4 66. y 18x = 2x y 1/6 67. x + 3y 12x + y = 2y 8x 68. 4y 9x = x + 4y 9x + y 1/2 69. 2y 2 = x2 √ 2/1 70. 3x2 = y 2 √ 3/3 71. 25x2 = 5y 2 ALG catalog ver. 2.6 – page 219 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ 5/5 72. 12y 2 = 4x2 √ 3/1 2/3 KD Topic: Word problems involving ratios. Directions: 0—(No explicit directions.) 1. The directions for a liquid detergent read: “Use 5 mL of detergent for every 2 liters of water.” What is the ratio of detergent to water in simplest form? 1 : 200 2. When the bakery makes cookie dough, it adds 4 grams of salt to every 15 kg of flour. What is the ratio of salt to flour in simplest form? 1 : 3750 3. When a company mixes concrete, it uses one ton of gravel for each 300 pounds of cement. What is the ratio of gravel to cement in simplest form? 20 : 3 4. To get ready for a triathlon, Martina swims 500 yards for every 4 miles of running. What is the ratio of her swimming to running distance in simplest form? 25 : 88 5. In a certain fuel mixture, the ratio of gas to oil is 15 : 2. What fraction of the total is oil? 2 6. In a drink mix, the ratio of fruit juice to soda is 3 : 8. What fraction of the total is fruit juice? 3 17 11 7. In a rectangle, the ratio of length to width is 4 : 1. What is the ratio of length to perimeter? 4 : 5 8. 9. An epoxe glue contains resin and hardener. If resin is 38 of the total mixture, what is the ratio of resin to hardener? 3 : 5 10. A pesticide is a mixture of water and chemicals. 9 of the total mixture is water, what is the ratio If 10 of water to chemicals? 9 : 1 In a rectangle, the ratio of length to width is 7 : 6. What is the ratio of width to perimeter? 6 : 13 3 adhesive. 11. A paint is made up of 15 pigment and 10 The rest is a drying agent (mostly paint thinner). What is the ratio of pigment to adhesive to drying agent? 2 : 3 : 5 12. A certain drink is made up of 14 lemon juice and 1 12 sweetener (mainly corn syrup). The rest is water. What is the ratio of lemon juice to sweetener to water? 3 : 1 : 8 13. In a recent poll, the ratio of opposition to support for the tax was 5 : 4. If 558 people were polled, how many expressed opposition? 310 14. 1056 people were surveyed about the new law. The ratio of supporters to opponents was 7 : 4. How many people expressed support? 672 15. The ratio of apricot to plum trees in an orchard is 9 : 5. If there are 392 trees altogether, how many of each kind are there? 252, 140 16. The ratio of women to men enrolled at a private college is 7 : 9. If the total enrollment is 1504, find the number of women and men. 658, 846 17. The sides of a triangle are in a ratio of 3 : 6 : 4. The perimeter of the triangle is 65 cm. What is the length of each side? 15, 30, 20 cm 18. The sides of a triangle are in a ratio of 2 : 5 : 8. The perimeter of the triangle is 105 mm. What is the length of each side? 14, 35, 56 mm 19. The length and width of a rectangle are in a 5 : 3 ratio. Find the length if the perimeter is 48. 15 20. The length and width of a rectangle are in a 7 : 2 ratio. Find the width if the perimeter is 72. 8 21. The angles in a triangle are in a ratio of 2 : 3 : 5. Find the measure of each angle. 36, 54, 90 22. The angles in a triangle are in a ratio of 5 : 7 : 8. Find the measure of each angle. 45, 63, 72 23. The angles in a triangle are in a ratio of 1 : 1 : 4. What is the measure of each angle? 30, 30, 120 24. The angles in a triangle are in a ratio of 3 : 4 : 5. What is the measure of each angle? 45, 60, 75 25. The angles in a quadrilateral are in a ratio of 4 : 4 : 5 : 7. What is the measure of each angle? 26. The angles in a quadrilateral are in a ratio of 3 : 4 : 5 : 6. What is the measure of each angle? 52, 52, 65, 91 27. The angles in a quadrilateral are in a ratio of 6 : 7 : 8 : 9. Find the measure of each angle. 72, 84, 96, 108 60, 80, 100, 120 28. The angles in a quadrilateral are in a ratio of 2 : 2 : 3 : 3. Find the measure of each angle. 72, 72, 108, 108 ALG catalog ver. 2.6 – page 220 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. KE Topic: Word problems involving proportions. Directions: 0—(No explicit directions.) 40—Write an equation and solve. 1. A woman drives 200 km in 5 hours. At the same rate, how far would she travel in 8 hours? 320 km 2. A race car goes 385 miles in 2 hours. At that rate, how far will it go in 6 hours? 570 mi 3. A car used 7 gallons of gasoline to go a distance of 210 miles. At that rate, how much gasoline would the car use to go 495 miles? 16.5 gal 4. A truck went 180 km on 32 liters of diesel fuel. At that rate, how far could the truck go on a full tank of 164 liters? 922.5 km 5. A drink is made up of 10 parts sparkling water to 3 parts lemon juice. How much juice should be mixed with 80 mL of water? 24 mL 6. A salad dressing is made up of 2 parts vinegar to 3 parts oil. How much vinegar should be used with 50 mL of oil? 33 1 mL A cake recipe calls for a 3 : 1 mixture of flour to sugar. If 8 cups of flour are used, how much sugar should be added? 2 2 cup 8. A hospital must be staffed with 5 nurses per 17 patients. How many nurses are required for 255 patients? 75 10. A school is staffed with at least 3 teachers per 65 students. How many teachers are at the school if there are 1430 students? 66 11. In a county election, the incumbent received 5 votes for every 3 received by the challenger. If the incumbent received 6210 votes, how many did the challenger get? 3726 12. In a class election, Silvia received 7 votes for every 6 received by her opponent. If Silvia received 161 votes, how many did her opponent get? 138 13. At a rate of $2.75 per square yard, how much will 9 square yards of carpet cost? $24.75 14. At rate of $3.50 per square foot, how much will 5 square feet of wood panelling cost? $17.50 15. Jen buys 24 candy bars for $6.40. At the same price per candy bar, how much would she have to pay for 15 of them? $4 16. Gustavo buys 32 liters of gas for $10.00. At the same rate, how much would he spend on 40 liters of gas? 17. Nine books cost $12. At the same price per book, how much would five of them cost? $6.67 (rounded) 18. Nine postcards cost $1. At the same price per card, how much would 20 of them cost? $2.22 (rounded) 19. At a small college, there are at least 2 professors for every 25 students. If 518 students attend the college, what is the least number of professors there? 20. A public swimming pool is required to have at least one lifeguard for every 50 visitors in the pool area. How many lifeguards are required if there are 275 visitors? 6 (rounded) 7. 3 9. 42 (rounded) 3 An old motorcycle engine requires a 20 : 1 mixture of gas to oil. How much oil should be used with 2 liters of gas? 0.1 liter $12.50 21. In a marketing survey, 108 people, or 4 out of 5, preferred Chewy-O’s. How many people were included in the survey? 135 22. On a vocabulary quiz, Luis answered only 27, or 3 out of 5, questions correctly. How many questions were on the quiz? 45 23. On a test with 40 questions, you answer 34 of them correctly. If a perfect score is 100 points, and the questions are of equal value, how many points will you receive? 85 24. It is estimated that 2 out of 25 people in a city use public transportation on weekends. How many people does that represent, if the population of the city is 124 thousand? 9920 25. 130 meters of copper wire weighs 18 kilograms. What would 546 meters of the same kind of wire weigh? 75.6 kg 26. If 30 feet of a fencing material weighs 21 pounds, what does 75 feet of the same material weigh? 27. If it takes 8 meters of fabric to make 5 pairs of curtains, how many meters are required to make 22 pairs? 35.2 28. 42 yards of material are used to upholster 8 sets of living room furniture. How many yards are needed for 14 sets? 73.5 52.5 lbs ALG catalog ver. 2.6 – page 221 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. KE 29. Thomas is saving for a motorcycle. After 14 weeks, he has already saved $560. At that rate, how long will it take him to save an additional $740? 30. Ms. Marovich is a computer consultant. She earned $171 for 6 hours of work. At that rate of pay, how much does she earn in a 40 hour work week? $1140 18 12 weeks 31. A basketball player scored 192 points in 16 games. At that rate, how many points will she score in the remaining 6 games of the season? 72 32. A baseball player got 12 hits in his first 38 times at bat. To keep the same batting average, how many hits should he have after 133 “at bats”? 42 33. The scale on an architectural drawing is 1 inch to 30 feet. What does 4.5 inches on the drawing represent in “real-life”? 135 ft 34. A map has a scale of 160 km to 1 cm. What is the actual distance between two cities that are 6.2 cm apart on the map? 992 km 35. If 2 34 inches on a map represents 110 miles, what distance does 1 21 inches on the map represent? 60 mi 36. On a road map, 3 cm represents 20 km. If two towns are really 130 km apart, how far apart are they on the map? 19.5 cm 37. A cake recipe calls for 21 teaspoon of baking powder for 34 cup of flour. If the recipe is changed to include 6 cups of flour, how much baking powder is needed? 38. A pancake recipe requires 21 cup of wheat flour for every 1 13 cup of white flour. How much wheat flour should be mixed with 5 cups of white flour? 2 cups 4 39. A recipe for 2 kilograms of chocolate chip cookies calls for 38 kg butter. How much butter would needed to make a 6 kilogram batch of cookies? 1 1 kg 8 40. A punch recipe calls for 1 34 liters of orange juice for every 4 liters of ginger ale. If 2 31 liters of orange juice are used, how much ginger ale should be added? 5 13 liter 41. A wallet-size photo is 2 × 3 inches. If the shorter side is enlarged to 5 inches, what will be the length of the other side? 7 1 in. 42. A photograph that is 6.5 cm wide and 8 cm tall must be enlarged so that is is 20 cm tall. How wide will it be? 16.25 cm 43. A 2 12 ft by 3 21 ft poster is going to be reduced so that the longer side is only 14 inches. What will be the length of the shorter side? 10 in. 44. The image on a movie screen is 12 meters wide and 9 meters high. If the height of the image on film is only 1.2 cm, what is its width on film? 1.6 cm 45. A “cubit” is an ancient Greek measure for distance. If 1 cubit is about 53 cm, how many centimeters are in 8.5 cubits? ≈ 450.5 46. A “siliqua” is an ancient Roman measure for weight. If 1 gram is about 5.26 siliqua, how many grams are in 1 siliqua? ≈ 0.19 47. Pharmacists used to measure weight by “grains” One grain is about the same as 67 mg. What is the equivalence, in grains, to 3.5 mg? ≈ 0.054 48. As a measure of energy consumption, one horsepower is about the same as 0.75 kilowatts. What is the equivalence, in kilowatts, to an 85 horsepower rating? 2 ≈ 63.75 ALG catalog ver. 2.6 – page 222 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. LA Topic: Reciprocals. Directions: 45—Write the reciprocal. 1 5 1. 5 5. − 9. −0.2 1 4 −4 −5 5 8 13. 1.6 2. −3 6. 1 2 2 10. 0.04 25 14. −2.3 − 17. x 1 x 18. −y 21. a b b a 22. − 25. 1 1 + 2 4 29. 2 33. 1 2 4 3 2 5 37. − 1 n4 41. n−8 26. xy y−x −n4 n8 − 1 1 − 3 6 2 3 − 34. 1 1 + a c 38. 1 x2 10 23 1 7. − 1 3 7 − 1 y 23. −cd 6 27. 3 11 31. 5 + ac a+c 35. −x5 100 17 − 1 1 + 6 2 43. y −3 ALG catalog ver. 2.6 – page 223 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 cd −1 8. 9 5 1 4 12. −0.25 −4 16. −0.06 50 3 28. 4 21 − −r7 y3 1 x −x 1 wz 1 1 − 4 3 32. 4 − 20 3 −1 5 9 24. wz 3 2 3 3 − 5 4 1 r7 4. 20. − y k m 39. − 7 3 2 15. 0.17 19. x2 42. −x−5 3. 11. 0.5 1 y − m k 30. −3 1 1 − x y 1 3 − 1 2 36. 2 2 + 3 7 40. 1 u6 −12 2 7 21 20 u6 44. −a−2 −a2 LB Topic: Least common multiples. Directions: 70—Find the least common multiple. 1. 6, 8 5. 4, 5, 6 9. 27, 36, 30 24 60 13. 7x2 , 12 540 84x2 17. 10k 2 n3 , 45k 4 n 2. 4, 18 6. 3, 4, 5 60 3. 9, 27 7. 12, 16, 24 4. 16, 64 64 48 8. 5, 6, 8 120 27 10. 35, 21, 15 105 11. 18, 32, 24 144 12. 36, 40, 22 3690 14. 14a, 42a3 42a3 15. 3n2 , 18n5 18n5 16. 22r4 , 10r 110r4 18. 4x8 y 2 , 4y 3 90k 4 n3 21. 12cx, 18c8 x3 , 6c7 4x8 y 3 22. 33h2 k 5 , 15h4 , 11k 2 36c8 x3 19. 30s, 12s3 t4 60s3 t4 23. 6a, 8a3 y 3 , 24a6 y 26. w, w2 + 3w 12x − 18 30. a − b, b 2w(w − 7) 33. y 2 + 6y, y 2 37. 6c, 12c2 + 9c w2 + 3w 4(x + 4) 38. 50b3 − 10b, 5b 6c(4c + 3) 41. xy 3 , xy 2 − x2 y 2 27. 5, 10a − 25b 31. 4p + 1, p b(a − b) 34. 4, 2x + 8 y 2 (y + 6) 10b(5b2 35. n3 , n3 − n2 60r2 s4 39. 4m3 − 16m2 , 10m 2c2 d(2c − d) 45. 5a − 10b, a − b 46. y + 6, y 2 + 6y y(y + 6) 50. 3m2 n − mn, 21m − 7 10mr(m − 2r) 47. 8x − 20, 12x − 30 48. 3p + 12, 6p + 24 53. y 2 + 6y + 9, y + 3 54. 2 − x, 10 − 3x − x2 + 3)2 (2r − 3)(2r + 3) 59. x − 6, x2 − 10x + 24, x − 4 61. c2 − 4cd, c2 − 16d2 c(c − 4d)(c + 4d) 63. u3 − 4u2 + 4u, 6u − 12 65. n2 − 1, n2 − n − 2 10a(a + 3b) 55. a + 6, a2 − 36 56. 4 − 9k 2 , 2 − 3k (n − 1)(n + 1)(n − 2) 69. k − 6, k 2 − 36, k + 6 71. a2 − 4, 5a + 10, a − 2 (z + 1)(z − 3)(z + 2) 5(a − 2)(a + 2) 4c(c + 1)(c − 1) 77. r2 − 7r + 12, r2 − r − 6 − 16 3n(n + 2)(n + 4) (r − 3)(r − 4)(r + 2) (a + 4)(a − 4)(a − 1) 81. 3x3 + 9x2 + 6x, x3 − 4x, 3x2 83. 8d, 2d3 − 6d2 − 36d, 3d2 + 9d (2 − 3k)(2 + 3k) 58. 16a2 − b2 , 4a + b, 4a − b (4a − b)(4a + b) 60. x2 + x − 30, x + 6, x − 5 (x + 6)(x − 5) 62. 10a + 2b, 50a2 − 2b2 2(5a − b)(5a + b) 66. r2 + 8r + 15, r2 − 9 3(x − 3y)(x + 5y) (r + 3)(r + 5)(r − 3) 68. m2 + m − 2, m2 + 7m + 10 70. y 2 + 3y − 10, y − 2, y + 5 (k − 6)(k + 6) 75. 3n + 6, n2 + 4n, n2 + 6n + 8 (a − 6)(a + 6) 64. x2 + 2xy − 15y 2 , 3x − 9y 6u(u − 2)2 67. z 2 − 2z − 3, z 2 − z − 6 73. 4c + 4, c2 − c, c2 − 1 (x − 6)(x − 4) 52. 5a + 15b, 2a2 + 6ab 3y 2 (y + 1) (5 + x)(2 − x) 57. 2r − 3, 4r2 − 9, 2r + 3 6(p + 4) 51. 3y 4 + 3y 2 , y 2 + y 7mn(3m − 1) 8x(x + 5) − 5a + 4, a2 44. 10m − 20r, 5mr 12(2x − 5) 49. 8x + 40, x2 + 5x 3x2 (x + 1)(x + 2)(x − 2) 24d(d + 3)(d − 6) 10(3a − 2) 2x2 (x2 − 5) 3abc(b − 5) 5(a − 2b) 8(5x + 7) 40. 2x2 , x4 − 5x2 20m2 (m − 4) − 1) y4 − y2 36. 6a − 4, 10 n3 (n − 1) xy 3 (1 − x) 79. 24. 10rs2 , 4s4 , 6rs4 32. 8, 5x + 7 p(4p + 1) 43. 2c2 d, 4cd − 2d2 a2 42u2 w7 28. y 4 − y 2 , y 2 10a − 25b 42. abc − 5ac, 3ab (y 24a6 y 3 20. 14uw3 , 21u2 w7 165h4 k 5 25. 12x − 18, 6 29. 2w, w − 7 36 (m + 2)(m + 5)(m − 1) (y + 5)(y − 2) 72. r2 − 10r + 25, r − 5, r2 − 5r 74. p + 1, p3 + 2p2 + p, p2 + p 76. y − 3, 6y 2 − 54, 2y + 6 78. x2 − 9, x2 − x − 6 80. c2 + 3c − 4, c2 r(r − 5)2 p(p + 1)2 6(y + 3)(y − 3) (x + 3)(x − 3)(x + 2) − 4c + 3 (c − 1)(c + 3)(c − 3) 82. 5a5 − 20a4 , 2a2 − 10a + 8, 6a 30a4 (a − 1)(a − 4) 84. 3m3 , m4 − 9m2 , 4m2 + 20m + 24 12m3 (m + 2)(m − 3)(m + 3) 85. u2 + 4u − 12, 3u2 − 12, 3u + 18 3(u + 6)(u + 2)(u − 2) 86. z 2 + 8z + 16, z 2 + 4z, z 2 + 7z + 12 87. x2 − 4, 4x2 − 12x, x3 − x2 − 6x 4x(x + 2)(x − 2)(x − 3) 88. y 4 − 16y 2 , y 2 − 2y, y 2 − 6y + 8 ALG catalog ver. 2.6 – page 224 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. z(z + 3)(z + 4)2 y 2 (y + 4)(y − 4)(y − 2) LC Topic: Greatest common factors. Directions: 71—Find the greatest common factor. 1. 21, 15 3 2. 28, 42 14 3. 45, 36 5. 72, 84 12 6. 52, 78 26 7. 175, 136 9. 1776, 1976 13. 33 , 35 10. 504, 660 8 14. 56 , 53 33 18. m, m6 21. 4a2 , 8a 4a 22. 6x3 , 20x5 25. 35xy 2 , 14x2 y 34. 3k 5 , 9k 4 , 6k 2 6 37. 35x2 yz, 84xy 2 z, 49x2 z 39. 5a2 b3 , 15a3 c, 36b2 c3 41. 10y, 6y 2 + 4y 15u 46. x3 y 2 , x3 y + x2 y 2 1 49. 2x2 + x, 12x + 6 x2 y 50. r2 p − rp, 2rp − 2p 53. n2 − 16, 5n − 20 7 n 24. 3r3 , 12r2 31. 44r2 ps2 , 132r2 s 3r2 32. 28xy 2 z, 98x2 z 44r2 s 6m 14xz 36. 45u2 , 10uw, 24w2 4z 47. 3pr, p2 r2 − 3pr w2 28. 18mn4 , 24m2 cd2 1 9k 2 m 2d2 44. ab2 + ab, a2 b n2 ab 48. 8cd2 , 20cd + 12c pr 4c 52. 3y 2 − 6y, 18y − 36 51. 20a + 40b, 15a + 25b 3(y − 2) 5 54. x2 + 3x, x3 − 9x n−4 21 23. 6n, 7n2 p(r − 1) 2x + 1 1 20. w2 z 4 , u2 w4 43. n3 − 7n2 , 7n2 3 81, 110 ab 40. 20cd2 e2 , 8cd3 , 42d2 e3 42. 24w − 3x, 9wx 8. 6 19. a2 b, ab3 38. 9k 3 m5 , 18k 2 m, 27k 4 m2 1 18, 24 16. 74 , 7 82 35. 4z 3 , 16z, 8z 5 3k 2 4. 12. 1344, 357 54 27. 27cd3 , 8c2 d2 11ab 7xz 2y 45. 6s2 , 15st2 − 5t2 2x3 30. 105uv 2 , 75u2 w2 15abc3 33. 12st2 , 18t, 30s m 26. 11abc, 55a2 b 7xy 29. 45a2 bc3 , 60abc4 15. 85 , 82 53 y5 1 11. 378, 5400 12 17. y 10 , y 5 9 55. a2 + ab, a2 − b2 56. u2 − 16u, u3 − u2 a+b x(x + 3) 57. y 2 − 2y + 1, 3y − 3 58. x + 3, x2 + 3x + 2 1 59. m2 − 2m, m2 + m − 6 y−1 m−2 61. a2 − 5a + 6, a2 + 4a − 12 63. x2 + 4x − 12, x2 (d − 1)(d − 2) 70. p2 − 7p − 60, p2 − 14p + 24 c−8 + 7y 2 74. 3z 2 − 8z − 3, 3z 2 + 7z + 2 85. a2 − ab + 3a − 3b, a2 − 2ab + b2 89. x3 + 2x2 − x − 2, x4 − 1 91. u2 − 16, u4 + 5u2 + 4 4(w + 2) y(y − 1) y−2 3(p + 3) a−b x−1 (x − 1)(x + 1) u2 + 4 p − 12 1 3z + 1 76. 2x2 + 5x − 3, 4x2 − 12x + 5 1 − 8y − 3xy − 3h − 40 r+5 83. 6p3 + 18p2 , 3p2 + 6p − 9, 3p2 − 27 87. xy − y − 15h + 50, h2 72. 81. y 2 − 4, y 2 + 6y − 16, y 2 − 3y + 2 − 3x + 3, 3x3 y h2 a+8 77. 4w2 + 16w + 16, 4w3 + 12w2 + 8w 79. y−5 68. 6d2 − 18d + 12, d3 − 3d2 + 2d + 17a + 72 + 3y 2 , y 3 − 2y − 15 u2 + 2 75. 4n2 − 7n − 2, 2n2 − 13n + 6 − 6y 3 c+3 2(y − 5) 73. 2r2 + 9r − 5, 3r2 + 16r + 5 3y 4 − 25, y 2 66. 2y 2 − 8y − 10, 4y 2 − 12y − 20 69. c2 − 14c + 48, c2 − 18c + 80 71. 64. x+6 y2 x(x + 1) 67. u4 + 6u2 + 8, 5u5 − 20u − 3a − 88, a2 a+b 62. c2 + 6c + 9, c2 − 9 a−2 + 7x + 6 65. x4 − x2 , x3 + 4x2 + 3x a2 60. a2 + 2ab + b2 , a + b 2x − 1 78. 5x2 − 30x + 45, 5x2 − 35x − 30 80. 5z 2 + 30z + 40, 9z 3 + 54z 2 5 + 72z (z + 4)(z + 2) 82. w2 − w − 12, w2 + w − 6, 5w2 − 5 84. a3 − 2a2 + a, 4a2 − 4a, a3 − a2 − 2a 86. c2 − 9d2 , c2 − 3cd + c − 3d 88. 2k 2 m + 3km + m, 2k 2 90. y 4 − y 2 − 12, y 3 − 4y a c − 3d + k + 2km + m (y − 2)(y + 2) 92. r2 + 2r + 1, r4 − 2r2 + 1 ALG catalog ver. 2.6 – page 225 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 (r + 1)2 2k + 1 u LD Topic: Values for which an expression is undefined. Directions: 99—Give the restriction(s) on each variable. 102—Give the excluded value(s) for each variable. 103—For what value(s) is the expression undefined? a 6= 0, b 6= 0 3. 2x2 y3 y= 6 −15 7. 5a + 3 3b − 7 11. w2 − 9 w2 − 4w y= 6 ±3 15. 2k 2 1 − 49k 2 none 19. t2 − 4 5 23. y−3 y 3 − 4y d 6= 4, 2 27. 25 − p2 24 + 2p − p2 14 + 9z + z 2 z2 + 1 none 31. u2 + 3u 8 22a − 11 7a2 − 5a − 2 a 6= − 27 , 1 35. 3c2 − 27 2 + 21c − 11c2 1. k−6 2k k 6= 0 2. a+b ab 5. −3x x−8 x 6= 8 6. y + 21 y + 15 9. c+8 3c3 + c2 c 6= 0, − 13 10. 24a + 60 20a2 − 16a 13. 15 − 3f 36 − f 2 f 6= ±6 14. x2 − 1 y2 − 9 17. 2x − 14 3 none 18. 6c + c2 14 21. 21 − 3k 9k − 64k 3 22. 18x + 21 x2 − 100x4 26. d2 − d − 20 d2 − 6d + 8 30. 34. 25. k= 6 0, ± 38 40m + 12 + 3m − 10 m2 a 6= 0, 4 5 1 x 6= 0, ± 10 4. c2 − d 2 cd2 8. −4n 2m + 11 w 6= 0, 4 12. 3z 2 − 12 10z 2 + z 3 z= 6 0, −10 k 6= ± 17 16. −1 16n2 − 81 n 6= ± 94 20. 1 − 9y 2 2 24. 15a − 5 a5 − 25a3 28. 4t3 − 16t 15 + 8t + t2 32. s2 − 9 s2 + 9 36. 5 + 2y − 7y 2 5 + 36y + 7y 2 y= 6 0 b 6= 7 3 none y= 6 0, ±2 p 6= −4, 6 c 6= 0, d 6= 0 m 6= − 11 2 none a 6= 0, ±5 t 6= −5, −3 m 6= −5, 2 29. y 2 − 2y − 8 14 33. x2 − 3x + 2 3x2 − 8x + 5 none x 6= 53 , 1 none 1 c 6= 2, − 11 37. u3 5u4 − 5 + 12u2 + 36u 38. u 6= −6, 0 41. 45. 2c2 − 50 3c2 − 16c3 + 20c4 c 6= 3 1 10 , 2 , 0 2y 3 14 − 7y − 22y 2 + 56y a4 39. r 6= 7, 4, 0 42. 46. 2f 2 + 32f − 72 9f 3 − 12f 2 + 4f 3k 4 43. 50. a 6= ±2 k2 − 1 − 24k 3 − 99k 2 2−w 81 − w4 w2 + 20w + 64 − 20w3 + 100w2 w4 40. 47. x2 + 8 8x4 + 2x3 − x2 4z 4 44. 51. b4 1 − 4a − 5a2 4a + 20a2 + 25a3 a 6= − 52 , 0 z 2 + 5z + 4 + 56z 3 + 96z 2 48. z 6= −12, −2, 0 w= 6 ±3 4n2 − 25 12n − 4n2 − n3 n 6= −6, 2, 0 x 6= 14 , − 12 , 0 k 6= 11, −3, 0 24 − 16 y 6= −5, − 17 w 6= 10, 0 f 6= 32 , 0 y= 6 7, 4, 0 49. r2 − 12r + 32 − 11r3 + 28r2 r4 none b2 − 1 − 5b2 + 4 2h − 3 5h3 + 75h2 − 80h h= 6 1, −16, 0 b 6= ±1, ±2 52. x4 3x + 6 − 10x2 + 9 x 6= ±1, ±3 53. m − 10 m3 + 2m2 − 9m − 18 54. m 6= −2, ±3 57. a+b a−b 61. xy xy + y x2 − 4 x3 − x2 − 25x + 25 55. x= 6 1, ±5 a 6= b y 6= 0, x 6= −1 58. 2x − y x+y 62. ab + 3b ab − 4a 3y + 12 y 3 − 5y 2 + 3y − 15 56. d 6= −8 y 6= 5 x= 6 −y a 6= 0, b 6= 4 d2 − d + 2 d3 + 8d2 + d + 8 59. 5c2 d 2c + 3d c 6= − 32 d 60. 4m + 7r 7m − 4r 63. k 2 − kn k 2 − n2 k 6= n, k 6= −n 64. 2c − 18cd2 c2 − 4d2 m 6= 74 r c 6= 2d, c 6= −2d 65. w2 − 3wz + 2z 2 w2 − 2wz + z 2 w 6= z 66. m2 + 2mr + r2 mr2 + 2mr + m m 6= 0, r 6= −1 67. 3x3 − 12xy 2 xy − 4x + 2y − 8 x 6= −2, y = 6 4 ALG catalog ver. 2.6 – page 226 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 68. a2 + 2ab − 8b2 − 3a + ab − 3b a2 a 6= −b, a 6= 3 LE Topic: Simplifying rational expressions. See also categories DL and DM (dividing monomials), and EG (dividing monomials and polynomials). Directions: 6—Simplify. 9—Simplify (assume no denominator equals zero). 100—Give the restriction(s) on each variable, then simplify. 1. 6(a − 5b) 4(a − 5b) 3 2 2. −5(r + 7) −25(r + 7) 1 5 3. −4c2 (c + x) 14c(c + x) − 5. 9x 21(x + 3) 3x 7(x + 3) 6. −5a(a + 6) −30a a+6 6 7. 10y 2 (a + y) 5y 2 (b + y) 2(a + y) b+y 2c 7 4. 12p(p − 1 9p3 (p − 1) 8. a2 (m + n) −2a(m − n) − 9. w(w − 2) (w − 2)(w + 3) 13. (u + 9)(u − 5) (u − 5)(u + 3) w w+3 u+9 u+3 10. (c + 3)(c − 6) c2 (c + 3) c−6 c2 11. (y − 7)(y + 2) −5y(7 − y) 14. (r + 1)(r − 1) (r − 1)(r − 1) r+1 r−1 15. (n + 2p)2 (n + 2p)(n − 2p) y+2 5y 4 3p2 a(m + n) 2(m − n) 12. −7(a − b) (b − a)(b + a) 16. (x + 3)(x − 6) (x + 3)2 7 b+a x−6 x+3 n + 2p n − 2p 17. y y2 + y 21. 15k − 45 5 25. z2 1 y+1 z2 − 4z 3k − 9 z z−4 29. c − 2d 2d 33. 25cd 5cd2 + 15c2 d 18. 3 12x + 3 22. c3 − c −c 26. 30. same 5 d + 3c 34. 1 4x + 1 1 − c2 −4x + 3x − x2 a2 +3 a2 4 x+3 19. z 5z 3 − z 1 5z 2 − 1 20. −a ab − a 23. nr + 4n n r+4 24. 7y 2 + 14 7 y2 + 2 5a2 − 3a 5a 2a − 3 27. same 12n4 30n3 − 21n2 r w3 + w2 w 5w + 1 5w3 31. 3x + 5y 5y 2 35. 20ab2 −8ab − 12b − 39. 48x3 + 16x 48x2 3x2 + 1 3x 43. 8x + 12 4x + 20 47. 6a2 − 9a 3a2 + 12a 28. 1 1−b 2a2 32. 10p 10p + 7r 36. 9xy 27x2 y + 18xy 1 3x + 2 40. −15pr2 − 35r −5pr 3pr + 7 p 44. 7ab − 14 21ab + 28 2a − 3 a+4 48. 5y 2 z − 10yz 2 5yz − 15yz 2 2c − d d(c + 3) 52. 4r2 + 10r 24r2 + 16r 56. −4kn + 2kn2 − kn3 −2kn same 5ab 2a + 3 same 4n2 10n − 7r 37. 40w2 − 32w 4w3 38. 6x2 y − 12xy −42xy 41. 10s + 20t 10s − 30t s + 2t s − 3t 42. 6k 2 − 12 6k − 12 45. 6x2 + 2x 4x3 + 2x 3x + 1 2x2 + 1 46. 8uw2 + 6uw 2u2 w − 10uw 49. 9a3 − 27a2 18a2 − 27a 50. 15x + 30 15x + 5 3(x + 2) 3x + 1 51. 8c − 4d 4cd + 12d 53. x2 y + 2xy − 5xy 2 x2 y 54. 7ac2 − 21ac + 35c 14ac 55. 9ux2 + 12u2 x2 + 3u2 x 3ux2 10w − 8 w2 a(a − 3) 2a − 3 3n3 3n2 + 6n + 18n2 + 9n n+2 n2 + 6n + 3 k2 − 2 k−2 4w + 3 u−5 ac − 3a + 5 2a x − 5y + 2 x 57. 2−x 7 58. 4z 4 − 24z 3 + 12z 2 4z 4 + 16z 2 z 2 − 6z + 3z z2 + 4 2x + 3 x+5 3x + 4ux + u x 59. 4r + 2rs + 6rs2 6r − 4rs 2 + s + 3s2 3 − 2s ALG catalog ver. 2.6 – page 227 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ab − 2 3ab + 4 y − 2z 1 − 3z 2r + 5 4(3r − 2) 4 − 2n + n2 2 60. 2c2 d − 3cd c2 d − 4cd + 3cd2 2c − 3 c + 3d − 4 LE 61. 4k − 12 k−3 65. ax − ay bx − by 69. 3w2 − w 3w + 1 73. x2 − 9 x+3 77. 2y − 18 y 2 − 81 81. 15x2 − 6xy 25x2 − 4y 2 85. x−2 2 x − 4x + 4 89. n2 − 12nr + 35r2 n − 5r 3a2 18w2 + 45w 2w + 5 3 5 67. 12xy + 6y 8x2 + 4x same 71. 5x + 4 5x2 + 4 75. a2 − 49 a+7 79. 3u + 12 3u2 − 48 83. 64t3 − t 8t3 + t2 87. y+9 2 y + 4y − 45 91. a2 − 8a + 16 a−4 95. 10x2 − 7xz + z 2 5x − z r−3 2r − 6 a b 66. 9y − 3 15y − 5 same 70. 3a + 3b 2a − 2b 74. y−1 y2 − 1 78. 5w2 − 20 5w + 10 3x 5x + 2y 82. 6c2 − 22c 9c3 − 121c 1 x−2 86. n2 − 12n + 27 n−3 90. c + 6d c2 + 12cd + 36d2 x−3 2 y+9 n − 7r 93. 63. 62. 4 1 2 1 y+1 w−2 2 3c + 11 n−9 64. 3k − 4n 30kn − 40n2 1 10n 68. 18u2 − 48uw 5u − 15w 18u 5 same 72. 3c − 9 5c − 20 a−7 76. z − 10 z 2 − 100 1 z + 10 1 u−4 80. x2 − 4 11x − 22 x+2 11 8t − 1 t 84. 4a2 b − b3 2ab + b2 2a − b 1 y−5 88. a2 + 6a + 9 a+3 x−4 92. k+2 k 2 − 11k − 26 96. 2w − y 14w2 − 5wy − y 2 9w 3y 2x 101. a2 a+3 1 k − 13 1 c + 6d a+1 + 5a + 2 1 3a + 2 94. 5b2 + 2b − 7 b−1 5b + 7 2x − z 97. same a2 − 4 + 5a + 6 a−2 a+3 x2 + 2xy + y 2 x2 − y 2 x+y x−y 98. 102. y 2 + 7y + 12 y2 − 9 n2 y+4 y−3 n2 − 36r2 + nr − 30r2 99. 103. 1 7w + y w2 + 6w − 7 w2 − 1 a2 w+7 w+1 a2 − 4 − 11a + 18 a+2 a−9 100. c2 c2 − 25 − 10c + 25 104. y 2 + 2y − 8 y 2 − 16 108. x2 − 7x − 18 2x + 18 c+5 c−5 y−2 y−4 n − 6r n − 5r 105. 109. z2 − 9 z 2 − 3z + 2 3t2 same t2 − 16 − 11t − 4 t+4 3t + 1 106. 3d + 3 2 d − 2d + 1 110. 6r2 + 7r + 1 36r2 − 1 same r+1 6r − 1 107. u2 + 5u + 6 u2 − 1 111. 3x2 + xy − 2y 2 9x2 − 4y 2 same 112. y2 + y − 6 y 2 + 5y + 6 117. b2 + 7b + 12 b2 + 10b + 21 y−2 y+2 b+4 b+7 114. x2 + 6x + 8 x2 + 8x + 16 118. y 2 + 9yz + 14z 2 y 2 − 10yz − 24z 2 x+2 x+4 115. n2 − 7n + 10 n2 − 4n + 4 119. k 2 + 5kn + 6n2 k 2 + 17kn + 30n2 c2 + 9cd + 14d2 c2 − 4cd − 77d2 122. a2 − 12a + 20 a2 − 16a + 28 n−5 n−2 116. a2 + 8a + 7 a2 + 6a − 7 120. w2 + w − 20 w2 − 12w + 32 124. n2 + 4nx − 32x2 n2 + 3nx − 40x2 a+1 a−1 k + 3n k + 15n y + 7z y − 12z 121. 4s2 − t2 − 15st + 7t2 2s + t s − 7t x+y 3x + 2y 113. 2s2 same a − 10 a − 14 123. b2 − b − 72 b2 + 9b + 8 c + 2d c − 11d ALG catalog ver. 2.6 – page 228 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. b−9 b+1 n − 4x n − 5x w+5 w−8 LE 125. x2 + 10x + 25 x2 − 4x − 5 129. 3u2 + 4u + 1 2u2 + 5u + 3 same 126. y 2 − 4y + 3 y 2 + 4y + 3 3u + 1 2u + 3 130. 3k 2 − 11k − 4 3k 2 + 4k + 1 same k−4 k+1 127. k 2 − 5k − 14 k 2 − 13k − 14 131. 5z 2 − 4z − 1 11z 2 − 12z + 1 same 128. p2 + p − 20 p2 − p − 20 132. 8x2 + 6x + 1 2x2 + 23x + 11 5z + 1 11z − 1 133. 3b2 − 10b − 25 3b2 + 11b + 10 137. d4 − 5d3 − 14d2 d2 − 7d b−5 b+2 134. 2y 2 − 7y + 6 2y 2 − 13y + 15 138. 3p2 − 15p − 72 p2 + 3p d(d + 2) 141. 2a3 − 8a 2a2 − 8a − 24 142. 4p2 + 24p + 32 2p2 + 16p + 32 146. 3z 3 − 9z 2 + 6z 3z 2 + 9z − 30 150. 2c + 3 2c − 3 136. 8r2 + 18r − 5 4r2 − 4r − 35 139. 2c2 − 16c + 24 4c2 − 8c c−6 2c 140. y 3 − 7y 2 + 12y 5y 2 − 15y 3x3 − 15x2 − 18x x2 − 36 143. 4w2 + 32w + 60 2w3 − 18w 144. 6u2 − 24 9u2 + 36u + 36 10c2 − 40c + 40 2c2 − 14c + 20 147. 4x2 + 12x − 72 6x3 + 30x2 − 36x 154. 2h − 3 7h 158. 148. y−4 5 n3 − 8n2 + 7n n4 + 3n3 − 4n2 151. 2d3 + 4d2 − 16d d2 + d − 12 152. 155. a4 − 4a3 − 21a2 3a3 − 15a2 − 42a 156. 159. 14k 2 − 20k + 6 14k 2 − 8k − 6 162. 7k − 3 7k + 3 2n2 + 5n + 3 n3 + n2 2n + 3 n2 160. (n − 6)2 5n − 30 28m2 − 32m + 4 28m2 − 18m + 2 163. 169. x2 + 2xy + y 2 (x + y)3 ab + ac (b + c)2 170. (w − 3)3 w2 − 6w + 9 1 3 174. 5u + 10 −u − 2 2 5 178. 4c + 12d −3c − 9d 1 x+y 4a2 + 14a + 10 4a3 + 10a2 + 6a 164. 2a + 5 a(2a + 3) 166. n−6 5 4y 2 − 14y + 6 10y − 5 2(y − 3) 5 2(m − 1) 2m − 1 165. 2r3 − 16r2 − 18r 2r5 − 14r4 − 36r3 r+1 r2 (r + 2) a(a + 3) 3(a + 2) 2s3 + 3s2 − 5s 8s + 20 h2 − 8h + 12 3h3 − 15h2 − 18h h−2 3h(h + 1) 2d(d − 2) d−3 5y 4 + 20y 3 + 20y 2 2y 2 + 24y + 40 3t2 − 9t + 6 12t2 − 24t + 12 t−2 4(t − 1) y−1 3(y + 1) 5y 2 (y + 2) 2(y + 10) 2h2 + h − 6 7h2 + 14h 3y 2 + 18y − 21 9y 2 + 72y + 63 s(s − 1) 4 161. 4r − 1 2r − 7 2(u − 2) 3(u + 2) 2(w + 5) w(w − 3) n−7 n(n + 4) 2(x − 3) 3x(x − 1) 157. 6c2 + c − 12 6c2 − 17c + 12 5(c − 2) c−5 z(z − 1) z+5 153. 135. 3x(x + 1) x+6 2(p + 2) p+4 149. 4x + 1 x + 11 3(p − 8) p a(a − 2) a−6 145. y−2 y−5 same a b+c w−3 12z 2 + 42z + 18 16z 2 + 12z + 2 3(z + 3) 4z + 1 167. x2 − 25 (x + 5)2 168. (a + b)2 a2 − b2 171. (c + d)2 2c2 + 3cd + d2 172. y 2 − 6y + 8 (y − 4)2 175. 3c + 2cd −18 − 12d − c 6 176. 22x − 33 −2xy + 3y 179. −6n − 18 5n2 + 15n − 6 5n 180. −24p2 r + 6pr 56p − 14 x−5 x+5 c+d 2c + d a+b a−b y−2 y−4 Factors of −1 173. −n − 4 3n + 12 − 177. −2a − 4 5a + 10 − −5 − 4 3 ALG catalog ver. 2.6 – page 229 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. − 11 y − 3pr 7 LE 181. x−1 1−x 185. a2 − 6a 12 − 2a 189. 16 − m2 m−4 193. y2 182. 2d − 6 3−d −2 186. b−c bc − b2 − 190. 1 − 5r 25r2 − 1 1 y−2 194. h2 − 2h − 15 5h − h2 − h−3 h 195. a−1 2(a − 2) 198. 4 − x2 x2 − 4x − 12 − x−2 x−6 199. s2 + 5s + 6 9 − s2 202. y 2 − 4y + 3 12 − y − y 2 203. h2 + 8h + 7 14 − 5h − h2 206. 21 + 11x − 2x2 x3 − 2x2 − 35x 207. 4y − 3y 2 − y 3 10y 2 − 25y + 15 −1 − a 2 −m − 4 2−y − 4y + 4 − 197. a2 + a − 2 8 − 2a2 201. 8 + 7x − x2 x2 − 10x + 16 205. 2m2 + 8m − 64 28 − 3m − m2 − 209. − x+1 x−2 2(m + 8) m+7 6n2 − − 9 − 3n − 30n + 36 1 2(n − 2) − 210. 1 b − 1 5r + 1 − y−1 y+4 183. a−b b−a 187. 10p − 2pr r−5 191. 9a2 − b2 b − 3a 2x + 3 x(x + 5) 4c2 − 24c + 36 6 − 2c −2(c − 3) u2 − 211. 184. 3n − 9 3−n −5p 188. w−2 4w − 2w2 −3a − b 192. x−y y 2 − x2 196. c2 − 8c + 16 4−c 4−c 200. 16n − n3 n2 + 6n + 8 − 204. 6 − a − a2 a2 + 5a + 6 − 208. 4w2 + 14w + 6 12w − 8w2 − 4w3 −1 6 − 2u + 2u − 15 − − ALG catalog ver. 2.6 – page 230 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. s+2 s−3 − h+1 h−2 y(y + 4) 5(2y − 3) 2x2 + 16x − 40 16 − 8x − 2 u+5 x + 10 4 − 212. −3 − − 1 2w 1 x+y 2w + 1 2w(w − 1) 14a − 2a2 − 36a + 56 4a2 − a 2(a − 2) n(n − 4) n+2 a−2 a+2 LF Topic: Multiplying rational expressions. See also categories AI (fractions) and DM (monomials). Directions: 6—Simplify. 3—Multiply. 9—Simplify (assume no denominator equals zero). 100—Give the restriction(s) on each variable, then simplify. 1. a x · x b 5. a b c · · b c a 9. 3a 10b · 5b 3a 13. −2p2 q 2. a a · b b 1 6. bc 1 a · · a ab c 2 10. 9c 4d − − 8d 6c a b 4 · 2 pq a2 b2 2b 14. 10ab · 2 5a 8p − q 1 a 3 4 4b2 a 3. x y · y x 7. 1 x y2 · · x2 y a 11. 2xy 2x · 3y 3xy 15. 1 1 9rs3 y ax 4x 9y 12r2 s 7r 4. x y · y 2 x2 8. a2 a x · · x x2 a 12. 16. 1 20kn2 · 3k 2 n 10kn 20. 2abc 2bd − − 5d 7ac 5a b 1 xy 5b a a2 x2 25 2 3k 2 4 21s2 17. 14x 3y 2 9y 3 7x2 6y x 18. 2 20st2 s t 21. − 2 − s 10st 22. 3u3 2w − 5uw 4 5w2 − 2 6u cd5 5c2 d · 15cd2 3d3 19. − 15wx 12wy · 3xy 5xz − 12w2 xz 4b2 35 c2 d 9 23. 12a3 10a2 b4 · 8b3 27a4 b 5a 9 24. 2t2 25. − 6a2 3b 10c · · 4b 5c2 8a 9a 8c 26. 5x ay 2 7xy · · 3y 7b 5a2 x2 y 2 3ab 27. 2a 3b2 b2 x −2y −6c 5x 28. 2ac 5y 29. (x − 6) · x+2 3x − 18 30. x + y 2x2 y · 6xy 2 x + y a−3 · (a + 2) 5a + 10 8 5x2 −6x 21a2 14a3 −9x 6x3 4a 2x3 3 31. 2b − 8 1 · b+4 b−4 35. ax + bx 2a · 3a 2a + 2b 39. 2a + 6 3a − 9 · 6a − 18 7a + 21 43. 12x2 y (x − 2y)2 · 3x − 6y 2xy 3 32. 1 c+1 · c2 + c c − 1 x 3 36. r2 + 3r 14 · 2 21r 2r + 6 1 7 40. ab − ac bx + cx · bn + cn b2 − bc 44. 3w + 9 w2 + 3w · 3w2 (w + 3)3 2 b+4 1 c2 − c a−3 5 x+2 3 33. 8x2 y 3 −6w2 · 10xy 2 w 3wx3 y x 3y 34. 2m − 5 40m · 3 15m 2m − 5 1 3r 8 3m2 37. 6r + 12 5r − 15 · 3r − 9 4r + 8 41. (a + b)3 4a · 12ab (a + b)2 5 2 38. 2c − 2d 6c + 6d · 3c + 3d 8c − 8d 42. 5xy x2 + xy · (x + y)2 10 x2 − 9 6 · 8 x−3 2x2 − 4xy y2 x2 y 2x + 2y a+b 3b 45. 1 2 3x + 9 4 46. b+1 2b3 · 2 2 8b b −1 b 4b − 4 47. 14x2 y 2 x2 − 9 · 3x + 9 8xy 3 1 w2 + 3w 48. x2 − 16 4 · 2x − 8 6x + 24 52. 5a − 5b 3a2 · 2 2 9a a − b2 7x2 − 21x 12y 49. n2 − 9 6n2 r2 · 3nr3 n + 3 2n2 − 6n r 50. x2 y 2 8x − 32 · − 16 4xy 3 x2 2x xy + 4y 51. x2 y 2x + 2y · 2 −y xy x2 2x x−y ALG catalog ver. 2.6 – page 231 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ax bn 5 3a + 3b 1 3 LF 53. x − 2y 2x2 · 2 3x x − 4y 2 12n2 m2 − 9n2 · m − 3n 15mn 54. 2a + 8 2a − 2b · a2 − b2 a2 − 16 3d + 9 2d2 − 50 · 2d − 10 3d2 − 27 58. 4 a2 − 4a + ab − 4b 61. (x + y)2 ax − ay · x2 − y 2 ax + ay 2b + 10 3b − 15 · 2 6b b − 25 59. a2 − 36 a2 − 49 · 2a2 + 14a 2a3 − 12a2 1 b 56. 3x2 + x 6x − 2 · 9x2 − 1 6x 60. xy 2 + x2 y xy 2 − 9x · 2 y 2 + 3y xy − x3 1 3 4mn + 12n2 5m 2x 3x + 6y 57. 55. d+5 d−3 4p − 4q p2 − q 2 · (p − q)2 3p + 3q 62. 1 (a + 6)(a − 7) 4a3 4 3 63. 6w − 12 (w + 2)2 · 7w + 14 w2 − 4 xy − 3x y−x 6 7 (x − 3y)2 24x3 · 3x2 − 9xy x2 − 9y 2 64. 8x2 x + 3y 65. a2 + 7a + 12 a − 3 · a2 − 9 a+3 66. x − 2 x2 − 2x − 8 · x2 − 4 x+2 67. y2 − 9 y+2 · 5y + 10 y 2 + 7y + 12 y−3 5(y + 4) 68. n2 + 7n + 10 4n + 12 · 2 n+3 n −4 69. w2 + w − 6 w2 − 2w · 3w − 6 2w + 6 w(w − 2) 6 70. 3a − 18 3a − 3 · a2 − 5a − 6 a2 − a 71. x2 + 5x + 6 x2 − 7x + 12 · x2 − 9 2x + 4 72. y 2 − 25 5y − 5 · 2 2 y − 2y − 15 y + 4y − 5 73. c2 − 2c − 8 4c + 4 · c2 + 3c + 2 c2 − c − 12 4 c+3 74. w2 − w − 20 w2 + 7w + 12 · 2 w−5 w + 8w + 16 75. a2 − 2a − 8 2a + 8 · a2 − 5a + 4 a2 − a − 6 2(a + 4) (a − 1)(a − 3) 76. m2 + 9m + 18 m−4 · m2 + 6m + 9 m2 − 9m + 20 77. y2 − 4 y2 − 9 · y 2 − y − 12 y 2 − y − 6 y−2 y−4 78. x2 − 16 x2 − 25 · x2 − x − 30 x2 − x − 20 79. n2 − 9n + 14 4n3 + 16n2 · n2 + 7n + 12 3n2 − 21n 80. a2 − 11a − 12 a2 − 11a + 24 · 2 a3 − 9a a − 7a − 8 81. 2w2 + 5w + 2 w2 + w − 6 · w2 − 4 2w2 + w w+3 w 82. y 2 − 25 2y 2 + y · 2y 2 + 11y + 5 y 2 − 3y − 10 83. 2x2 − 3x − 9 x2 + x − 6 · 2 2x2 − 18 2x − x − 6 1 2 84. 2c2 + c − 10 c3 − 9c · c2 + c − 6 2c2 − c − 15 85. a2 + 5a + 6 a2 − a − 20 · a2 − 2a − 15 a2 + a − 2 a+4 a−1 86. n2 + 6n + 5 n2 − 5n + 6 · n2 + 2n − 8 n2 + 2n − 15 87. r2 + 2r − 35 r2 + 9r + 14 · r2 + 10r + 21 r2 − 3r − 10 88. y 2 + 5y − 24 y 2 + 3y − 10 · y 2 + 12y + 32 y 2 − 6y + 8 89. y 2 + 7y + 10 y 3 − 4y · 2 2 3y − 6y y + 4y + 4 91. 2w2 − 6w 2w2 + 3w − 20 · 2 6w − 18w 2w2 + w − 15 93. 18r2 + 3r − 36 6r2 − r − 12 · 2 9r2 − 16 8r + 20r − 48 a+4 a+3 x−4 2 4n(n − 2) 3(n + 3) r+7 r+3 y+5 3 90. w+4 3(w + 3) 3(2r + 3) 4(r + 4) x−4 x+2 4(n + 5) n−2 9 a(a + 1) 2a3 − 2a2 a2 + 7a + 6 · a2 − 1 + 8a + 12 a2 5 y+3 w+3 m+6 (m + 3)(m − 5) x−4 x−6 a − 12 a(a + 3) y y+2 c n+1 n+4 (y − 3)(y + 5) (y + 4)(y − 4) 2a2 a+2 92. 3x2 + 6x − 9 x2 − 9x · 2 2 x + x − 2 4x − 24x − 108 94. 15w2 + 65w + 20 4w2 − 25 · 2w2 + 3w − 20 24w2 + 52w − 20 ALG catalog ver. 2.6 – page 232 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3x 4(x + 2) 5(3w + 1) 4(3w − 1) LF 95. 6x2 − 15x − 36 6x3 − 6x · 2 4 3 2 3x − 9x − 12x 8x + 4x − 12 97. y y 2 − 6y + 5 y 2 − 4y − 5 · · y−5 y2 − 1 y 2 − 5y 99. 3n + 9 2n2 − 5n − 3 n2 − 2n − 8 · 2 · 2 n − n − 12 2n + 5n + 2 n2 − 9 3 2x 1 3 n+3 96. 6y 2 − 32y − 24 2y 3 − 8y · 4 3 2 2 3y − 12y − 36y 12y − 16y − 16 98. c2 − 144 c2 − 9 c2 · 2 · 2 c−3 c − 12c c + 15c + 36 100. x2 − 5x + 4 x2 − 3x − 18 x2 − x − 20 · · x2 + 5x + 6 x2 − 6x + 5 x2 + 3x − 28 1 3y c (x − 6)(x + 4) (x + 2)(x + 7) 101. 103. r3 r3 s − rs3 1 r 2 − s2 · · 2 2 2 − 2r s + rs r + s 2r s − 2rs2 r+s 2r(r − s) x2 − 6xy + 9y 2 x2 − 4xy − 21y 2 x − 3y · 2 · x2 − 9y 2 x − 8xy + 16y 2 x − 7y (x − 3y)2 (x − 4y)2 102. a − b a2 + 2ab + b2 a2 b − b3 · · ab + b2 a2 − 2ab + b2 a+b 104. ax − ay x2 − xy − 12y 2 ax − 2ay · · 2 x2 + xy − 6y 2 a2 x − a2 y x − 5xy + 4y 2 a+b 1 x−y 105. 107. r2 r 2 − p2 r2 + 9r + 20 · 2 + 4r + rp + 4p r + 2rp − 3p2 x2 + 6x + 5 x2 + x − 2 · 2 4 2 x − 5x + 4 x + 3x − 10 r+5 r + 3p 106. ab + 3b + a2 + 3a a2 − 25 · 2 2 ab + 5b + a + 5a a − 2a − 15 1 1 (x − 2)(x − 2) 108. w4 − 29w2 + 100 w2 − 2w − 15 · 2 w2 − 25 w − 3w − 10 (w − 2)(w + 3) 111. 6w + 6x 3x − 3w · wx − x2 18 Factors of −1 109. x2 − x x · 2y − 2xy y − x2 2y 2 110. 5 − 5c 18c2 · 2 15c c −c −6 − 113. 9 4−x · x2 − 16 21 − 117. 3 7x + 28 a+5 2a − 1 · 1 − 4a2 a2 − 25 − 114. 15y 9 − y 2 · y+3 5y 2 − 118. 1 2a2 − 9a − 5 121. r2 − 2r − 8 3−r · 2 2 r − 4r − 12 r − 7r + 12 123. 9 − a2 a2 + 6a + 8 · a2 + 5a + 6 a2 − 7a + 12 125. 6 − x − x2 (x + 4)2 · 2 2 x − 16 x − 5x + 6 127. y 2 + 7y + 10 6 + y − 2y 2 · 2y 2 + 13y + 15 2y 3 − 8y − − − 3x − 9 y 9r2 − 1 2 − r · r2 − 4 3r + 1 − 119. a+4 a−4 (x + 3)(x + 4) (x − 4)(x − 3) 1 2y w+x x 8 − 4x 8xy 2 · 10x2 y x2 − 4 − 3r − 1 r+2 1 r−6 − 115. − 4x − 20 6x + 30 · 3 25 − x2 120. 16y y 4 − 16 · 8y − 4y 2 y 2 + 4 1 4 y 2 − 6y + 8 y 2 + 9y + 18 · 2 4−y y +y−6 124. n2 + 3n − 10 16 − n2 · n2 − 5n + 4 n2 + 2n − 8 128. n2 − 16 4 − 3n − n2 · 2 + 5n + 6 n − 5n + 4 n2 −(4y + 8) −(y + 6) − − 10a + 8 − 3a2 9a3 − 81a · 2 2 a − a − 12 3a − 7a − 6 ALG catalog ver. 2.6 – page 233 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. y 2y − 8 116. 122. 126. y2 y+2 · 2y + 4 4y − y 2 16y 5x2 + 10x b2 − a2 3a2 + 3b2 · 4 12 a − b4 − 112. n+5 n−1 (n + 4)(n + 4) (n + 2)(n + 3) −9a −8 LG Topic: Dividing rational expressions. See also categories AI (fractions) and DM (monomials). Directions: 6—Simplify. 4—Divide. 9—Simplify (assume no denominator equals zero). 100—Give the restriction(s) on each variable, then simplify. 1. a b ÷ c d 5. a2 ÷ (−5ac) 6c 9. 3x 21x ÷ 4y 16y 13. 24ab 6ab2 − ÷ − 16b2 18a2 b ad bc a − 30c2 4 7 2. x 6 ÷ 3 y 6. 2 a x −10ax ÷ − 5 10. 5a 30b ÷ 3b 9a 14. 2x2 4x ÷ 7y 21y 2 18. 18n2 r 6r2 s ÷ − 33ns2 11nr xy 18 50 a a2 2b2 3xy 2 1 k2 3. k÷ 7. 1 2y ÷ 2yz z 11. ab2 b ÷ − − ac c 15. a2 bc abc2 ÷ 8m 12m 19. 60u2 x 20wx2 ÷ 63uw 21uw2 k3 1 4y 2 b 3a 2c 4. 1 ÷ (−n) n 8. 14ab 7bc ÷ c a 12. mr nr ÷ 12 9 16. 3y 2 z 2y 2 ÷ − 2w 3wz − 1 n2 2a2 c2 3m 4n 9z 2 4 9a2 2b2 17. 8xy 10wxy ÷ 15wy 2 16x2 64x2 75w2 y 2 21. − 6r3 12r ÷ 3p − r 3p − r 2 r2 22. u2 x 20. − n2 s3 − 3a + 4 3a + 4 ÷ 5a2 10a 2 a 23. x+1 x+2 ÷ 2x + 5 2x + 5 24. x+1 x+2 25. 4a 16a2 ÷ 3a − 12 5a − 20 26. 27. 12 5d 5 12a 29. 4d + 16 5d + 20 ÷ 3d2 9d 3m − 12 6m − 24 ÷ 2m + 8 4m + 16 30. 2n − 6 3n − 9 ÷ 8n + 24 4n + 12 1 3 31. x+3 x−5 x−5 34. (4p + 18) ÷ 6y 12xy ÷ xy + xz (y + z)2 38. 6p + 27 12 35. n + 3 n2 − 9 ÷ 9n 6 42. 2 3n(n − 3) 45. 46. r2 − 4 r−2 ÷ r2 − 25 r − 5 39. 32. 11u 22u ÷ −1 u−1 u2 14xy 3 4x2 y 2 ÷ 3 5x + 15 x − 9x r+2 r+5 50. m − 4 m2 − 16 ÷ 2 m+3 m −9 m−3 m+4 x − 3y (x − 3y)2 ÷ x + 3y (x + 3y)2 43. 1 w2 − 4w ÷ 2 3w + 12 w − 16 36. 4p2 − 49 4p2 + 14p ÷ 2p − 7 6p2 40. a2 − ac a2 − c2 ÷ 3a + 9c 2a + 6c 2a 3(a + c) ALG catalog ver. 2.6 – page 234 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. x2 (a − b) ax − bx ÷ y 2 (a + b) ay + by (a − 1)2 3a − 3 ÷ (a + 1)2 7a + 7 7a − 7 3a + 3 44. r2 − 25 ÷ (2r − 10) r2 + 5r 1 2r 48. 4xy 2 16x2 y ÷ x2 − 2x x2 y − 4y 4x + 8 3p2 51. 2x − 6y 6x − 18y ÷ 12x + 4y 9x + 3y x y 1 3w 47. xy 2 4xy ÷ 6x − 4y 24x − 16y 1 4 x + 3y x − 3y 2x2 (x − 3) 35y x − 4y 2x2 y 49. (c − d)2 4c − 4d ÷ 15c 12c2 d 1 2(u + 1) x2 − 16y 2 x2 + 4xy ÷ 4xy 2 2y (x − y) 2x − 2y ÷ cx + cy x+y 2y − 3 2y − 3 ÷ y−3 y+2 y 1 2c c2 d − cd2 5 y+z 2x2 41. 28. 6 8 37. 10s + 10t 5s + 5t ÷ 3s − 3t 9s − 9t 1 2ab2 y+2 y−3 27y 4x 1 33. (x + 3) ÷ 9a − 18b 4a − 8b ÷ 5x2 y 15xy 2 35ac2 14a2 b ÷ 25bc3 5c 52. ac + ad 5c + 5d ÷ 2 ac − ad c − d2 c+d 5 LG 53. 24a2 − 6b2 2a2 + ab ÷ 2 3a − 3b a − ab u2 − 16 6u2 − 24u ÷ 2 2 u + 4u u − 2u 54. u−2 6u 4a − 2b 57. 55. a2 − b2 (a + b)2 ÷ 8a 4a3 5 3 59. a2 (a + b) 2(a + b) 3 r(r + 3) (r − s)2 r2 + s2 ÷ r 2 − s2 (r + s)2 a2 − a − 6 a2 − 9 ÷ a−2 a+3 63. y + 12 y 2 − 7y + 10 ÷ 2 y−5 y − 10y + 25 65. r2 + 5r − 6 3r + 18 ÷ 2 3r − 3 r −r a+2 a−2 9x + 36 3x + 12 ÷ 2 + 5x + 4 x −1 x2 62. y + 12 y−2 64. r(r − 1) 9 66. 3(x − 1) x+4 68. (x + 5)(x + 2) (x − 2)(x − 5) x−4 x+3 ÷ x2 − 16 x2 + 7x + 12 w2 a2 − 4 a2 + 7a + 10 ÷ 2a + 6 4a + 12 2y + 4 y 2 + 3y ÷ 2 − y − 6 3y − 27 y2 n2 + 10n + 25 ÷ (n2 − 25) n2 + 5n 71. r2 − r − 30 ÷ (r2 − 2r − 24) r+4 r+5 (r + 4)2 72. (a2 − 6a + 9) ÷ 73. y 2 − 3y − 18 y 2 − 2y − 15 ÷ y2 − y − 2 3y + 3 3(y − 6) (y − 2)(y − 5) 74. 75. c2 − 2c − 8 c2 − c − 6 ÷ 2c + 6 c2 − 9 77. d2 + 9d + 18 d2 + d − 6 ÷ 2d2 + 4d d2 − 4 r2 − 1 r2 − r − 2 ÷ −r−6 r2 − 4 r2 1 n(n − 5) 70. (y 2 − 3y) ÷ c−4 2 76. 1 w−3 w2 − 8w + 15 ÷ + 8w − 9 w+9 69. 79. (x + 5)2 x2 − 25 ÷ x2 − 4 (x + 2)2 60. r 2 − s2 r 2 + s2 61. 67. 3r2 + 3s2 r 2 + s2 ÷ 3 r − 9r r−3 56. a+b 2a 3p − 6 5p + 10 ÷ p2 − 4 (p − 2)2 58. 2ab2 4a ÷ 3 2 3 −a b a − ab2 a 3 b2 y 2 − 4y + 3 y2 − y 1 (w − 1)(w − 5) 2(a − 2) a+5 6 y y2 a2 − 9a + 18 3a − 18 3(a − 3) w2 − 4w + 3 w2 + w ÷ w2 + 3w − 18 w2 + 8w + 12 x2 − 25 2x + 10 ÷ − 6x + 5 x2 + 2x − 3 (w − 1)(w + 2) w(w + 1) x+3 2 x2 78. k2 − 9 4k 2 + 12k ÷ k 2 + 3k − 18 k 2 + 10k + 24 80. p2 − p − 20 p2 − 16 ÷ 2 2 p −9 p − p − 12 1 82. y 2 − 4y − 21 y 2 − 6y − 7 ÷ 2 y 2 + 7y + 12 y −y−6 c+4 c−2 84. 3x2 + 8x + 4 2x2 + 5x + 2 ÷ 2 9x2 − 4 3x − 5x + 2 86. x2 + 5x + xy + 5y x2 + 6x + 5 ÷ x2 + 2x + xy + 2y x2 − 4 88. y 4 − 13y 2 + 36 y 2 − 5y + 6 ÷ 2 y2 − 4 y − 3y + 2 d+6 2d r−1 r−3 81. w2 + 2w − 3 w2 + 6w + 9 ÷ 2 w2 + w − 2 w + 5w + 6 83. c2 − c − 12 c2 − 6c + 8 ÷ c2 + 4c + 3 c2 + 5c + 4 85. a2 + 7a + 12 a2 + 3a + ab + 3b ÷ a2 + ab − 2b2 a2 − b2 87. x4 − 10x2 + 9 x2 + 2x − 3 ÷ 2 x2 − x − 6 x + 3x + 2 a+4 a + 2b (x + 1)2 Factors of −1 89. k−3 3−k ÷ 9 12 − 4 3 90. x+y x+y ÷ w−x x−w 91. n 1 ÷ p−r r−p −n 92. a−b b−a ÷ 2 c c ALG catalog ver. 2.6 – page 235 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −1 −c k+4 4k p−5 p−3 (y − 3)(y + 2) (y + 1)(y + 4) x−1 2x + 1 x−2 x+1 (y + 3)(y − 1) LG 93. y−7 ÷ (7 − y) y+7 95. a−6 6−a ÷ 3a + 6 5a + 10 97. 4 − a2 a+2 ÷ a3 a 99. (20 − 4y) ÷ − − 1 y+7 − 94. (r2 − 2r) ÷ 3u + 9 u2 + 3u ÷ uw − w 1−u 98. h2 3h ÷ h − 4 16 − h2 −12 100. 2x + 8 1 ÷ 2 3x − 48 36 − 9x y(y − 1) 4(y + 1) 102. x2 − 9 3−x ÷ 2 (x + 1)2 x −1 104. p2 − q 2 px + qx ÷ (p − q)2 pq − p2 106. 2w2 + 9w + 4 2w2 + w ÷ 2 2 16 − w w − w − 12 108. 6x2 + 17x + 5 3x2 − 5x − 2 ÷ 3x − x2 x3 − 4x a−2 a2 101. (y + 1)2 1 − y2 ÷ 8y 2 2y 3 103. n − n2 (n − 1)2 ÷ 2 10n + 8 5n + 4n 105. a2 − 3a − 4 5 − 5a2 ÷ 2 2 a + a − 20 a + 4a − 5 107. a2 + 3a − 10 25 − a2 ÷ 2a2 − a − 6 2a2 − 7a − 15 − −r2 96. 5 3 2y 2 − 50 6y + 30 2−r r − n2 2(n − 1) − 1 5 −1 ALG catalog ver. 2.6 – page 236 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. − − 3 wu 3(4 + h) h −6 − (x + 3)(x − 1) x+1 − p x − w+3 w − (x + 2)(2x + 5) x−3 LH Topic: Adding and subtracting rational expressions (common denominators) Directions: 6—Simplify. 9—Simplify (assume no denominator equals zero). 100—Give the restriction(s) on each variable, then simplify. 1. 2n 8n + 3 3 10n 3 2. 1 5 + 2 2 7x 7x 5. 3r 8r − p p 5r p 6. 6 14 − ab ab 9. 6 4 + a+b a+b 10. 10x 3x + x−y x−y − 10 a+b 6 7x2 −8 ab 13x x−y 3. 11 6 − a a 7. −5x 2x + 3 3 11. 5n 3n − p−6 p−6 5 a −x 2n p−6 4. 9a 4a − c c 8. −7 −11 + 2 n2 n 12. 3 5 − w+7 w+7 − 13. m + n 2n − x x m−n x 14. a + 2b −b + y y 17. 7 8 + 10c2 10c2 3 2c2 18. 3z 5z + 4y 4y 21. 14 4 − 12mr 12mr 22. 13 18 − 15x 15x 26. a 5a 4a − + c c c 25. − 8 3 4 + − y y y 5 6mr − 9 y 15. 2a + x a − x + n n 19. 8 13 + 6m 6m 7 2m 1 3x 23. a 5a − 2 2b2 2b − 0 27. 4x 9x 14x + − 8 8 8 a+b y 2z y − 3a n 2a b2 − x 8 2 5 1 + − 3x 3x 3x 2 x 30. − − 33. 7a 5a 14a − + 18b 18b 18b 8a 9b 34. 9n 8n 20n + − 7r 7r 7r 31. 6n 3n n − − 4m 4m 4m n 2m m a + a+m a+m 38. 1 x 2x + 3y 3y 24. 21p 16p − 5 5 28. 9 22 6 − + 11d 11d 11d 32. 10r − 5 r − 5 − 3r 3r 3 42. y a x y p 7 11d 6 7 14 + + 3w2 3w2 3w2 9 w2 11 7 5 + − 2 2 12y 12y 12y 2 35. 6 22 8 + − 9cd 9cd 9cd 8 3cd 36. − − 39. 1 x a + 3(a + x) 3(a + x) 40. 1 3 41. 2 w+7 20. 3n r xy 1 − xy − 1 xy − 1 18 n2 2y − x y − x − a a 3 4y 2 37. − 16. − 29. 5a c 8k 2 − 1 2k 2 + 1 + 2k 2k 5k 43. 11n 13n 17n + − 15x 15x 15x n x −5 c + 2(c − 5) 2(c − 5) 1 2 2x + 3y 2x − 3y − 4xy 4xy 44. 7a + 6 3a − 6 + 10a2 10a2 48. 3r − 5p 6p − 2r + 2 r 2 + p2 r + p2 1 a 3 2x 45. 2 − 8n 1 − 3n + 2n − 5 2n − 5 46. 3 − 11n 2n − 5 49. 7x − 3 7x + 1 − 8x 8x w2 − 3w 4w2 + 6w − w+3 w+3 47. a−b 3w −1 2x 50. 2a2 + b2 a2 + 2b2 − a+b a+b 3a + 10b 5a − 2b + 4 4 51. −4u u − 6 + 3u2 3u2 r+p r2 + p2 −u − 2 u2 52. 2w + 3 w 2a + 2b 53. a − 2b a + 4b + a+b a+b 2 54. 14x + 2 2x + 10 − 3x − 2 3x − 2 5w + 1 w − 5 − 2w 2w 4 55. 4m + 13 m − 3 + m+2 m+2 ALG catalog ver. 2.6 – page 237 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 5 56. 9d 6c + 3d − c−d c−d 6 LH 57. −4y 3y 2 + y + y−1 y−1 4s2 − st 3s2 − s−t s−t 58. 3y s 59. 2n2 + 3n n2 − 3n − n+6 n+6 3r2 − 1 6r + 1 + r+2 r+2 60. 3r n 61. 8a − 9 3a a − 3 − − 10 10 10 63. r 7r − 3 2r + 5 + − 6x 6x 6x 65. 4y + 3 5(y − 1) 2(5y − 2) − + 3y − 4 3y − 4 3y − 4 67. 4(3x + 2) 2(5x + 2) 2x + 4 − − x+y x+y x+y 69. 3x2 − 2x + 9 7x2 − 10x − 11 − 6x2 6x2 71. 3r − 4 −4r + 1 7 − 5r + − 3r + 2 3r + 2 3r + 2 73. 4(y 2 − 2y − 5) y(4y − 11) − y+2 y+2 75. (b − 1)(b + 1) (b − 2)2 − b b 77. p2 r + 3pr p2 r + 2p − pr + 2p pr + 2p 2a − 3 5 3r − 4 3x 9y + 4 3y − 4 −2x2 + 4x + 10 3x2 4r − 10 3r + 2 3y − 20 y+2 4b − 5 b 78. ab − 4b2 3ab + 4b2 + 2a + 4ab 2a + 4ab mn n2 + (m + n)2 (m + n)2 82. x2 xy − (x − y)2 (x − y)2 n m+n 85. y2 1 − y+1 y+1 −5y − 11 8y + 2 y + 1 + + 8 8 8 64. 4p −12p + 17 p − 4 − + 15 15 15 66. 3(3a − 2) a−4 5(1 − 4a) + − 2a − 1 2a − 1 2a − 1 68. 2(2m + 1) 3(m + 3) 2m + 7 + − mn + n mn + n mn + n 70. −7a2 + a − 5 8a2 − 2a + 4 − 3a 3a −5a2 + a − 3 a 72. 9y − 14 12y − 17 7 − 3y − + 4y − 5 4y − 5 4y − 5 −6y + 10 4y − 5 74. 3(2n + 5) −5(n2 + n − 3) − 2n − 1 2n − 1 76. (c + 3)2 (c − 2)(c + 2) − 5c 5c 79. n2 + 2n n2 + 8 − 3n − 12 3n − 12 83. a2 1 − (a − 1)2 (a − 1)2 2 3 y−2 2 7 − 3p 5 x x−y 6c + 13 5c 80. y2 + y y2 − 3 − 5y + 15 5y + 15 84. −25 x2 + (x + 5)2 (x + 5)2 86. y−1 a2 4 − 2+a 2+a x−5 x+5 a+1 a−1 a−2 87. y 2 − 4y y − 10 + y+2 y+2 90. x − 6 x2 − 6 + x+4 x+4 x−3 91. c 5 + c2 − 25 c2 − 25 2r 3 + 4r2 − 9 4r2 − 9 88. 93. 2w2 + 2w w2 + 2w + 9 − w−3 w−3 95. c + 14 c−6 + c2 − 16 c2 − 16 97. x2 + 3x 2(2x + 1) − x−2 x−2 99. 2(n2 − 3n) n2 − 9 − n−3 n−3 101. 2a2 − 5a − 2 a2 − a − 5 − a2 − 9 a2 − 9 2a2 − 1 3a2 − 5 − 2 + 5a + 6 a + 5a + 6 a2 1 2r − 3 u2 + 7u 3u + 12 − u−2 u−2 −12 − 2a 3 − a2 − a−5 a−5 92. u+6 y−5 103. 5m + 4 mn + n 5n2 + 11n 2n − 1 1 c−5 89. 15 2b 2b + 1 3r + 2 r+2 81. 0 62. a+3 94. 2n2 − 5n n2 − 5n + 25 − n+5 n+5 96. 2x + 8 x−2 + 2 x2 − 4 x −4 x+1 98. r2 + 5r −2(r − 1) + r+1 r+1 n−3 100. −2(y 2 − 4) 3y 2 + 6y + y+4 y+4 a−1 a+3 102. 8w − 12 w2 − 5w + 8 + w2 − 1 w2 − 1 a−2 a+3 104. w+3 2 c−4 u2 ALG catalog ver. 2.6 – page 238 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. u−5 3 x−2 r+2 y+2 w+4 w+1 u2 − 4u − 10 4u − 6 + 2 − 5u + 4 u − 5u + 4 u+4 u−1 1 5 LH Factors of −1 106. s r − r−s r−s 108. 1 x − 4(x − 1) 4(x − 1) 110. 1 1 + x−4 4−x 0 112. x x + x−5 5−x 0 1 114. u2 3u + u−3 3−u u −1 116. xy y2 + y−x x−y −y −(m + 3) 118. d2 c2 − c−d c−d 1 a+b 120. 105. 3 2x − 2x − 3 2x − 3 107. q p − x(p − q) x(p − q) 109. 2 5 − a−b b−a 111. n k − n−k k−n 113. c 3 + c−3 3−c 115. b a + a−b b−a 117. 9 m2 − m−3 m−3 119. a2 −1 − 1 x 7 a−b n+k n−k b a − 2 2 −b a − b2 − n2 ALG catalog ver. 2.6 – page 239 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −1 − 1 4 −(c + d) 6 n − 2 − 36 n − 36 − 1 n+6 LI Topic: Adding and subtracting rational expressions (different denominators) Directions: 6—Simplify. 9—Simplify (assume no denominator equals zero). 100—Give the restriction(s) on each variable, then simplify. 1. 1 1 − a b 5. a b + 8 12 9. 5 2 + xy yz 13. 5 8 − 2 ax3 a x 17. 3w w w + − 4 5 8 b−a ab 3a + 2b 24 5x + 2z xyz 5a − 8x2 a2 x3 33w 40 2. a c + b d 6. x 3x − 10 4 10. b a − 2x 3x 14. 4 3 + 4 x2 y xy 18. x 2x x + + 5 3 10 2y − 3x xy 4. w 5 + 5 w 11a 18 8. r s − 15 10 2r − 3s 30 12. 2 7 + a2 ab 7a + 2b a2 b 16. n 3 − 8m2 2nm 20. a c b − − c b a 3. 2 3 − x y −13x 20 7. 4a a + 9 6 3a − 2b 6x 11. 9 4 − np n2 15. 2 c + 3cd 6d2 19. 2 2 2 − + a b c ad + cb bd 3y 3 + 4x x2 y 4 29x 30 9n − 4p n2 p 4d + c2 6cd2 2bc − 2ac + 2ab abc 21. 4 5 6 + + b2 ab bc 22. 2 4 3 − 2 2 + 3 3 r s r s rs 26. n+3 n−2 − 5 3 30. −2n + 19 15 33. x+y 2x − y + 6 14 34. 2a − 5b a + 4b − 7a 3a 38. 2 3 + a−5 a−7 42. k k − k−1 k+3 b a + a−b a+b 31. 2 a2 bc − 35. 3 2 − 2 ab c abc2 28. m − 2n 3m + n + 4m 5m 8 5 − x+2 x+5 46. u 3u + u+4 u−5 32. 50. c d − c − 3d 2c + d 2c2 + 3d2 2c2 − 5cd − 3d2 a + 2b 2a + b − 2 5 a + 8b 10 2a + 2b 45 36. 4m − 1 m + 4 + 4 18 38m − 1 36 39. a−b b−c − ab bc 40. 2ac − bc − ab abc 43. 12 6 + p+1 p−4 47. 2b 8 − b − 3 b − 12 44. m 2r − 2m − r m+r m2 − 3mr + 2r2 2m2 + mr − r2 ALG catalog ver. 2.6 – page 240 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3 3 − y−3 y+6 27 y 2 + 3y − 18 48. 2b2 − 32b + 24 b2 − 15b + 36 51. m − 3n n − 2p + mn pm n2 − 5np + mp mnp 18p − 12 p2 − 3p − 4 4u2 − 11u u2 − u − 20 a2 + b2 a2 − b2 1 1 1 + 2 2 + 3 3 6xy 5x y 2x y 5x2 + 6xy + 15y 2 30x3 y 3 3w + 1 w − 8 + 3 4 a+b a+b − 9 15 c b a − + ab ac bc c2 − b2 + a2 abc 15w − 20 12 −3x + 9 x2 + 7x + 10 4k k 2 + 2k − 3 49. n+7 n−5 − 12 8 24. 2bc − 3ac − 2ab a2 b2 c2 17m − 6n 20m 5a − 29 a2 − 12a + 35 45. x−y x − 5y + 2 3 2x y 3 + − 3y 2x xy −n + 29 24 −a − 43b 21a 41. 27. 5x − 13y 6 13x + 4y 42 37. 2 1 4 + − 2 2 ab 7ab 5b n2 − 12m 8nm2 a2 b − c2 a − b2 c abc 4x2 + 3y 2 − 18 6xy −28a + 10b + 35 35ab2 4s2 − 3rs + 2r2 r 3 s3 29. 23. an2 − bmn − cm2 m2 n2 4ac + 5bc + 6ab ab2 c 25. a b c − − m2 mn n2 w2 + 25 5w 6 2w + w−9 w+3 2w2 − 12w + 18 w2 − 6w − 27 52. 7x 3y + x+y x−y 7x2 + 10xy − 3y 2 x2 − y 2 LI 53. x+1 x−1 − x−1 x+1 4x x2 − 1 54. a + 2b a + 3 + a − 3b a + 2 55. 2a2 − ab + 5a − 5b a2 − 3ab + 2a − 6b 57. 1 5r + r + 4 2(r + 4) 58. 10x 3 − 4(x − 1) x − 1 61. 5 x + 20 − 6 3x + 12 3x − 20 6x + 24 62. a 2a + 10y − 5 5 59. 4 c + a2 c a2 + a 66. 1 3 + 2u2 − u 2u 63. 69. r 5r − 2r − 4 12r − 24 70. w−3 2 − 30w + 5 18w + 3 r 12r − 24 73. 74. a 4 + 6a − 4 3a2 − 2a 2 3d + c2 + c c2 − cd 78. 2 5 − 6x − 6y 3x + 3y 2c + 3cd + d c(c + 1)(c − d) 81. 82. 1 3(x + y) + 2 3x + y 9x − y 2 −5a (a + 5)(a − 5) 85. 6 u − 7w + u2 − 4w2 5u − 10w 86. 91. 75. 10 (x + 5)(x + 1) 1 y + + 2yz − 3z 2 y + 3z y 2 − yz + 1 (y + 3z)(y − z) k 2 + 2k − 1 k 2 + 4k + 4 3u u + 7w 7w + 21 64. 2 5 − 3xy xy − 3x x y+4 + 2x + 2y 3x + 3y 68. r−1 1 − rs − s s2 72. 2n m + 3m − 6n 4m − 8n 0 3m + 8n 12m − 24n b 3 − ab − 5b2 2a − 10b 76. 2 3y − 2 + 2y + 6 4y 2 + 12y 79. 7y − 2 4y 2 + 12y 4 n − r2 + 2r nr − 3r 80. 2 1 + 10s + 5t 5s + 15t 2n − rn − 12 r(r + 2)(n − 3) 83. 4s + 7t 5(2s + t)(s + 3t) 3 4 − 3m + 16 − m2 m−4 84. 5 6a − a2 − b2 a−b a − 5b (a + b)(a − b) 6m + 8 (m − 4)(m + 4) 87. a+5 3 + 4a − 2 4a2 − 1 88. 2x x2 + 9 − 2 2x + 6 x − 9 −3x x−3 8a + 13 2(2a + 1)(2a − 1) 90. 3a 4 − a2 − a − 6 a − 3 92. 2 2w + 3 + w − 4 w2 − 5w + 4 4w + 1 (w − 4)(w − 1) 94. 2 3x + 9 − x2 + 3x − 10 x + 5 x + 13 (x + 5)(x − 2) 96. 5r 3 − r2 + 8rs + 12s2 r + 6s −a − 8 (a − 3)(a + 2) 3y 4 + y 2 + 5y − 14 y − 2 95. 4 z−5 + z + 2 z 2 − 2z − 8 97. a−8 7 + a2 − 6a + 9 4a − 12 11a − 53 4(a − 3)2 98. 5m 1 + 2m + 6 m2 + 4m + 3 99. 4 3 − x2 − 6x + 5 5x − 25 23 − 3x 5(x − 1)(x − 5) 100. 8 y+1 − 3y − 18 y 2 − 5y − 6 5z − 21 (z − 4)(z + 2) a+4 1 − 4a − 4 8a 2a2 + 7a + 1 8a2 − 8a 93. 7(y + 4) (y + 7)(y − 2) k 1 − k + 2 (k + 2)2 1 10b − 2a 2n2 + 16n 3(n + 4)(n − 4) 1 x−5 − x + 1 x2 + 6x + 5 y2 2n2 4n − − 16 3n + 12 n2 60. 3x + 2y + 8 6x + 6y 2 3x − y 11u − 23w 5(u + 2w)(u − 2w) 89. 71. x + 9y 6(x − y)(x + y) a a2 − 2 a + 5 a − 25 8a 2 + (a − b)2 a−b −13y − 6 3xy 2 − 9xy a2 + 8 6a2 − 4a 1 xy + 4y 77. 67. 3w − 19 90 + 15 2y + 1 6 − xy + 4y 3x + 12 5a2 + 11a − 15 2a2 + 15a + 25 4uw + 9u 7w2 + 21w 6u − 1 4u2 − 2u ac2 + 4a + 4 a3 c + a2 c 2a − 1 a−2 + a+5 2a + 5 10a − 2b a2 − 2ab + b2 −a + 4ay 10y − 5 65. 56. 2x2 + 2y 2 x2 − y 2 5x − 6 2x − 2 5r + 2 2r + 8 x−y x+y + x+y x−y ALG catalog ver. 2.6 – page 241 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 2(r − 3s) (r + 6s)(r + 2s) 11m + 1 2(m + 3)(m + 1) 5 3y − 18 LI 101. 4 1 − w2 + 7w + 10 w2 + w − 20 102. 3 2 + r2 − 11r + 18 r2 + 4r − 12 5r (r − 2)(r − 9)(r + 6) 103. 6 1 − c2 + c − 6 c2 + 11c + 24 104. 2 5 + n2 + 7n + 12 n2 − 4n − 21 7n + 6 (n + 3)(n + 4)(n − 7) 105. 5 2 − y 2 − 9 y 2 + 8y + 15 25 − 3y (y + 3)(y − 3)(y + 5) 106. 7 2 + z 2 − 6z + 7 z 2 − 1 107. 3 4 + p2 − 4p − 12 p2 − 4 7p − 30 (p − 6)(p + 2)(p − 2) 108. 6 1 − x2 − 16 x2 + 8x + 16 109. c−3 c−7 + c + 1 c2 − 1 110. a2 + 8 a + 1 − a2 − 4 a − 2 111. n+2 4 + n + 3 n2 + 10n + 21 112. d+3 d2 − 5 − 2 d + 2 d + 3d + 2 113. a+3 a+3 + a2 − a − 6 a2 − 5a + 6 114. y−2 y+1 − y 2 + 2y + 1 y 2 − y − 2 115. x+4 x−4 − x2 + 3x − 10 x2 − 6x + 8 116. c+5 c−6 + c2 − 5c − 36 c2 − 11c + 18 117. 4 1 3 − − x2 + x − 12 x2 + 7x + 12 x2 − 9 118. 6 2 4 − − n2 − 4 n2 + 7n + 10 n2 + 3n − 10 3(w − 6) (w + 2)(w + 5)(w − 4) −5(c − 4) (c + 3)(c − 2)(c + 8) c−4 c−1 n+6 n+7 2a(a + 3) (a − 2)(a − 3)(a + 2) −1 (x + 5)(x − 2) 3 (n − 3)(x + 3)(x + 4) 119. r2 3(3z − 7) (z − 7)(z + 1)(z − 1) 5x + 28 (x − 4)(x + 4)2 −3 a+2 4 d+1 −3(2y − 1) (y + 1)2 (y − 2) 2c2 + c − 34 (c − 9)(c + 4)(c − 2) 26 (n − 2)(n + 2)(n − 5) r 1 3 + 2 + 2 + 8r + 15 r − r − 12 r + r − 20 120. r2 + 14 (r + 3)(r + 5)(r − 4) y2 5 3 1 − 2 − 2 + 2y − 3 y − 6y + 5 y − 2y − 15 y − 33 (y − 1)(y + 3)(y − 5) Factors of −1 122. b a + a−b b−a 17 w−4 124. n 2n − a−5 5−a 7 5 + 2 − x x2 − 4 −7x − 9 (x + 2)(x − 2) 126. 3m 8 − m2 − n 2 n−m 127. 5 a − b − a a2 − b2 −6a − 5b (a + b)(a − b) 128. k−3 2 + k 2 − 25 5 − k 129. 1 3 3a − + a − 6 a + 6 36 − a2 130. 2 6 7 + + y 2 − 25 5 − y y+5 131. 3 4x 5 + − 1 − x x2 + 11x − 12 x + 12 132. 2 4 6 − + a + 3 5 − a a2 − 2a − 15 121. 5 8 + y−3 3−y 123. 11 6 − w−4 4−w 125. 3 3−y −5a + 24 (a + 6)(a − 6) −4x − 31 (x + 12)(x − 1) ALG catalog ver. 2.6 – page 242 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −1 3n a−5 11m + 8n (m + n)(m − n) −k − 13 (k + 5)(k − 5) y − 63 (y + 5)(y − 5) 6a + 8 (a − 5)(a + 3) LJ Topic: Simplifying complex fractions. Directions: 6—Simplify. 1. 7. 1 2 3 4 2 3 15 25 4 3 9 20 13. 25. 31. 3 7 + 1 7 5 21 − 11 21 7 m 9 3a 4 15a 12 4 x 1 x 3 4 +r 3 4 −r u w u w 1− 2 7x 3 14x 57. 61. 65. 69. 73. 3r 2 7 n 9 2 25 15 3 2 10 9 3 4 − 7 2 +2 3 2 −n u 2 + 2 u 1 2u + − 5a 6 − a 3 + y 4 y 3 3b 2 b 6 n2 −25 n n−5 4 5 − 5 7 2 21 − 10 21 x 3 u v2 2u v 42. 2w + u w−u 46. 4r − 7 3r + 4 54. 14 − 4n 3n − 2n2 58. +4 4x + 3y 6x − 4y 5a − 9b 2a + b n+5 n 1 a −a 3 a a c a c b+ 7 x −6 2 x +3 2a 5b + 7a 15b x 5 7 15 1 10 + r+ 66. 70. 74. 3 5 + 1 5 x+ 62. 7+ 1 2 5− 1 2 1 4 + 1 8 1 4 − 1 8 a b r− s t s t 1 x 2 n 1 n − − − 1 3x 1 r 3 r 2x 5 + 3x 2 − 3c2 10d3 3y 10 7y 10 3−r r r2 − 9 5 3 3 4. 22. 34. 43. 7 − 6x 2 + 3x 47. 9 2 2r − n r − 3n 4x + 3y 15x − 7y 1 − 2 r + 3r 1 6 4+ 1 5 1 6 + 1 3 1 6 + 1 2 6w 3 7w 23. 14w2 29. x 2 t 4 +s t 4 −s 1 y x y 59. 63. 67. 71. 75. a2 6 2 c + +3 c+ 1 2c c 2 x y y x 1 y − − 1 a − a 2b + 1 x 1 5 + 2 5 6 10 + 3 10 5 6 − 5 7 5 6 + 5 7 10b4 21a2 15b6 14a2 3u + 4 8u − 3 6a + 2 a + 84 30 − 35x 7x + 105 30. 4 9b2 36. 52. 56. x+y 68. b 2a −1 5− 1 n 5+ 1 n −a 1 b −1 3 y + 72. 76. 1 2 + 1 4 1 2 + 1 8 m2 8 5m 8 6 5 m 5 4n 9r3 8n4 15r2 5 6rn3 1 6 a 5 2y 5 2y 2 4 y2 − 4w 3 8 9 + 16w 9 −4 y− 7 9 3− 2 y 2w 3 5w 3 1 a 3 7 5n − 1 5n + 1 a b a b − 7 1 21 + 21 3 − 4 +w 60. 64. 1 7 w 5 w 5 15 4 1 32 24. 9 x − 5 3c2 2b − 2a a2 + b2 6 14 18. 1 13 −6x y 2x2 3y 2 3 1 2 15 −20 12. 48. x2 −y 2 x+y ALG catalog ver. 2.6 – page 243 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3 21 −3 8 6. 4 5 1 x 1 b y−x 2 54 44. + 14a −x −10 15 t + 4s t − 4s 2a 3 6 7 x 5 2 − 3 40. 3 2u2 − 4 9 2−x 2 u2 + a2 + 55. 35. 4x4 y 3 1 2 4 u 17. 3 4 7x 6y 5 3 2u 11. 25 18 14x5 3y 2 x+ 5. 1 4 6− 1+ 51. 1 2 6 1− bc − a bc + a 2x + 1 10x + 2 −7 10 16. 39. 6a + 7b 7a + 9b 25 7 1+ 28. 6 d 5 −6 10. 1 − a2 3 rt + s rt − s 3 x 5 3 b a 9c2 5d4 33. b− 50. 4− 2 5 1 27. 1 2v 3 + 4r 3 − 4r u2 21. 39 x 38. 4 − 3x 3 − 2x 6 15. 3 2 15 − 28 4 5 9. 5 8 1 7 13 −3 7 3. 4 3x − 1 1 7 −2 x 3 x 2 32. 3 14 − 20. 26. 3 5 2r − 53. −2 7 9m 2+ 49. 1 6 2− 3− 45. 3 4 14. 6 5 8 37. 41. 8. 3 4 3+ 19. 2. 9—Simplify (assume no denominator equals zero). 6y + 5 5y − 8 3w + 2 4w − 9 9y 2 − 7y 27y − 18 +2 15 x − + b a + 1 b c 3d − d 3c 1 3c + 1 3d a−b a+b b2 − a 2 2wx + 6x 5wx − 45 a2 + b2 a+b c−d − 1 (a + b)2 LJ 77. 3 2 − m+ 85. x 3 w+5 w 5 w 1− 1 7 1 49 m2 − 89. a a+3 a 1 − a+3 2b b−a 3− 97. 4a b+a 1− 105. 94. b+a b−a 98. 2 x−5 − 4 5 y + 1− 4 y2 109. 8 n2 −4 − 9+ 117. 2 + 121. 1 − 125. 129. 1 1+ 2 1 x+ x 1 1 1− a−2 6 a−2 + 5 a+2 7 a2 −4 + 2 a−2 1 n+5 + −2 c2 36 c 6 − d2 5 x + 1− 4 x2 6 x2 w w−z − 1 w w−z +1 1 r+1 +1 y−3 y+2 114. 3x2 + 4x + 3 x2 + 2x + 1 1 3−a 1 n−3 2n2 −3n−5 n2 +2n−15 110. 1 x 1 x2 1 x2 −1 1 x−1 118. 1 − 122. 2 + 11a + 2 2a + 11 2 2n − 5 126. 130. 4 x 99. − 3 c2 −9 + 2 c+3 4 c+3 + 2 c−3 − −1 y2 x y x 3u2 w − 1 w 1 w 2− 1 x−y + 1 x+y 1 x−y − 1 x+y a a+1 + 1 a−1 96. 3x + 3 x+4 100. − 1 a+b 1 a + 3 a2 1+ 1 a − 1+ c c−1 − 2 a2 −1 1 a−2 8a − 3 5a − 2 1 1 2− a 2r − 5 r−2 1 1 2− 3−r y 2 +8y+15 y 2 +y−6 y+1 y−2 y 2 +2y−15 y 2 −2y−3 p+4 p−6 + u+ u−2 u 1− 3 n 1− 9 n2 n n+3 r2 − 1 s2 r+ 1 s x 5 1 2 − 2x2 5 2u u2 − 1 rs − 1 s 1 2x + 5 5 2 − 5 x+y +3 3 x+y +7 3 c+1 +1 1 c+3 +1 x x−y − 3x + 3y + 5 7x + 7y + 3 c+3 c+1 x x+y 2 xy x2 −y 2 1 2+ 2 u+1 a+1 108. c+1 2c + 1 1 1− 1 2b 6 a2 3 c2 −1 2+ x y 1 a2 −b2 1 a−b 92. 2a − 1 2a − 9 1 a+1 123. s2 −49 s2 +6s−16 88. 6 x+4 x x+1 5x + 12 2x + 5 131. x−y 3− 4+ s s+7 84. 2− 119. 2 − s−1 s−2 x x+4 5 a−2 111. 127. 80. 3 a−2 115. 2c − 3 6c − 6 2 1 − 2a 1 w2 3u2 + z z2 + z + 1 1 z+ z1 1 1 2+ 2+x 2s+4 s+8 107. x x+1 1 1+ 3 2 x − 2x − 1 +4 +1 16 x2 2+ r+1 r−1 +1 −1 9u4 − 91. 95. −2 − 4 x 1+ z w 1 3+a − −a 87. x+3 x−2 3a a2 −9 1 3−a 1 4a x− c + 6d 6 −d 3 r−1 83. 104. 106. r−2 3r − 4 20 r2 −4 1 e 1 + 2e e n−2 −5 6 y2 2 r+2 3− 113. −4 1 2a 1+ 79. 102. x2 −25 1− 1 e2 u−4 u−3 1 n−2 2 x+5 y−1 2y 2 4y 2 + 6y 1+ a 3 2 n+2 − 90. 2 u−2 u−1− n n−2 y+2 y−1 4 u−2 u−2− 101. 103. 86. 2 y y+1− 82. 7 7m − 1 4 y y+4+ 93. 78. −6x 25 w2 1− 81. 3−y y 2y − 2x2 − 9x p+1 p+2 2p2 +3 p2 −4p−12 p+2 2p2 + 3 6 c + + 1 c2 9+ 112. 116. 3 c 1 p+1 −1 1 p2 −1 +1 1−p p 1− 2 1 1− n 1− 1 1 1− 1−a 1 124. 1 − 132. 3c + 1 2 120. 1 − 128. 1 c2 x2 −4x+3 x2 +3x−18 x2 −6x+5 x2 +13x+42 a+3 a+4 + 3n − 1 n+1 1−a x+7 x−5 a+9 a−7 2a2 −5 a2 −3a−28 2a2 + 9a + 15 2a2 − 5 x−2+ 9x+11 x+3 x+5+ x−15 x+4 133. x+4 x+3 w+2+ 2 w+5 w+6+ 6 w+1 134. w+1 w+5 u−4 135. u−1− ALG catalog ver. 2.6 – page 244 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 15 u+1 u+1 u+4 136. d+3 d+5+ 4 d+1 d+1 d+3 LK Topic: Rational equations (first-degree solutions). Directions: 15—Solve. 16—Solve and check. 101—Give the restriction(s) on each variable, then solve. 1. 63 =9 y 5. − 1 4 = 6 3r −8 9. 5 =1 n−6 11 13. 3 = 7 12 4a + 5 17. 2x − 5 5 = 9 3 21. 2 7 = y+5 y 25. −2 = 6. 2 1 = 5y 10 10. 14 = −2 x−3 14. 1 = − 14 22 a 2. −48 x −11 3. 12 = 4 7. 6 3 = 8w 5 11. −1 = −4 5 8k − 1 3 4 −4 5 16 8 r+5 28 = −4 5y + 3 2 2y + 1 = 3 7 11 6 19. 9 1 = 4a + 2 2 4 −7 22. 6 2 = n 10 + n −15 23. w 2 = 3 w−2 −4 5 3 = 2p p+1 5 26. 4 1 =− 9+c 3c 27. 7 3 = 5n − 2 2n 29. m−7 3 = 3−m 5 11 2 30. 3 p−1 = 2 p−6 31. r+2 2 = r−2 7 33. 15 8 = z+3 z−4 34. w+2 w+1 = 12 13 −14 35. m−5 m−7 = 9 5 37. 2c − 3 3c − 2 = 4 5 38. 5 1 = 8h + 7 4h − 3 11 6 39. 9 6 = 2r − 3 3r − 7 41. v+1 v + 10 = v−1 v+3 42. z−5 z−1 = z−1 z−5 43. k−8 k+8 = k−3 k+3 45. 5h − 4 5h − 2 = h+2 h+4 46. 2x − 1 3x − 2 = 2x + 3 3x + 5 − 12 47. 2p + 3 2p + 2 = 7p − 1 7p − 3 49. 3d 3 = 2d2 + 2 2d − 5 50. 4 2v = 2 2v + 1 v +3 6 51. 2x 1 = 6x2 − 5 3x + 10 12 − 72 13 5 0 − 25 9 − 13 16 3 8. − 16. −2 18. 10 −15 = −3 n 5 4 2 = 33 11a 12. 4 = −13 15. 4. 8 y+3 − 32 −1 18 =2 2w + 3 20. − 3 5 1 = 9 7 − 3p − 44 15 24. k−4 1 = k 3 28. 5 7 = 3y 2y − 5 32. 2 1−y = 3 4+y 19 2 36. 4 7 = x−3 x+2 3 40. m+5 2m + 1 = 2 3 44. c−2 c−3 = c−5 c+5 48. 2z − 2 2z − 1 = z−3 z−2 52. 4 10h = 2 2h − 1 5h − 7 56. n n − −9=0 3 6 60. 2x x − = −4 15 6 120 64. 5a 3a 2 = + 7 5 7 5 2 68. c c 3c + − 10 = 3 10 5 −60 72. 1 3y + 5 4y − = 6 20 15 − 15 76. u + 11 u+3 −2= 4 3 6 − 18 5 0 7 3 6 − 25 11 −1 29 3 13 25 11 −1 14 5 − 14 53. a a − = 10 4 9 57. 7w 3w + − 26 = 0 10 5 61. 1 5 1 y− = y 2 9 9 65. z z 3z + = −3 2 3 4 72 20 10 7 −36 54. x x =1− 8 12 58. 5 5 z + z = −50 6 9 62. u u 4 = + 3 5 3 66. w 7w w + − −9=0 5 20 4 55. 24 5 −36 10 1 1 y + y = −6 2 4 59. 13 = 2r 4r + 3 7 −8 21 2 63. 2x x 5 − − =0 3 4 6 67. a 5a a = 18 − + 4 6 3 71. 3n + 2 n 2 − = 4 6 3 75. w−2 w−6 =2− 2 10 2 24 54 30 69. 2 r 2r + 11 = − 9 3 3 73. 4 + −13 −1 h+2 h+4 − =0 2 6 70. b−6 2b 3 = − 8 9 4 74. 10 = 0 a−4 a+2 + 5 2 14 ALG catalog ver. 2.6 – page 245 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 2 7 6 −3 LK 77. 1 − 4 − 3m 2m − 1 = 6 5 78. 79. 2x − 3 1 x+2 − = 6 3 4 82. 16 2y − 5 y−7 7 = + 6 4 2 83. 31 85. n−2 n−3 n+7 + = 5 3 15 87. u+5 u − 1 2(u − 4) = + 6 4 3 89. 7 5 =3− 2b b 93. 3 7 − −4=0 k k 97. 2 4 1 + = y 3y 3 101. 1 1 3 = + 4x 2x2 8x 19 6 1 10 − 45 1 − 2b b − 2 − −3=0 4 8 80. −4 10 − 16 3 81. 2c + 1 5 − 2c =2− 10 6 5 4m + 6 m − 10 13 + = 8 4 3 84. 0 4 5 86. h+1 5h − 2 3h + 1 − = 2 3 6 88. 2(w − 3) 4w − 7 9 − 2w = − 3 9 6 3 3 − +2=0 r 5r 94. 10 6 + = 12 x x 4 3 95. 17 2 =5+ c c 98. 11 3 5 = − 2n n 2 −1 99. 1 1 7 + = v 3 12 102. 2 7 5 = + x2 9x 6x2 103. 1 5 3 + =0 − x 10x2 6x 91. 4 = 3 2 5 3 + 8 h 8 9 3 2 5 a−1 + =2 a 2a 109. 9 m+4 5 − = 2m 4m 36 106. 5 − 3 9 110. 6 w − 28 = w 7w 7 17 1 3−y 1 − = 2y 4 3y 6 5 2 92. 3 2 + =1 x 5 96. 3 9 + 14 = − m m 100. 0 = 4 104. − 1 5 105. z+5 7−z 7 − − =0 4 6 4 4 90. − 65 5h − 9 4h − 8 − =4 2 3 5 9 1 6 − − 2b 4 b − 76 −6 8 2 1 = 2 − 10x 2x2 5x − 21 2 107. z−5 10 −2=− 3z z 111. 13 5 x−2 − + =0 54 6x 9x 108. 0 = 5 5 9−k − +3 4k k 112. 2 r−1 2 + = r 3r 5 116. 5 1 5 3 + = − y 3 6 y 120. 2x + 5 1 3 = − 8x2 4x 2 1 25 3 113. 1 1 4 2 = + − 3u 3 u 2 117. x−3 2 11 + = x2 5x 15x −2 9 2 1 1 7 1 − = − 6 2s 2 3s 114. 5 5 7 4 = + + 2 a 4 a 118. 10 x−2 4x − 1 x+1 x−4 x + = 0 119. − − = 3x x2 6x2 12x 3x 6x2 115. 12 2 3 1 4 3 c−1 c−2 13 + + = c 2c 4c 12 6 122. 8 x+6 x−4 8 + + = x 3x 6x 9 123. r−3 5 1 6−r − + = 3r 12 r 6r 12 124. 2n − 3 3n + 1 5n − 9 + + =0 n 2n 4n 125. 3 x + 15 = −2 x+3 x+3 126. 127. 3 3y + 16 +4= y+1 y+1 5 2d + 3 + +3=0 d−2 2−d 4 129. v 4 + −2=0 v−4 4−v 130. a a −5= a−3 a−3 1 x+3 3 + = x+5 2 x+5 Ø 131. 2t 4 = +2 t−4 t+5 −14 128. 1 2a + 5 4 =3− a−3 3−a 10 w 5 = −3 + w−5 5−w 132. 3 h = +2 h−3 h−3 136. 2 5 7 − = 8−d 3d 8 − d Ø Ø 5 134. 5 n+6 5 =− − n+2 n+2 6 135. 138. 4z 5 − = −4 z+2 z−2 7 3 4 = + a−2 2a a − 2 −2 4 137. 24 9 Ø 133. 3 10 4 3 121. 6 16 139. 3p 8 = −3 p+2 p−4 − 26 3 ALG catalog ver. 2.6 – page 246 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 5 4 31 140. w 2 − −1=0 w−4 w+5 −14 LK 141. 1 + 2y 3y = y+2 y−2 142. 3 = 143. 145. 2 − 5 4m = m+3 2m + 1 146. 1 8 2u 3u =2+ u−2 2u + 3 147. 4 1−a = −1 1+a 1−a 150. 2w w−1 −1= w−1 w+1 0 151. 154. 5x − 1 x − 3 − =4 x+2 x−2 158. 9 2 161. 1 1 2 + = y+1 y+3 y+4 163. 1 1 4 + = x−1 x−2 2x − 1 165. n 18 +1= n2 − 9 n+3 167. a 3a2 − 10 −1= 2a2 − 5a 2a − 5 169. 4 16 6 = 2 + b b−6 b − 6b 152. 8 3x − 2 −3=0 + x−3 x+3 19 y − 1 2y − 1 + y+1 y−1 3 156. 2z − 1 z − 2 − =1 z+2 z+4 3 1 2 − = p−2 p p+3 159. 160. 2 3 2 + = 2d − 3 3d − 2 d − 94 12 13 2 3 1 − + =0 k−1 k+4 k+5 5 4 164. 8 1 3 − = 2a + 3 a − 4 a+2 166. 6 4y 2 − =4 y 2 − 4y + 4 y − 2 168. c 7c2 + 8 = 2 −2 3c − 4 3c − 4c −1 170. 4 7 5 = + u2 − 3u u − 3 u −19 172. 1 2 19 + = 2 3x x − 2 3x − 6x 174. 1 3 6x − 35 = − x−3 2 2x − 6 8 176. 2y 22 = +2 2y + 3 6y + 9 − 20 3 178. 9 5 4 − 2 = r+1 r −1 1−r 10 9 180. a+1 3 4 = − a2 − 4 a+2 2−a 1 2 182. 2 5 11 + 2 − =0 y + 2 y − 4 2y − 4 4 184. 2 5 1 = − m+1 3 − 3m2 3 − 3m 10 −6 186. a − 6 5a2 − 12 6a = + 2 a+3 a−3 a −9 3 188. r+1 r r + 20 − − 2 =0 r+2 r−2 r −4 −3 6 5 3 = + + 8k k k+8 4 1 3 + = 2c + 1 c − 3 c 162. 2 4 − 17 4 1 3a 5 + − =0 7a + 14 7 a + 2 175. 5 8u − 16 −1= 2u − 1 5 − 10u q2 3 11 − 52 173. 177. 2y 4 =1− 2y − 1 3y + 1 12 5 5 1 6 + = a+3 a−3 a k2 148. 3 2n − 5 =2− n−1 n+1 155. 3 = − 12 171. x 1 + −1=0 x − 1 2x + 7 5 2 r+2 r−3 + −2=0 r−2 r+2 t 3t + =4 t − 10 t + 3 −2 − 45 18 157. 144. 3 2 −120 − 13 153. d 2d +1= d+6 d+1 −45 − 25 149. s 2s + s−3 s+5 − 38 7 6 3 4 + + =0 −9 3−q q+3 179. 4 2x − 3 5 − 2 = x−2 x −4 x+2 181. 4 4 9 = + 3 n−3 n + 3 n − 9n 183. a+2 1 9 + = 2 a − 5 a2 + 5a a − 25 185. z+3 3 z2 = − 2 z−1 z −1 z+1 187. y−4 y+4 48 = − y+4 y − 4 y 2 − 16 15 7 3 8 15 4 ALG catalog ver. 2.6 – page 247 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. − 17 3 − 17 4 2 5 3 2 − 11 2 8 LK 189. 191. c+2 2c2 + 4 c+5 − 2 + =0 c − 1 c − 4c + 3 c − 3 v 2 + 12 2v + 3 v + 6 = − − v − 20 v+4 v−5 v2 190. 5 4 46 + = 2 w+1 w+3 w + 4w + 3 −3 192. 10 5 25 + = 2 c−3 c+1 c − 2c − 3 3 194. 2 3b 3 − = 8 − b b2 − 4b − 32 b+4 5 13 3 2 193. y+3 y−2 2y 2 + 9 + = 2 y−6 y+2 y − 4y − 12 195. 2h + 7 4 3 − = h2 − 10h + 16 h − 2 h−8 9 196. 2 12x − 1 4 − = x2 − x − 6 x + 2 x−3 197. x+2 x−1 3x2 + 6 + = 2 x + 3 2x − 3 2x + 3x − 9 5 198. p2 − 3p + 6 p 3p = − 2p2 + 7p − 4 2p − 1 p + 4 199. y − 2 2y + 3 5y 2 − 3y + 5 + = 2 y + 2 3y + 5 3y + 11y + 10 200. a − 1 3a − 2 5a2 − 3a − 11 = + 2a2 + 5a + 3 a + 1 2a + 3 201. 4 2 5 = 2 + r2 + 5r − 6 r + 7r + 6 r2 − 1 −8 202. 7 6 2 − = 2 y 2 − 7y + 12 y 2 − 16 y + y − 12 203. 2 1 3 = 2 + d2 − d − 6 d + 5d + 6 d2 − 9 3 2 204. 3 4 8 + = 2 x2 + 2x − 15 x2 − 9 x + 8x + 15 205. 2 4 5 = 2 − a2 + 2a − 24 a + 6a a2 − 4a 206. 5 3 4 = 2 − c2 + 7c + 12 c + 4c + 3 c2 + 5c + 4 207. 12 7 5 + = 2 4r2 − 12r + 9 4r2 − 9 4r + 12r + 9 208. 4 2 7 + = 2 2v 2 − 17v + 30 v 2 − 2v − 24 2v + 3v − 20 209. 1 1 5 1 7 (3x + ) = (11x − 5) − (x − ) 2 3 4 3 5 210. h 4 h 2 1 (9 − ) = (5 + ) − (7h − 10) 6 h 3 h 9 211. 2 1 3w 5 (9w2 + 5) + (2w − 7) = (w + ) 6 3 2 6 212. 2 n 3 n 1 (5 + ) − (4 + ) = (10n − 13) n 4 n 3 2n 1 − 28 3 −5 46 − 51 14 ALG catalog ver. 2.6 – page 248 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 2 1 2 3 8 − 65 54 53 1 2 4 9 11 −48 LL Topic: Advanced rational equations (quadratic solutions). Directions: 15—Solve. 16—Solve and check. 101—Give the restriction(s) on each variable, then solve. 1. 4 x = x 9 5. a−2 1 = 2 a−3 9. t2 ±6 1, 4 5 −3 = 2 + 4t t − 16 2. a 5 = 5 a 6. y−2 1 = 5y − 16 y−2 10. 5 2 g2 ±5 4, 5 2 7 = 2 −9 g − 3g 3. w 5 = 20 w 7. 1 n+1 = 4n − 3 n + 13 11. −7 3 = 2 8h − h2 h + 8h 14. −20 17. 8 6 = 2 + 7k k − 49 k2 4 13 = n2 + 3n 5n + n2 15. 8 y = y 18 8. x 1 = 3x + 4 x 12. − 17 16. 3 2 18. 2w + 10 15 − 3w = w2 − 25 5w − w2 4, −1 4 3 = − 25 5n − n2 12 7 = 2 m2 + 7m m − 3m 17 − 19 9 4 8 = p2 + 6p 3p + 18 n2 ±12 −15 7 2 5 = a2 + a 2a − a2 5 3 = 2 8 − 4r r − 2r − 12 5 19. 9 1 = 6y + 12 3y − y 2 1, 21. ±2 4. −21 − 21 5 13. ±10 22. 5p + 20 6p − 24 = 2 p2 − 16 p − 4p 26. −3 k−2 = 2−k 3 24 20. 5 7 = 3a − a2 4a − 12 − 28 5 4 3 23. 3g + 6 5g + 25 = 2 g2 − 4 g + 5g 27. v − 10 −2 − =0 16 v+8 5 24. 4r + 6 r+5 = 4r2 − 9 25 − r2 28. 4 c+1 − =0 c+5 3 13 4 15 25. m−1 5 = 5 m−1 6, −4 5, −1 −6, 8 29. 2 3y − 1 − =0 y + 2 3y + 4 30. 31. 1, 5 2, − 53 33. x−3 x+1 − =0 x − 2 2x − 1 3 p−1 = p2 − 4p − 5 p−5 34. 37. r − 5 = 14 r n+4 9 = 2 n−2 n + 2n − 8 41. 4n − 3 = 38. z + 8 = 7, −2 n + 13 n+1 32. 35. 20 z 4x + 4 x = x2 + 3x + 2 x+2 36. c−8 c−3 43. 4s − 2 6 2−y −4, 1 2s − 4 −2=0 s+2 40. w − 7 = 44. y + 5 + 0, −1 45. 5 = x+5 −x x−2 46. 14 = −5, 3 0, 49. y+3 3y 2 + 2 +1= 5 2 50. 1, − 16 k − 14 + 4k k−1 1 3 − =1 x2 4x 57. c2 − 4 c−2 =2− c+3 c+3 −4, 1 4 11 w+3 8, −4 6 =0 y−2 −4, 1 d 2 = 2 5−d 47. 1 − 1, 6 48. 6 3 +1= a+2 a 52. h+8 2h + 1 +4= 6 2h −6, 1 17 4 a2 a a2 + 1 + = 8 6 16 51. 1 3 , −3 53. 2y 10 = 2 y−2 y − 6y + 8 −1, 5 39. y + 5 = 2, −10 1 2x + =0 x − 4 5x − 2 2, − 12 4 42. 5c − 4 = ±2 a 1 + =0 2a + 1 4a + 3 −1, − 14 −1, −7 ±2 −7, 1 x + 5 x − 10 − =3 5 3x 10, 54. 1 1 2 = + 2 x 3 3x 58. 6 3r +4= r−2 r−2 1, 2 Ø 1, −12 5 3 55. 5 2 + =3 x2 x 59. y+2 9y − =2 y y+4 −1, ALG catalog ver. 2.6 – page 249 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 4 5 −1, 5 3 56. 1 4 − −5=0 x2 x 60. x 2x + 1 = +2 x x+2 2, −1 −1, 1 5 LL 61. 3 2k = −3 k+5 k+1 4 3y +2= y−2 y−4 62. −9, −2 65. 63. 7 h+3 4 +3= h−1 h+1 66. 64. Ø 67. 1 2 = −2 r−2 r+1 68. 1 2,1 69. 3 1 −1= 2 a a −a 2 n−4 1 − =6 n2 + 2n n 70. −1 71. 7 10 s+2 − = s − 1 s2 − s s 2 1 1 − = w2 − 2w 3 w 74. 75. 3, −4 2, 4 4 4 +2= 2 y−1 y −y 72. 16 2 f − = f 2 − 4f f f −4 p p2 + 9 3 + = 2 p−3 p+3 p −9 Ø 80. y2 + 1 y + 3 y + = y2 − 1 y − 1 y+1 −4 82. 3x 5 2x − 24 = + x2 − 8x + 12 x−6 x−2 79. 2x2 − 3 2x − 3 10x = 2 + x+2 x −4 x−2 81. 1 10 y + =0 − y 2 − 8y + 12 y − 6 y − 2 83. 3 2w 15 = 2 − w+4 w + 3w − 4 w − 1 − 32 84. 0 = f2 f −3 3f − 5 2f + 2 + = + 4f + 3 f +3 f +1 −6 86. y2 5 y y+1 = − − 3y − 4 y+1 y−4 85. 87. 89. Ø 2 3n n + 44 + = 2n2 + 9n + 10 2n + 5 n+2 91. 0 = −4, 2 4 10 2b + 6 + + b − 9 b2 − 4b − 45 b+5 6, −2 93. 2y 4 3y + = 2 y 2 + 3y − 10 y 2 + 6y + 5 y −y−2 95. x 5 2x + = 2 x2 − x − 6 x2 + 5x + 6 x −9 97. 3n 2n 1 + = n2 + 2n − 8 2n2 + 19n + 44 2n2 + 7n − 22 99. d2 76. 78. 2 z 13 + = z + 2 z2 − 4 z−2 −1, 8 −8 −5 3d 7 2d − 2 = 2 + 2d − 3 d − 6d + 5 d − 2d − 15 Ø 11, 1 a2 x2 + 7x 36 −4= x−2 2x − 4 c − 25 c 5 + = 2c2 − c c 2c − 1 5, 6 77. 1 2,3 14 3 −5 −6 ±3 n 10 = +5 n+2 n−6 0, −2 73. 2 6 +1= a−3 a−8 2, 13 13, 6 0, −2 8 2d +2= d+3 d−2 30 18 = +1 k−3 k−4 −1 4 7 g − − g 2 + 5g + 6 g + 3 g + 2 a2 − 5 a+1 a + = + 3a − 10 a + 5 a−2 −5, −1 7, −1 88. x 3x2 x − 2 = x + 3 x − x − 12 x−4 90. 7 1 f + + =0 f − 4 f 2 − 9f + 20 f − 5 92. 2 − 4n 2 2n − = n2 + 7n + 12 n+4 n+3 94. s 1 4 − = 2 3s2 + 17s + 10 3s − 4s − 4 s2 + 3s − 10 96. 3m 4m 6 − = 2 m2 + 5m + 6 m2 + 6m + 8 m + 7m + 12 3 98. 3 5p 2 = 2 − 2p2 + 11p − 6 2p + 7p − 4 p2 + 10p + 24 −5, 100. 3a2 ALG catalog ver. 2.6 – page 250 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 0, − 73 1, 3 −2, 1 4a 5 3a + 2 = 2 + 20a + 12 a + 5a − 6 3a − a − 2 6, −3 2, 5 4 5 LM Topic: Solving for other variables (rational equations). Directions: 19—Solve for the indicated variable. 1. r r1 = ; for r1 t t1 rt1 t 2. x x0 = 0 ; for y 0 y y 3. D R = ; for r d r Rd D 4. F1 m1 = ; for F2 F2 m2 5. t t 1 + = ; for t b c b 6. n n 1 + = ; for n a b ab 1 a+b 7. k k + = 1; for k m n 8. w x + w = ; for w y y x y+1 9. c−y 2 = ; for y c+1 3 10. u a−u = ; for x x+u a−x 11. 4 5 = ; for a a−c a−d 5c − 4d 12. a 4 = ; for b a−b b+3 13. 1 1 1 + = ; for x ax bx ab a+b 14. 1 1 1 + = ; for y xy y x 15. a b + = 1; for y x y 16. b c − = a; for x x y 17. 1 1 1 + = ; for R1 R1 R2 R 18. 1 1 1 = + ; for D f D d fd d−f 19. 1 1 1 + = ; for f p q f 20. 1 1 1 = ; for t2 − t1 t2 3 3t1 3 − t1 21. p q + = 1; for p r r 22. p+x + 3 = x; for p 2 23. x y + = 1; for y a b 24. m−n = t; for n rn 25. d D E + = ; for t t t t+1 26. a b a + = ; for r r r r−1 27. 1 1 1 1 + + = ; for R R1 R2 R3 R 28. 1 1 1 1 + + = ; for R2 R1 R2 R3 RT S L 29. P = 31. V = 1 s 1 s c b+c mn m+n c−2 3 bx x−a R2 R R2 − R pq p+q r−q ab − bx a d+D E−d−D +w V ; for L 100 + − 1 t 1 t ; for s Vt−t V +1 R1 R2 R3 R1 R2 + R1 R3 + R2 R3 VS 100P − W V 30. K = 32. 1 = p ALG catalog ver. 2.6 – page 251 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. L s+ M 1 r 1 r + − 1 2 1 2 1 2 x0 y x F1 m2 m1 a a+4 x+1 by ay + c 4−x m rt + 1 ; for s ; for r u2 a a+b b 2Km − L 2L 2 + 2p 1−p R1 R3 RT R1 R3 + R1 RT + R3 RT LN Topic: Word problems involving rational equations. See also categories KD (ratio) and KE (proportion). Directions: 0—(No explicit directions.) 16—Solve and check. 40—Write an equation and solve. 39—Translate and solve. Work problems 1. Michael can mow the lawn in half an hour, and Alex can mow it in three-quarters of an hour. Suppose Michael spends 20 minutes on the job, and then Alex finishes it. How long does Alex have to work? 2. Enrique can paint the fence around his house in 12 hours. His sister can do it in 10 hours. If Enrique paints for 5 hours and then turns over the job to his sister, how long will it take her to finish? 5 hr 50 min 15 min 3. A computer operator can enter 75 data forms each hour. After the operator has been working for 20 minutes, a second operator starts working also. Two hours later, they have entered 295 forms. How long would it have taken the first operator to do the entire job? 3 hrs 56 min 4. A clerk can process 200 payroll vouchers in an hour. Another can do 160 in an hour. After the first clerk has been working for 30 minutes, the second clerk begins. How long after the second clerk begins will they have processed a total of 400 vouchers? 50 min 5. Arthur and Bradley can complete a job in 12 minutes if they work together. By himself, Bradley would take 36 minutes to do the same job. How long would Arther take working alone? 18 min 6. Working together, Edward and Frances can wallpaper an apartment in 12 hours. It would take Frances 30 hours to do the same job by herself. How long would it take Edward to do it alone? 20 hrs 7. A construction crew can frame a house in five 8-hour workdays. They can do the same job in three workdays with the help of a another crew. If the other crew worked alone, how many hours would it take to frame the house? 60 8. Simon can landscape a yard in two 8-hour workdays. He can do the same job in 10 hours if he works with Raoul. If Raoul works alone, how many hours will it take him to landscape the yard? 2 2 Together, Dan and Laura can write their wedding invitations in 9 hours. It would take Laura 15 hours to do the job by herself. How long would it take Dan to do the job? 22 1 hrs 10. Working together, Ken and Joelene can mow a lawn in 7 hours. It would take Ken 10 hours to do it alone. How long would it take Joelene to do it alone? 9. 2 11. Alice can wash and wax her car in 3 21 hours. If Bernice helped her, Alice could do the job in 2 hours. How long would it take Bernice working alone? 4 32 hrs 3 23 13 hrs 12. Rosa can shovel the snow off her driveway in 1 12 hours. If her father helped, the job would take only half an hour. How long would it take her father working alone? 3 hr 4 13. At a water treatment plant, one of the overflow tanks can be emptied in 10 hours by pipe A or in 15 hours by pipe B. If both pipes were used, how long would it take them to empty the tank? 6 hrs 14. The main water pipe can fill a spa in 4 hours. It takes a garden hose 12 hours to fill the same spa. If both the water pipe and hose were used, how long would it take to fill the spa? 3 hrs 15. Jake can put up 100 ft of fence in 12 hours. His father can do the same job in 9 hours. If they work together, how long should it take Jake and his father to put up the fence? 5 1 hrs 16. Don can hoe the garden in 6 hours. His brother, West, can hoe it in 4 hours. If they work together, how long should it take Don and West to hoe the garden? 2 2 hr 17. Nancy spent 3 hours painting her dormitory room. But her roommate, Marcia, didn’t like the color. So Marcia did the job over again in 5 hours. Working together, how long would it have taken them to paint the room? 1 7 hrs 18. Mrs. Hanson’s 1st period class set up chairs for an assembly in 25 minutes. The next day her 2nd period class did the same job in 15 minutes. How long would it have taken the two classes, working together, to set up the chairs? 9 3 min 19. According to work records, plumber A does a certain job in 8 hours, while plumber B does the same job in 6 hours. If they worked together, how long should the job take? (Round your answer to the nearest minute.) 3 hr 26 min 20. A contractor notices that crew A can stripe a certain length of road in 1 12 hours, while crew B takes 1 34 hours to do the job. If the crews worked together, how long should the job take? (Round your answer to the nearest minute.) 48 min 7 8 5 8 ALG catalog ver. 2.6 – page 252 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. LN 21. To do a job alone, it would take Mindy 3 days, Wendy 4 days, and Cindy 6 days. How long would it take to do the job if they all worked together? 22. To do a job alone, it would take Dan 6 hours, Fran 2 hours, and Stan 3 hours. How long would it take to do the job if they all worked together? 1 hr 1 13 days 23. Floyd can collate a set of papers in 45 minutes. Pheobe can do it in 50 minutes. But Anita is the fastest of all; she can do the collation in 40 minutes. How long would it take all three, working together, to do the job? (Approximate your answer to the nearest minute.) 15 min 24. Janet can enter some data into the computer in 70 minutes. Ramon can do the same work in 56 minutes. But Ira tops them both; he can do the data entry in 49 minutes. How long would it take all three, working together, to do the job? (Approximate your answer to the nearest minute.) 19 min 25. Working together, Anna, Brian, and Chelsea can complete a certain job in 3 hours. Anna can do the job in 8 hours and Brian can do it in 10 hours. How long (to the nearest quarter hour) would it take Chelsea to complete the job? 9 1 hrs 4 26. If they work together, Mark, Naomi, and Yvonne can sort some library books in 1 21 hours. Working alone, it would take Yvonne 5 hours and Mark 6 hours to do the same job. How long (to the nearest quarter hour) would it take Naomi, if she worked alone? 3 14 hrs 27. Minh can do a job in 2 hours, and Ruth can do the same job in 4 hours. How long would it take Isabel to do the job if, working together, all three can do it in just one hour? 4 hrs 28. To do a job alone, it would take Karl three 8-hour workdays and Inez five 8-hour workdays. How long would it take Melanie to do the job if all three of them can do it in one workday? (Give answer in hours and minutes.) 19 hrs 12 min 29. Working together, it takes Stuart and Tracy 48 minutes to stuff some envelopes. Doing the job alone, Stuart would take twice as much time as Tracy to stuff the envelopes. How long (in hours and minutes) would it take him? 2 hrs 24 min 30. Working together, Jeanette and her brother can deliver newspapers in 56 minutes. But, working alone, it takes Jeanette three times longer than her brother to deliver the papers. How long does it take her (to the nearest minute)? 75 min 31. Grace and Yee can take inventory of their store in 1 34 hours, if they work together. It takes Yee half as much time as Grace, if they do the work individually. How long does it take Yee (to the nearest minute)? 32. Working together, Fred and Ned can assemble 500 gadgets in 3 12 hours. Working indvidually, it takes Fred two-thirds as much time as Ned to complete the job. How long does it take Ned (in hours and minutes)? 8 hr 45 min 79 min 33. One pipe can fill a tank in 5 hours. Another can empty the tank in 8 hours. If both pipes are left open, how long will it take to fill the tank? 13 1 hrs 34. One pipe can fill a tank in 2 21 hours. Another can empty the tank in 3 hours. If both pipes are left open, how long will it take to fill the tank? 15 hrs 35. A pipe can fill a swimming pool in 20 hours, and an outlet pipe can empty it in 32 hours. How long would it take to fill the pool if the pipes are operating at the same time? 53 1 hrs 36. A pipe can fill a swimming pool in 24 hours, and an outlet pipe can empty it in 16 hours. How long would it take to empty a pool if the pipes are operating at the same time? 48 hrs 37. Mr. Jenkins can dig a ditch in one hour less time than his son. Working together, they can do the job in 32 hour. How long does it take Mr. Jenkins to do the job alone? 1 hr 38. Using a large and a small drain pipe, a fish pond can be emptied in 56 minutes. Working alone, the small pipe takes 15 minutes longer than the large pipe. How long does it take the large pipe? 1 3 hr 39. Together, Louise and Stacy can do a job in 1 hour and 12 minutes. Individually, Louise takes an hour longer than Stacy. How long does it take Stacy to complete the job by herself? 2 hrs 40. Working together, two pipes can fill the tank in 2 hours and 6 minutes. Working alone, the larger pipe fills the tank in 4 hours less time than the smaller one. How long does the larger pipe take? 3 3 4 3 hrs ALG catalog ver. 2.6 – page 253 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. LN Ratio and proportion 41. Separate 99 into two parts that are in a ratio of 4 : 7. 36, 63 42. Separate 154 into two parts that are in a ratio of 9 : 5. 99, 55 43. Separate 132 into two parts that are in the ratio 3 : 8. 36, 96 44. Separate 105 into two parts that are in the ratio 11 : 4. 77, 28 45. Jeanelle and her brother need to divide $12 in a 5 : 3 ratio. How should the money be divided? 46. Mike and his sister need to divide $24 in a 7 : 8 ratio. How should the money be divided? $11.20 and $12.80 $7.50 and $4.50 47. Mr. and Mrs Maloy are going to divide a $180 cash rebate in a 7 : 5 ratio. How should the money be divided? $105 and $75 48. Fred and Nina are going to divide a $576 tax refund in a 4 : 5 ratio. How should the money be divided? 49. Jamie and Kendra earn $42 for shoveling snow. If Jamie works 3 hours and Kendra works 4 hours, how should they split the money so each receives the correct share? $18 and $24 50. Craig and David earn $65 for doing yardwork. If Craig works for 4 21 hours and David works for 3 hours, how should the money be divided so that each receives the correct share? $39 and $26 51. Mr. Richards spends 5 hours on a consulting job and Ms. Samuels spends 7 hours on the same job. They are paid a total of $600. How should the money be divided so that each receives the correct share? 52. Mr. and Mrs. Sibayan spend 12 hours and 8 hours, respectively, on an upholstering job. They are paid a total of $740. How should the money be divided so that each receives the correct share? $444 and $296 $256 and $320 $250 and $350 53. A nickel and iron alloy weighs 144 kilograms. The ratio of iron to nickel is 3 : 1. How many kilograms of iron are in the alloy? 108 54. An aluminum and magnesium alloy weighs 26 kilograms. The ratio of aluminum to magnesium is 8 : 5. How many kilograms of magnesium are in the alloy? 10 55. A mixture of flour and sugar weighs 15 pounds. The ratio of flour to sugar is 5 : 1. How many pounds of sugar are in the mixture? 2.5 56. A mixture of oil and vinegar fills a 6 oz jar. The ratio of oil to vinegar is 7 : 5. How many ounces of oil are in the jar? 3.5 Number problems 57. The sum of a number and its reciprocal is the number. 2 or 5 5 29 10 . Find 2 58. The sum of a number and its reciprocal is the number. 5 or 1 26 5 . Find 5 19 3 . 59. The sum of a number and four times its reciprocal is 4. What is the number? 2 60. The sum of a number and twice its reciprocal is What is the number? 6 or 1 61. The difference between a number and its reciprocal is 15 4 . What is the number? 4 or − 1 62. The difference between a number and its reciprocal is 56 . What is the number? 3 or − 2 63. A number is 12 more than three times its reciprocal. Find the number. 2 or − 3 64. A number is 3 12 more than twice its reciprocal. Find the number. 4 or − 1 . 4 2 3 2 3 2 Time, distance, rate 65. A freight train travels along a regular route that is 140 mi. One day the train leaves on its route a half-hour late. In order to reach its destination on time, the train goes 5 mph faster than usual. What is the train’s usual speed? 35 mph 66. A delivery truck follows a regular route that is 270 km. One day the driver begins the route a half-hour late. In order to finish on time, she drives the truck 6 km/hr faster than usual. What is the truck’s usual speed? 54 km/hr ALG catalog ver. 2.6 – page 254 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. LN 67. An airplane travels between two cities that are 350 miles apart. One day the airplane leaves 15 minutes behind schedule. In order to arrive at its destination on time, the airplane flies 25 mph faster than usual. What is the airplane’s usual speed? 175 mph 69. Alfred drove his car 100 miles in the same time that Brigit drove her car 125 miles. If Alfred drove 10 mph slower than Brigit, find the speed of each. A 40 mph, B 50 mph 68. A ferry boat goes between two ports that are 24 km apart. One day the ferry begins the trip 6 minutes behind schedule. In order to reach the other port at the correct time, the ferry travels 8 km/hr faster than usual. What is the ferry’s usual speed? 40 km/hr 70. Silvia rode her bicycle 40 km in the same time Tracy rode 28 km. Tracy’s rate was 3 km/h slower than Silvia’s. How fast did each woman ride? S 10 km/hr, T 7 km/h 71. Judy and Karen work at the same office. Judy drives 30 miles to work and Karen drives 20 miles. Both take the same time to get there since Judy drives 15 mph faster than Karen. Find the speed of each person. J 45 mph, Susan 30 mph 72. It took Mr. H as much time to drive 180 km as it took Mr. G to drive 135 km. Mr. H’s speed was 15 km/h faster than Mr. G. How fast did each person drive? G 60 km/hr, H 45 km/hr 73. A sightseeing bus travels 40 miles to a scenic overlook. The rate returning is twice the rate going, and the travel time for the round-trip is 2 hours. Find the rate for the return part of the trip. 60 mph 74. A garbage truck drives 56 km to its destination, the city dump. If the rate returning is twice the rate going, and the travel time for the round-trip is 2 hours, find the rate returning. 84 kph 75. Sarah walked 10 km into the country. She returned walking 3 km/h slower. The total time for the round trip was 7 hours. How fast did she walk going out to the country? 5 km/hr 76. Luke cycled 36 miles to the beach. On the way back, he cycled 6 mph slower than on the way out. If the round-trip took 5 hours, what was his rate returning from the beach? 12 mph Wind and current problems 77. A canoe goes 6 miles upstream in the same time that it takes to travel 10 miles downstream. The current is flowing at 1 mph. Find the rate of the canoe in still water. 4 mph 78. A plane can fly 600 kilometers with the wind in the same time that it can fly 520 kilometers against the wind. The wind is blowing at 30 kilometers per hour. Find the rate of the plane in still air. 420 km/h 79. In still water, Lanette sails her boat at an average rate of 30 km/hr. One day, she spent as much time sailing 104 miles down a river as she did sailing 91 miles back up the river. What was the rate of the river current? 2 km/h 80. A blimp can go 32 miles against the wind in the same time that it takes to go 88 miles with the wind. The speed of the blimp in still air is 30 mph. What is the speed of the wind? 14 mph. 81. A woman can row her boat 3 21 km with the current in the same amount amount of time it takes to row 1 12 km against the current. If she rows her boat 2 km/hr in still water, what is the speed of the current? 0.8 km/hr 82. A man can swim three-fourths of a mile down river in the same amount of time it takes him to go half a mile up river. If he swims at an average rate of 2 mph, what must be the rate of the river current? 83. It takes an airplane half the time to fly 852 kilometers with a tail wind as it does to fly 1560 kilometers with a head wind. Find the wind speed, if the airplane’s speed is 408 km/hr. 18 km/hr 84. A jet flies 852 miles with a tailwind in half the time it takes to fly 1560 miles against the same wind. Find the jet’s speed, if the wind speed is 18 mph. 85. An airplane flies 900 km with a tailwind and then returns the same distance against the wind. The round-trip lasts 7 hours. If the airplane’s speed in still air is 280 km/hr, what is the speed of the wind? 86. A jet’s speed in still air is 240 mph. One day it flew 700 miles with a tailwind, and then returned the same distance against the wind. The total flying time was 6 hours. Find the speed of the wind. 80 km/hr 0.4 mph 408 mph 40 mph ALG catalog ver. 2.6 – page 255 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. LN 87. A helicopter flew 15 miles against a 25 mph headwind. Then it flew back with the wind at its tail. The round-trip lasted 27 minutes. Find the helicopter’s speed in still air. 75 mph 88. An airplane flew 200 km with a tailwind of 60 km/hr. Then it returned against the wind. The total flying time was 45 minutes. Find the speed of the airplane in still air. 540 km/hr 89. Mr. Wiley averages 12 mph when his boat is in still water. One day he goes 12 miles upstream and the same distance back. The round-trip takes two hours and 15 minutes. What is the speed of the current on that day? 4 mph 90. Maria swam one kilometer up a river and the same distance back. The workout lasted 40 minutes. If Maria swims 4 km/hr in still water, what was the speed of river current? 2 km/hr 91. Eugene can row 10 km/hr in still water. One day it took him 4 hours longer to go a certain distance upstream than the same distance downstream. If the speed of the current was 5 km/hr, how far upstream did he go? 30 km 92. Josh rows his kayak in still water at a rate of 6 km/hr. One day when the river current was 3 km/hr, he rowed a certain distance downstream and then back upstream the same distance. The entire trip took 40 minutes. How far downstream did he go? 1.5 km ALG catalog ver. 2.6 – page 256 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. MA Topic: Rational roots. See also category MB (roots of variable expressions). Directions: 6—Simplify. 1. √ 9 √ ± 64 9. √ − 121 13. 17. √ √ 2. 3 5. 6. ±8 −11 −49 225 not real 29. √ √ 324 −100 −120 √ 37. ± 5776 ±76 √ 41. − −900 45. 1 16 not real r 1 49 ± 17 53. − r 9 16 − 34 r 25 9 61. r 25 121 65. − 69. 73. r r √ √ 77. ± 0.81 81. √ 1.44 34. 38. 7. √ − 49 ±10 11. √ 169 not real 15. √ −121 6 √ √ −81 25 √ 19. ± 196 400 20 23. − 54 37 21 √ √ ±0.9 110 7056 r 1 9 1 6 54. r 4 25 2 5 r r 49 36 196 121 70. − r 169 1849 0.49 −0.05 86. √ not real 16. √ −225 ±14 √ 20. − 256 −16 √ 24. ± 900 ±30 50 −72 − 13 43 −0.2 r 1 81 r r 1 4 81 64 r r 324 289 71. r 529 1089 not real 9 8 ± 10 13 √ 0.0121 1 100 25 81 1 − 10 5 9 64 25 64. − r 121 400 r ± 85 − 11 20 81 169 r not real 1 5 r 76. 0.11 88 60. ± ±0.3 −0.01 1 25 r r 72. ± 87. ALG catalog ver. 2.6 – page 257 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. r 23 33 0.8 1000 √ 44. − −625 68. 18 17 −48 √ 7744 56. ± 47 0.06 56 40. 52. − √ 83. − 0.0001 not real √ 1000000 1 9 ±1.1 12 36. 48. √ 75. ± 0.09 √ 0.64 ±500 −56 100 169 9 √ 3136 ± 12 16 49 67. 79. 0.7 r 28. ±4 √ 32. − 2304 35 √ 43. − −289 63. ± ± 14 11 0.0036 √ 144 √ 35. ± 250000 59. 7 10 r √ not real − 76 49 100 12. 13 √ 1225 55. ± 66. ± 78. 31. 51. 1 36 √ 81 √ 27. − 5184 47. ± r 8. −7 √ 2500 − 13 50. √ ± 16 √ 39. − 3136 84 √ 82. ± 1.21 1.2 ±42 12100 √ 74. − 0.04 0.1 √ 85. − 0.0025 ±24 4. 5 625 √ 42. − −441 62. 5 11 225 144 0.01 22. √ 58. − 5 3 1369 441 14. 46. − 1 4 49. ± 57. 36 √ 25 √ 30. ± 1764 36 √ 33. − 14400 r √ 125—Which are real numbers? 3. −2 √ 26. ± 576 18 1296 √ − 4 √ 10. ± 100 18. 15 √ 21. − 10000 25. 7—Simplify, if possible. 9 13 289 576 √ 0.25 ± 17 24 0.5 √ 80. − 0.36 −0.6 √ 0.0004 0.02 84. √ 88. ± 0.0144 ±0.12 MA √ 89. ±7 25 ±35 √ 93. 10 36 60 √ 97. −6 144 −72 p 101. (27)2 27 105. p (−80)2 p (7)2 113. − p (−44)2 q (− 35 )2 121. − 125. −7 p (1.7)2 p (−6)4 −1.7 36 p (−3)8 133. ± p 25(64) √ 141. − 145. p √ 149. ± 49 · 121 (25)(49)(16) 82 · 32 p −140 p (50)2 −50 114. − p (−5)2 −5 q ( 72 )2 ±40 7 2 122. − p (−42.6)2 126. − p (3)6 p (2)14 √ 142. 150. 144 · 9 −42.6 p ±27 70 6 108. 111. − p −16 112. − p (36)2 115. − p 116. − p (−90)2 −90 119. − q − 14 120. − q 2 (− 10 7 ) − 10 7 0.08 124. p 128. p 123. (16)2 (−72)2 ( 14 )2 p (0.08)2 p (−9)4 p (2)10 ±12 139. p (16)(81) 120 143. ± p (6)2 (7)2 ±42 √ 147. − 52 · 112 52 · 32 · 62 90 151. p ALG catalog ver. 2.6 – page 258 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −81 (−8)2 (4)6 136. 36 140. − ±144 −55 (4)2 (3)2 (7)2 84 −36 0.39 64 p (10)8 √ 64 · 36 −20 (4)(81)(64) 8 (−0.39)2 132. − p 36 · 100 · 4 √ −72 32 √ 135. − 4 · 100 36 p 54 131. 128 √ 92. 4 49 28 √ 96. −7 64 −56 √ 100. ±4 256 ±64 p 104. (45)2 45 99 (−54)2 127. − −27 p (36)(4) √ 146. ± 24 (4)2 (2)2 (5)2 p 138. ± 77 15 110. − 134. ±40 150 107. 130. −81 22 32 118. 3 5 129. − 137. −44 √ 91. 11 81 √ 95. ±9 9 √ 99. 5 196 p 103. (6)2 −12 (−32)2 106. 80 109. − 117. √ 90. −3 16 √ 94. 2 121 √ 98. 10 225 p 102. (15)2 −10000 48 p 9(49) 144. √ 49 · 9 · 25 148. p (9)2 (4)2 −21 105 36 √ 152. − 32 · 72 · 52 −105 MB Topic: Simplifying square roots. Directions: 1. 5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 45. 6—Simplify. 7—Simplify, if possible. 125—Which are real numbers? √ √ √ √ ± 12 ±2 3 2. 18 3 2 √ √ √ √ 32 4 2 6. − 45 −3 5 √ √ √ √ − 60 −2 15 10. ± 72 ±6 2 √ √ √ √ 96 4 6 14. 99 3 11 √ √ √ √ − 120 −2 30 18. 132 2 33 √ √ −117 not real 22. − −68 not real √ √ √ √ 147 7 3 26. ± 160 ±4 10 √ √ √ √ 250 5 10 30. − 288 −12 2 √ √ √ √ ± 800 ±20 2 34. 825 5 33 √ √ √ √ 4851 21 11 38. − 2548 −14 13 √ √ √ √ ± 6174 ±21 14 42. 6075 45 3 √ √ √ √ − 4335 −17 15 46. 6760 26 10 √ √ 49. 6 8 12 2 √ √ 53. ±5 75 ±25 3 √ √ 57. 5 108 30 3 √ √ 61. 11 135 33 15 √ √ 65. 3 5103 81 7 5 √ √ 69. ± ( 99 ) ±5 11 3 √ 50 √2 73. 3 15 r 1 √5 1 77. 4 2 r 3 √ 81. ± 3 ± 35 10 5 √ √ 85. − 0.72 −0.6 2 √ √ 14.4 1.2 10 89. p √ 93. (10)3 10 10 97. ± p (3)7 √ 101. −5 −72 105. − p √ ±27 3 not real (5)4 (3)3 √ −75 3 √ √ 50. ±2 24 ±4 6 √ √ 54. 10 40 20 10 √ √ 58. −2 98 −14 2 √ √ 62. −4 117 −12 13 √ √ 66. ±4 6804 ±72 21 70. 74. 78. 82. 86. 90. 94. 4√ √ 50 4 2 5 √ √ 44 ± ± 211 4 r √ 3 − 2 − 211 4 r 1 5√ 8 3 3 3 √ √ 0.32 0.4 2 √ √ ± 0.24 ±0.2 6 p √ (5)5 25 5 98. − p (2)11 √ 102. 6 −150 106. p (6)3 (3)6 √ −32 2 not real √ 162 6 10—Simplify (assume variable expressions are positive). 3. 7. 11. 15. 19. 23. 27. 31. 35. 39. 43. 47. √ √ − 20 −2 5 √ √ 48 4 3 √ √ 84 2 21 √ √ ± 112 ±4 7 √ √ 135 3 15 √ − −136 not real √ √ − 198 −3 22 √ √ ± 300 ±10 3 √ √ 936 6 26 √ √ 2511 9 31 √ √ − 3456 −24 6 √ √ ± 6534 ±33 6 √ √ 51. −5 27 −15 3 √ √ 55. 3 88 6 22 √ √ 59. ±6 128 ±48 2 √ √ 63. ±2 150 ±10 6 √ √ 67. 2 1728 48 3 1 √ √ 71. − ( 80 ) − 5 4 √ 76 √19 75. 5 10 r √ 8 79. ± 3 ± 335 9 r 2 2√ 83. 2 6 3 3 √ √ 87. ± 0.27 ±0.3 3 √ √ 91. 2.42 1.1 2 p √ 95. − (7)3 −7 7 99. p (5)7 103. − p 107. ± p ALG catalog ver. 2.6 – page 259 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ 125 5 (−5)5 not real (10)5 (2)4 √ ±400 10 4. 8. 12. 16. 20. 24. 28. 32. 36. 40. 44. 48. √ √ 28 2 7 √ √ ± 52 ±2 13 √ √ 90 3 10 √ √ − 125 −5 5 √ √ ± 140 ±2 35 √ −198 not real √ √ 242 11 2 √ √ 405 9 5 √ √ − 1350 −15 6 √ √ ± 3744 ±12 26 √ √ 3825 15 17 √ √ 3549 13 21 √ √ 52. 3 32 12 2 √ √ 56. −3 54 −9 6 √ √ 60. 9 112 36 7 √ √ 64. 3 162 27 2 √ √ 68. −5 3312 −60 23 72. 76. 80. 84. 88. 92. 96. 3√ √ 68 3 17 2 √ 117 √ − − 13 3 r 4 √22 2 3 9 r 2 √ − 2 − 47 7 7 √ √ 0.54 0.3 6 √ √ − 1.6 −0.4 10 p √ ± (6)5 ±36 6 100. p 104. p 108. p (2)15 √ 128 2 (−10)3 (8)4 (3)3 not real √ 192 3 MB 109. p 113. p 117. 121. √ 48 3 (6)3 (2)5 √ 240 30 (2)6 (6)3 (5)3 √ 2 3 144 √ 137. ± a2 161. m6 p 165. p √ 126. 130. p8 138. ±p4 p4 q 2 r 6 x3 p y7 177. √ 193. ± 197. −p2 qr3 √ −ab2 ac √ 5p2 p 182. 115. p (2)3 (10)3 (9)2 √ ±4q r √ 3xz 2yz √ √ 198. 159. 171. 206. 175. − 5x − 5y 116. − p (3)5 (2)8 (7)3 −5x3 36y 8 p y5 120. p√ 124. √ 9c2 136. 7ab5 p 64y 6 ±3d2 8y 3 √ a5 √ ±m4 m 168. p √ x2 yz y √ −10y 3 y −7k 4 √ 160. ± 121k 6 m8 164. 100y 7 −9x √ 144. ± m12 ±m6 √ 148. a30 a15 √ 152. 64d10 8d5 p 156. − 4m2 p6 −2mp3 √ −y 2 y p 3c √ 140. − 49k 8 6y 4 x4 y 3 z 2 √ 5 2 2500 ±11k 3 m4 √ a2 a p15 √ p7 p √ 172. ± hk 6 m9 √ ±k 3 m4 hm √ 176. ± 144m √ ±12 m √ k 2 10 √ 179. ± 3x3 18y 2 √ 3y 2 183. √ 45a4 √ 3a2 5 √ 184. − 24c6 √ −2c3 6 20m √ 2 5m 187. √ 27r5 √ 3r2 3r √ 188. ± 32k 7 √ ±4k 3 2k 191. p 10k 4 p 9x4 y 3 √ −3xy 3 6 √ 3x2 y y 12ab5 c4 √ 2b2 c2 3ab p 40x10 y 3 z 5 √ 4a2 √ 49a2 b10 p p (30)3 (2)7 √ 128. − 81x2 √ 132. ± 9d4 7m √ 167. ± m9 √ p3 w2 rpw p 54x2 y 6 √ p 163. − √ 2x x p √ wx4 y 2 214. p (10a2 d)2 p √ ±2k 2 m4 6k √ −kn2 5k 125m8 r12 p2 180. − 192. 207. ± p 81w20 x11 y 27 a2 (a2 + 1)2 a3 + a 211. p (7x3 )4 215. p (b − c)2 (b + c)2 b2 − c2 ALG catalog ver. 2.6 – page 260 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 49x6 √ 44cd7 √ −p3 2p √ 2d3 11cd √ −2ab 5b √ 200. ± 3h8 m2 √ ±h4 m 3 204. √ 75u9 w6 z 14 √ 5u4 w3 z 7 3u √ 208. − 144a26 cd17 √ −12a13 d8 cd √ ±9w10 x5 y 13 xy 10a2 d p 2p7 √ 196. − 20a2 b3 √ 5m4 r6 p 5 √ 14a9 b15 c7 c p √ 2m2 p 10mp 40m5 p3 √ 199. − 5k 3 n4 203. 196a18 b30 c15 210. √ ±x 3x √ 195. ± 24k 5 m8 √ ±2x5 yz 2 10yz 6z 25(x − y)2 194. 4x3 ±2y √ a12 a6 √ 147. ± x20 ±x10 √ 151. − 144m12 −12m6 √ 155. c4 d2 c2 d √ −a5 a rp7 w5 4y 2 143. √ ±p p p 202. ± √ 11kn12 r4 nr (6z)2 139. w4 p p3 p √ 135. − 25x6 ±k 3 w2 x8 y 4 190. − 121kn25 r5 p w8 √ 2 2 64 √ 49m2 √ 131. 16a4 p √ 5a2 b 2 16rq 2 127. √ 360 5 √ ±480 15 112. ± √ −1008 21 p√ 4c √ 186. √ −4ab4 c6 3a 213. √ √ −2p 3p 12p3 18x2 yz 3 p 170. 178. √ ±2x 2 p 209. 158. 174. √ m 6 50a4 b2 p √ (3)3 (15)3 123. ± x10 x5 √ 146. − r18 −r9 √ 150. ± 81c10 ±9c5 √ 154. 9a2 b2 3ab 142. √ 201. − 48a3 b8 c12 205. p 119. x2 √ 166. − a11 √ 181. ± 8x2 189. x4 √ y3 y 6m2 p √ √ 135 5 111. −x 16c2 162. ± 25p5 185. − √ √ 2 5 400 √ x x p √ p√ √ 134. ± k 6 m3 √ 169. − a3 b4 c 173. p (4)3 (8)2 (3)3 √ 122. − x2 a √ 141. − b10 −b5 √ 145. b16 b8 √ 149. 121a14 11a7 p 153. ± x2 y 2 ±xy 157. − 114. ± 118. √ 125. ± 25d2 ±5d p 129. − y 4 −y2 133. p (5)5 (10)3 √ ±192 3 p√ √ √ −1250 2 110. − 212. p 216. p (2y)6 8y 3 (w + 4)2 (w − 4)2 w2 − 16 MB 217. √ 16y + 48 221. p 225. p (x − 5)2 218. x−5 222. p 226. p 50(5p − 2)2 √ (25p − 10) 2 229. √ x2 − 12xy + 36y 2 234. 237. 230. p a+2 p x − 6y 241. 245. y 2n √ x6a+2 p 50m − 175 (a + b)2 √ 5 2m − 7 a+b x3 (x + 3)2 (x2 a2 + 4a + 4 233. √ √ 4 y+3 √ √ 219. √ n3 + 2n2 223. p (y + 1)3 227. p n5 (m + 1)3 231. p y 2 − 6y + 9 235. √ 9d2 − 24d + 16 √ + 3x) x (mn2 x2 − 2x + 1 x−1 4a2 + 20a + 25 238. yn x3a+1 x2n y 8n+1 √ xn y 4n y 242. 246. x4a √ a5 − a4 √ (y + 1) y + 1 224. p 228. p √ nm + 1 y−3 y 2m−10 a2n+1 b4n y m−5 √ an b2n a (r − p)3 √ (r − p) r − p 48(c + d)3 232. √ c2 + 10c + 25 236. √ 100w2 − 20wz + z 2 10w − z 2a3n 243. √ x4a+1 247. √ r3x ALG catalog ver. 2.6 – page 261 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ a2 a − 1 √ (4c + 4d) 3c + 3d + n2 ) √ 239. 4a6n x2a p √ 220. 3d − 4 2a + 5 √ √ n n+2 √ x2a x √ rx rx √ 240. 25r2x 5rx 244. √ k 6n+1 √ k 3n k 248. √ a5n+2 √ a2n+1 an c+5 MC Topic: Multiplying square roots. Directions: 6—Simplify. 3—Multiply. 7—Simplify, if possible. 10—Simplify (assume variable expressions are positive). 1. 5. 9. √ 11 · √ 11 11 √ (− 36 )2 36 √ ( 5 )2 18. 22. √ √ 25. (− 12 )(− 15 ) √ √ 29. − 50 · 18 7· √ √ ( 81 )2 15 81 √ 14. (− 3 )8 −100 √ √ 6. 12 · √ √ 6 5 √ √ 3· √ 3· √ 14 3 √ √ − 6· 6 7. √ ( 25 )2 √ 15. ( 5 )6 81 13 √ 39 25 21 √ 3 7 √ √ 26. − 50 · 15 14 √ √ 27. ( 39 )( 52 ) 31. 60 √ √ √ 34. (− 5 )( 7 )(− 10 ) √ √ ( 22 )( 22 ) 8. √ −( 9)2 √ √ 45 · 125 22 −9 26 √ 16. −(− 2 )10 125 √ √ √ 5· 2 10 √ √ 23. ( 6 )(− 30 ) √ −5 30 4. √ 12. ( 26 )2 19. −32 √ √ √ 11 · 7 77 √ √ √ 24. − 11 · 22 −11 2 20. √ −6 5 √ 26 3 28. √ √ 35 · 14 √ 7 10 √ √ 32. (− 128 )(− 8 ) 75 √ √ √ 35. ( 6 )(− 20 )( 3 ) √ 5 14 √ √ √ 37. (− 10 )( 3 )(− 30 ) −6 11. (− 14 )2 −7 √ √ 30. ( 75 )( 48 ) −30 7 √ 3. √ 10. −(− 7 )2 5 √ √ 7· 3 21 √ √ √ 21. ( 14 )( 7 ) 7 2 33. √ √ (− 15 )(− 15 ) √ √ 13. −( 10 )4 17. 2. 36. √ √ √ 10 · 5 · 6 32 √ 10 3 √ −6 10 √ √ √ 38. − 6 · 18 · 3 −18 39. √ √ √ 7 · 5 · 35 √ √ √ 40. ( 24 )(− 2 )( 12 ) 35 −24 30 √ √ √ −49 7 41. (− 7 )5 √ 45. ( 2 )11 42. ( 3 )7 √ 46. (− 2 )15 √ 32 2 √ √ 49. −2 6 · 84 √ −12 14 √ √ 53. (3 24 )( 34 52 ) √ 9 78 √ √ 27 3 43. −(− 21 )3 √ 47. ( 3 )9 √ −128 2 √ 44. ( 34 )3 √ 21 21 √ 34 34 √ 48. −(− 5 )7 √ 81 3 √ √ 50. ( 45 )( 13 10 ) √ 5 2 √ √ 51. (− 32 2 )(− 60 ) √ √ 54. −8 108 · 2 6 √ −288 2 √ √ 55. (7 54 )(− 20 ) √ 3 30 √ 125 5 52. √ √ 22 · 3 33 56. 1 3 60. 2 7 √ √ √ 33 6 √ 72 · 10 99 √ 60 22 −42 30 √ √ 57. 2 40 · 140 √ √ 58. (− 35 133 )(−5 7 ) √ √ 59. ( 66 )(−2 132 ) √ √ 61. (− 12 11 )(−4 6 ) √ √ 62. 8 2 · 3 3 √ √ 63. 6 3 · 23 5 √ 65. (3 6 )2 √ 66. (−5 10 )2 √ 40 14 √ −132 2 √ 21 19 √ 24 6 √ 2 66 54 √ √ √ 69. (−7 2 )(3 10 )( 5 ) √ √ 67. −(8 2 )2 250 √ √ 70. ( 6 )(2 3 )(6 2 ) √ 22 15 77. √ x· √ x a3 d · √ 93. ( y )8 √ ad7 y4 4c7 a2 d4 86. √ √ t· √ t5 27x5 · √ 3x7 9x6 p √ 90. ( xy )( x3 y 9 ) √ 94. ( m )2 √ √ √ 76. ( 38 )(3 18 )(2 2 ) √ 36 38 m √ √ 5w · 5w x2 y 5 87. p 10p3 · √ ALG catalog ver. 2.6 – page 262 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. q2 84. z5 10p √ √ 91. ( c7 n )( c5 n ) √ 95. ( q )4 √ √ 80. ( a )( a ) 5w √ √ 83. ( z 3 )( z 7 ) t3 48 √ √ 72. (−2 6 )( 34 24 )(− 16 ) √ 79. √ 12 6 √ 144 5 3y 63 128 √ √ √ 75. (−3 3 )(−4 5 )(2 12 ) √ −15 210 82. r2 √ √ 85. ( 2c9 )( 8c5 ) √ √ √ √ 74. ( 32 6 )(−5 14 )( 10 ) √ √ 78. ( 3y )( 3y ) x √ √ 81. ( r3 )( r ) 89. √ 68. (4 3 )2 −128 63 √ √ √ 73. (6 11 )( 33 )( 31 5 ) √ √ −20 26 √ √ 71. (3 28 )( 14 36 )( 7 ) −210 168 · √ √ 64. (5 2 )(−4 13 ) √ 4 15 √ 72 √ 10p2 c6 n √ √ k · k7 a k4 √ √ 88. ( 6z 7 )( 6z 3 ) 92. √ √ rs9 · rs5 √ 96. ( h )6 h3 rs7 6z 5 MC √ 97. ( n5 )4 101. ( 105. p √ 2p4 )12 5k · √ √ 98. ( a2 )14 n10 √ k 15 3k √ √ 12a7 · 21a p p 113. 7p3 · 7p4 109. 117. 121. √ 7p3 p p 33y 3 √ √ √ 11y 2 3y 6bw4 · √ 12b4 w2 2w 106. √ 6a4 7 p 11y 2 · 102. ( 64p24 110. 114. 118. 48b7 w 122. p 5y 3 )6 √ √ √ √ √ s3 · √ 18d · √ 24t5 · √ 13mp · 120x5 √ 10k k 5k p 107. √ 6d5 3 √ 18t2 52mp2 √ √ 125. 4 2x9 · 3 50x √ s2 11 6d9 √ 12t3 3t 52mp3 √ √ 126. 5 15a3 · 2 15a3 √ 28ay 2 · 2 63a5 p 130. 3 p 44p3 r4 · √ √ 133. x 3x · 6x2 √ 3x2 2x 134. y p 2y 3 · y √ 10y 4 y √ √ 137. 2a 10a · 3b 2ab2 a· 18pr √ a2 + a 50y 2 √ √ 138. cd c3 d · 5d 24d3 √ 12a2 b2 5 √ p 142. √ 3· √ √ n4 10 √ √ 10x3 · 15x3 √ √ 115. 19s · 19s2 √ 5x3 6 √ 19s s 119. √ √ 8x · 12x6 123. √ √ 40a2 c · 10a3 c2 √ 4x3 6x √ 20a2 c ac 100. ( p 104. ( p 108. √ 3 n−5 y 20 10q 7 )4 100q 14 √ √ 2u · 3u5 √ u3 6 √ √ 8m · 20m √ √ 116. 2u2 · 8u3 √ 4m 10 112. √ 4u2 u 120. √ √ 14k 7 · 35k 2 124. p √ 7k 4 10k 24r2 y 3 · √ 6ry √ 12ry 2 r 108y 4 √ √ 128. 7 5w · 3 5w5 105w3 √ √ 32bx5 · 4 2b2 x √ √ 132. 5 5h2 · 72hk 4 135. √ √ 18a3 · a 8a √ √ 136. m m5 · m 12m √ 32bx3 b p 12a3 p 3xy 3 · 2 12xy 2 √ 30hk 2 10h √ 2m5 3 √ √ 140. 4r 20n3 r · r 5nr √ 72xy 2 y 3n − 15 y 4 )10 131. 139. 6y √ 10c2 d4 6c √ a a+1 √ √ 10n7 · n 111. √ 18p2 r2 22r 84a3 y 141. √ 32w10 p √ 127. 2 27y · 6 3y 7 150a3 129. x28 √ 103. ( 2w2 )10 125y 9 11s 20k 2 · √ 99. ( x7 )8 a14 143. √ √ 2n2 − n · n 40r3 n2 144. √ √ 5k + 10 · 5 148. √ √ w+4· w−4 √ 5 k+2 √ n 2n − 1 145. 149. √ √ x+y· √ 6x + 3y · p 3 4x2 − y 2 x+y √ x+y 6x − 3y 146. 150. √ √ k−3· √ k−3 √ a − ab · a + ab √ a 1 − b2 k−3 147. √ √ a−b· a+b √ √ √ 151. 12u − 4 · 12u − 4 4(3u − 1) ALG catalog ver. 2.6 – page 263 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ a2 − b2 152. w2 − 16 √ √ 5p + 10r · 5p + 10r 5(p + 2r) MD Topic: Dividing square roots. Directions: 6—Simplify. 4—Divide. 7—Simplify, if possible. 9—Simplify (assume no denominator equals zero). 10—Simplify (assume variable expressions are positive). √ √ 4. 1 √ 21 √ 21 21 8. 10 √ 10 √ 12. √ 72 √ 18 16. √ 90 √ 5 20. √ 7 13 √ 5 2 24. 15 √ 3 7 14 28. 1 √ 12 √ 6 3 15 √ 2 5 √ 3 5 2 32. 10 √ 3 2 √ 5 2 3 35. √ 96 √ 54 4 3 36. √ 48 √ 75 4 5 2 2 39. 6 √ 48 40. 25 √ 75 √ 5 3 3 √ 2 42 7 43. √ 5 3 √ 6 10 44. √ 11 2 √ 5 22 47. √ 132 √ 48 48. √ 84 √ 60 105 5 51. √ 5 260 √ 65 52. √ 2 600 √ 80 √ 4 3 5 55. √ 96 √ 240 56. √ 90 √ 6 126 59. r 1 117 60. r 1 88 √ 22 44 63. r 7 2 64. r 6 11 √ 66 11 67. r 11 132 68. r 21 168 5 5 2. 1 √ 17 √ 11 6. 6 √ 6 10. √ 125 √ 5 14. √ 48 √ 6 18. √ 5 √ 17 22. 5 √ 15 26. 1 √ 3 10 30. 2 √ 3 6 34. 30 √ 20 38. 4 √ 32 42. √ 6 14 √ 7 3 46. √ 75 √ 10 50. √ 7 12 √ 140 54. √ 3 112 √ 5 21 58. r 1 11 √ 11 11 62. r 13 10 √ 130 10 66. r 19 133 1. 1 √ 5 5. 11 √ 11 9. √ 27 √ 3 13. √ 60 √ 3 17. √ 7 √ 11 2 √ 10 √ 21. 1 √ 5 2 √ 25. 29. 5 √ 2 15 33. 24 √ 8 37. 8 √ 50 41. √ 8 15 √ 5 2 45. √ 70 √ 105 49. √ 9 75 √ 108 53. √ 5 21 √ 7 70 57. r 1 5 √ 5 5 61. r 5 3 √ 15 3 65. r 17 85 3 √ 2 5 √ 77 11 10 5 2 10 √ 15 6 √ 6 2 √ 4 2 5 √ 4 30 5 √ 6 3 15 2 √ 30 14 √ 5 5 17 17 √ 6 5 √ 2 2 1 √ 7 7. 23 √ 23 11. √ 98 √ 2 15. √ 54 √ 2 19. √ 2 11 √ 3 5 23. 24 √ 6 1 √ 28 √ 27. 31. √ 85 17 √ 15 3 √ 10 30 √ 6 9 √ 3 5 √ √ 30 2 √ √ 7 7 √ 7 7 3. ALG catalog ver. 2.6 – page 264 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ 23 7 √ 3 3 √ 2 55 15 √ 4 6 √ 3 2 √ 30 12 √ 11 2 10 √ 10 5 √ 13 39 √ 14 2 √ 3 6 10 2 √ 3 2 √ 7 26 10 √ 5 3 √ 11 5 √ 35 5 √ 30 √ 35 42 √ 2 4 MD √ 4 2 5 69. r 32 25 73. r 1 · 6 77. r 4 1 · 5 2 81. a √ a √ 85. 7y √ 7 89. y √ 10y 93. a3 √ a 97. a2 √ a5 √ 3 2 70. r 27 36 74. r 2 · 3 78. r 9 5 · 10 9 a 82. x √ x √ √ y 7 86. r r 8 49 75. r 3 · 4 79. r 4 14 · 7 3 83. 1 √ m √ x 15p √ p √ 15 p 87. 2c √ 2 √ c 2 3 √ 3k √ 90. 91. 2 √ 2w 94. x2 √ x 95. u4 √ u9 98. c3 √ c11 99. p5 p p5 √ 1 3 2 6 √ 10 5 √ 10y 10 √ a2 a √ a a √ r 44 102. p 11y 3 3x 105. √ 15x3 √ 15x 5x 12u2 106. √ 8u 18u3 109. √ 24u7 √ 45n2 113. √ 5n7 √ 40k 117. √ 20k 11 √ 3 6u 2u 20a9 110. √ 45a5 √ 8c6 114. √ 32c9 p 6y 9 118. p 2y 4 121. √ 5 2d3 √ d d5 1 125. √ xy √ 5 2 d2 √ cd2 129. √ c3 d 4 15a4 b 133. √ 3ab √ c c 3r4 p5 137. p 12r2 p3 √ a2 x5 141. √ 3a7 x3 √ c a3 √ 4 11y y2 √ 3u 2u √ 4a6 3a 3 1 √ 4c c √ y 2 3y √ 6 x √ √ r3 p3 3p 2 √ x 3a 3a3 √ x2 y 6m2 n 134. √ 6m3 n 12a3 b5 138. √ 26a7 b2 √ 142. √ 2hk 7 12h4 k 5 √ 6mn √ 6b4 26a 13a √ k 6h 6h2 √ 6 5 72. r 24 100 76. r 1 · 5 80. r 4 3 · 3 7 1 √ y √ 84. 88. 11y √ y √ 11 y c √ 7c √ 92. √ u u 96. d7 √ d5 √ y4 y √ p2 p x3 100. √ x3 √ x x r √ 10 4 5 6 √ 2 6 3 m m √ 2w w r √ 21 15 7 15 √ 2 7 7 y y 7c 7 √ 12 5b 5b2 14 104. √ 7w5 √ 2 7w w3 9r3 107. √ 18r5 √ 3 2r 2 33y 4 108. √ 11y √ 3y 3 11y 2k 7 111. √ 40k √ 32u8 115. √ 2u5 p 18p5 119. p 36p2 √ k 6 10k 10 103. √ 24 20b3 √ 2u u √ p 2p 2 √ 2k 3k 8 123. √ 12k 3 c 127. √ cd ab ab x3 y 130. p x2 y √ 5a3 3ab √ 2 2 √ 6x2 x 122. √ 6x7 1 126. √ ab xy xy 5 2 √ x x 5x 15x3 √ 2 k5 √ 15 8 3k k 5 101. √ 45x5 √ 3 n n2 √ 2 2 7 71. √ k3 k √ cd d ab 131. √ a5 b √ b ab a2 2c5 d3 135. √ 8cd5 18mp5 139. p 3mp3 √ 32uw4 143. √ 2u5 w ALG catalog ver. 2.6 – page 265 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ c4 2cd 2 √ 6p3 3mp √ 4w w u2 112. √ √ 2 3m 3m3 6m3 27m11 √ 2x6 116. √ 50x3 √ 5n3 120. √ 35n7 √ x x 5 √ 7 7n2 √ a a3 √ 4 6a √ a2 6 24 m 128. √ mp √ mp p 124. u2 w 132. √ uw3 x2 y 136. p 7x6 y 30x3 y 2 140. p 6x3 y √ 144. 54c3 d3 √ 3cd6 √ u uw w √ 7y 7x √ 5xy 6xy √ 3c 3d d2 MD √ a a 145. r 1 a 149. r 45 8y 153. r x4 6 157. r 5c2 15c7 161. r 3m 4n 165. r c2 d3 169. r ab4 8 √ b2 2a 4 r st6 √ 173. r 177. r 4xy 2 3z 5 181. s 54x6 z w3 y 4 r 25 x √ 3 10y 2y 150. r 75c 28 √ x2 6 6 154. r 21 a2 √ 3c 3c3 158. r 22r5 14r3 √ 3mn 2n 162. r 16k 7n 166. s h6 p7 170. s 48x2 y √ 4x 3x y 174. r k9 m2 n √ k 4 kn mn 178. r 72b a7 c2 √ 6 2ab a4 c2 182. r ab8 5c2 d 1 a−1 √ c d d2 rs st3 1 185. √ x+y 189. s 197. √ 2y 3xz 3z 3 √ 3x3 6wz w2 y 2 √ x+y x+y 20p3 + 8p2 5p + 2 √ c+d 193. √ c2 − d 2 r √ 5 x x 146. 2p √ c−d c−d 4ab2 − 8b3 a2 + ab − 6b2 √ 2b a + 3b a + 3b 186. √ 190. r r 1 4d 152. r 49u 44 156. r 8 w5 160. r 30y 18y 2 164. r a 11b √ 11ab 11b m m2 n2 168. r 1 x8 y √ y x4 y 90 cd3 √ 3 10cd cd2 172. r z5 32w √ z 2 2wz 8 175. r xy 7 z5 √ y 3 xyz z3 176. s n2 r 3 p √ nr rp p 179. r c2 d 6a3 √ c 6ad 6a2 180. r u3 w8 88r √ uw4 22ru 44r √ b4 5ad 5cd 183. s m2 n2 40r4 p3 184. r 7s5 t 2u2 w √ s2 14stw 2uw √ a−1 a−1 a−b 187. √ a−b p 3 151. r 50 9m 155. r p3 5 √ r 77 7 159. r 12a 20a9 √ 4 7kn 7n 163. r 5x y 167. r 1 m3 n4 171. r √ 5 21c 14 √ 21 a √ h3 p p4 198. √ √ y+5 y 2 + 4y − 5 m2 − 1 m2 − 5m − 6 m2 − 7m + 6 m−6 3p 3 √ 2 5m 3m √ p 5p 5 √ 15 5a4 √ 5xy y √ √ mn 10p 20r2 p2 √ √ y−1 y−1 195. a−b a2 b − ab2 r c2 − d 2 199. p (c − d)3 ALG catalog ver. 2.6 – page 266 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 ab x−2 2 x − 4x + 4 d 2d √ 7 11u 22 √ 2 2w w3 √ 15y 3y n+2 188. √ n+2 a−b √ n2 − 25 √ n+5 196. r 200. x2 + 4xy + 4y 2 p (x + 2y)5 √ x−2 x−2 √ c2 − d2 c−d √ n+2 192. √ 191. √ √ w+3 r √ 148. r w2 − w − 12 w−4 194. p √ 147. √ n−5 r+3 2 r + 6r + 9 √ x + 2y x + 2y √ r+3 r+3 ME Topic: Adding and subtracting square roots. Directions: 6—Simplify. 1—Add. 2—Subtract. 7—Simplify, if possible. 10—Simplify (assume variable expressions are positive). 98—Perform the indicated operation(s). 1. 5. 9. √ 81 + √ √ − 5− √ 9 √ 2. 12 √ −2 5 5 √ 11 + 4 11 √ 3− √ 3 49 − √ √ − 15 − 36 √ 1 √ −2 15 15 √ √ 10. 10 6 + 2 6 √ 5 11 √ √ 13. − 35 − 4 35 17. 6. √ √ −5 35 14. 18. 0 √ √ 21. − 17 + (− 17 ) √ √ √ 2−4 2 19 − √ 0 √ √ 22. − 5 + (− 5 ) √ √ 16 − 25 7. √ √ 14 + 14 √ −2 5 4. √ √ − 121 + 64 √ 2 14 8. √ √ 7+ 7 √ 4 7 √ √ 12. 8 23 − 23 −1 √ √ 11. 7 7 − 3 7 √ 12 6 √ −3 2 19 3. −3 √ 2 7 √ 7 23 √ √ 15. 7 21 − 11 21 √ −4 21 √ √ 16. −18 5 + 10 5 √ √ 19. − 7 − (− 7 ) 0 √ √ 20. − 13 − (− 13 ) √ 2 10 24. √ √ 6 − (− 6 ) 28. √ √ 7− 6 32. √ √ √ 6−3 6−7 6 23. √ √ 10 − (− 10 ) √ −8 5 0 √ 2 6 √ −2 17 25. √ 10 + √ 5 26. same √ √ √ 29. − 5 + 3 5 − 5 5 √ 5 26 24 + √ 6 √ √ √ 45. − 50 − 98 √ −12 2 46. 53. √ 96 + √ √ − 10 √ 9 6 150 √ √ 57. 6 135 − 5 60 √ √ 61. 12 2 + 8 3 65. 69. √ 12 + √ √ 11 3 √ 2− √ 32 + √ 48 √ 72 √ 32 + 5 2 75 − √ 48 √ 240 − √ 58. 4 27 + √ √ 66. √ 3 2 √ √ √ 73. − 90 + 160 − 10 70. 74. √ 50 + √ √ 15 2 √ √ 48 180 − √ √ 150 − √ 47. 55. √ 40. √ 5 5 √ −7 13 √ 14 2 √ −5 2 √ √ 48. − 125 + 80 √ − 5 √ √ 52. 5 48 − 2 108 √ 8 3 56. √ √ 99 − 44 √ √ √ 60. −4 8 + 162 0 11 √ 2 √ √ 35 − 5 7 √ √ √ 80 + 180 + 45 68. √ √ √ 24 + 54 + 150 √ √ √ 71. − 50 − 18 + 98 72. √ √ √ 48 − 3 − 75 √ √ √ 75. − 125 − 5 + 180 76. √ √ √ 32 + 18 − 98 same √ 13 5 √ − 2 0 √ 3 17 64. 67. 5 √ √ 17 + 68 √ √ 44. −2 2 − 18 √ 4 6 √ √ √ 63. − 66 + 33 same 54 √ √ 128 + 72 √ −9 6 √ 3 13 3 59. − 500 + 5 20 √ 18 24 − √ √ 20 + 45 √ √ 16 3 √ √ √ √ 51. − 117 − 2 52 0 √ −2 15 45 − √ √ 12 − 3 same √ √ √ 36. − 13 + 5 13 − 13 7 √ √ 43. − 54 + 7 6 3 540 98 + √ 2 5 39. √ 9 2 √ √ 62. −2 10 − 10 2 same 75 + √ √ √ √ −6 5 √ √ 50. −4 63 + 6 28 54. √ 8 15 √ √ √ √ 31. 2 15 − 15 − 5 15 √ √ √ 35. − 7 − 10 7 + 12 7 √ 6 2 42. same −4 15 √ √ √ 34. 17 2 − 4 2 − 7 2 5 √ √ 49. −2 40 + 90 √ √ 27. − 2 − 14 same √ √ 38. − 5 − 125 √ 3 6 √ √ 41. 3 5 − 20 √ 6 √ − 39 √ √ √ 33. 10 26 − 6 26 + 26 √ 5+ √ √ √ 30. −6 39 + 39 + 4 39 √ −3 5 37. √ 0 same √ 10 6 √ −2 3 0 0 √ √ √ 77. 2 15 + 60 − 3 15 √ √ √ 78. − 28 − 8 7 − 112 √ √ √ 79. 2 8 − 72 + 3 2 √ √ √ 81. 5 50 + 2 72 − 3 18 √ √ √ 82. 7 45 − 4 80 + 2 20 √ √ √ 83. − 108 + 5 48 − 3 75 √ √ √ 84. 3 96 + 6 54 + 2 150 √ √ √ 85. 2 5 + 7 5 − 3 11 √ √ √ 86. − 2 + 3 5 − 6 2 √ √ √ 87. 6 3 − 10 2 + 7 3 √ √ √ 88. −8 6 − 10 + 6 10 √ 15 √ 28 2 √ √ 9 5 − 3 11 89. √ 48 + √ 50 + √ √ 6 3+5 2 √ 12 √ −14 7 √ 9 5 √ √ −7 2 + 3 5 90. √ 80 + √ 20 + √ √ 4 10 + 6 5 √ 160 √ − 3 √ √ 13 3 − 10 2 91. √ √ √ 24 − 54 + 27 √ √ − 6+3 3 ALG catalog ver. 2.6 – page 267 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ 2 √ √ √ 80. −6 48 − 2 3 + 243 √ −17 3 √ 40 6 √ √ 5 10 − 8 6 92. √ √ √ 72 + 90 − 18 √ √ 3 2 + 3 10 ME 93. √ 25 − √ √ 5+2 5 45 + √ 125 √ √ √ 97. −3 32 + 4 50 + 6 8 √ √ −8 11 + 12 7 113. √ 72 95. √ √ 54 − 2 24 + 4 96 √ √ √ 125. − 16a4 + 25a4 129. √ 36a2 + √ 6a + 9a a √ −6 5 √ √ √ 108. −7 80 + 245 − 180 √ √ 5 10 − 19 5 √ √ 18 2 + 3 22 √ 37 3 110. 114. 126. √ 81a3 p 144p2 + p 64p2 20p √ √ 130. 2 9c5 − 100c4 6c 2√ √ x3 y 3 + xy 16xy 134. 5 √ √ 137. 6 18u4 w + u 27u2 w √ √ 138. −ab 75a + 2 12a3 b2 p √ −ab 3a 120. 3√ 4√ 1√ 48 − 27 − 192 4 3 4 √ −3 3 √ √ 141. 5 3a − 10 3a + 2 3a √ √ √ 142. 3 n + 11 n − 12 n √ −3 3a √ 2 n √ √ √ 145. −4 36y + 100y − 8 4y √ √ √ 147. 5 b − 2 49b − 9b 131. p 151. √ √ √ 48r − 3 75r + 8 12r √ √ √ 153. x 49y + 4x 9y + 7x y √ −30 y 135. √ 5 3r √ 26x y √ 6a x √ √ √ 157. 2c2 24d4 + c2 d 6d2 − cd 150c2 d2 0 7n 3d2 √ √ 25a3 b2 + ab 121a √ √ 136. −c 36cd2 + 4d c3 √ 16ab a √ −2cd c √ √ 140. 2st 8st3 + 50s3 t5 p 4 139. −3x p 45xy − y 5x2 y 3 √ 2 √ √ 81n2 − 4n2 √ 2r √ √ 132. d2 169d2 − 5 4d6 √ 49y 3 − y 64y √ −y y 5x − xy 2√ √ 9st2 2st 5y √ √ √ √ √ √ 143. − xy − 8 xy + 15 xy 144. 14 c + c − 18 c 146. √ 32 2m √ √ √ 155. −7a 16x + 7a x + 3a 81x 128. −3c3 √ −3 c √ 6 xy √ −12 b √ √ √ 149. 3 18m − 50m + 7 32m √ √ 124. 7 2r − 6 2r √ −8 a √ √ 9c6 − 36c6 −9xy √ √ 4 5 0 127. √ √ 3 2 + 36 3 √ √ 2 5−5 2 2√ 1√ 2√ 32 − 200 + 18 2 5 3 √ 9xy xy √ √ 18u2 2w + 3u2 3w √ 1√ 3√ 80 + 50 − 2 32 2 5 √ √ 123. 2 a − 10 a √ √ − 33 + 12 19 √ √ √ 6 7 − 2 6 + 15 3 118. c − 10c2 p √ 133. 4y 2 49yz − 3y 64y 3 z √ 4y 2 yz √ √ √ √ 24 + 3 28 − 96 + 5 27 √ 1√ 5√ 116. − 45 + 500 + 20 5 2 √ −5 cd √ √ √ 132 − 3 33 + 6 76 √ −27 5 √ √ √ √ 112. −3 12 − 18 + 72 + 8 75 √ 10 15 √ √ 122. −6 cd + cd a2 −18 √ √ √ 107. 10 12 + 300 + 147 √ −2 3 √ 5 x √ √ √ 100. − 96 − 3 36 + 2 24 √ √ √ 106. 2 176 − 5 11 − 99 √ √ √ 240 − 2 54 + 540 + 3 24 √ x+4 x √ 5 15 + 20 104. √ 4√ 5√ √ √ 98 − 72 8 6 − 2 115. 4 24 + 7 6 √ √ √ 125 20 80 √ 117. + − 5 3 6 4 √ √ √ 96 24 54 √6 119. − + + 6 3 2 6 121. √ √ √ 375 + 225 + 25 96. √ 6 3−3 √ √ √ 99. 6 40 − 4 90 − 3 20 0 √ 1√ 2√ 108 − 147 + 27 3 3 √ √ √ 36 + 108 − 81 √ √ √ 103. 6 18 − 198 + 3 88 √ √ −11 13 + 4 17 √ 7 6 √ 49 − √ √ √ 102. −7 52 + 117 + 2 68 √ √ √ √ 109. 5 40 + 125 − 6 180 − 250 111. √ 16 √ √ √ 101. −2 99 + 3 112 − 44 √ 98 − √ 2−7 √ √ √ 98. 2 64 + 10 12 − 5 48 √ 20 2 105. √ 94. √ √ √ 25a − a + 3 121a √ 37 a √ √ √ 148. − 81w + 7 16w + 3 w √ 22 w √ √ √ 150. −2 20k + 5 5k − 80k √ −3 5k √ √ √ 152. 9 24y − 4 54y + 150y √ 11 6y √ √ √ 154. 8c w − c 4w − 3c 36w √ −12c w √ √ √ 156. p r − p 100r − 5p 25r √ −34p r p p p 158. x 20y 3 − 2y 4x3 y + 80x2 y 3 ALG catalog ver. 2.6 – page 268 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ √ 6xy 5y − 4xy xy ME √ √ √ 159. n 27m3 n − m 3mn3 − 75m3 n3 √ −3mn 3mn √ √ √ √ 161. m 5n − m 20n + 3r 2m − r 8m p p √ √ 163. x 16y − xy 2 − x2 y + y 25x 165. p 0.64p4 r + p p 0.04p2 r √ √ 167. b 0.09ab2 − 0.25ab4 √ p2 r √ −0.2b2 a √ √ r 2m − m 5n √ √ 3x y + 4y x √ √ √ 160. −5ax 40ax2 + 2x a3 x2 + a 90ax4 √ √ 2ax2 a − 7ax2 10a √ √ √ √ 162. −3b xy + a 4xy + b 9xy − 6a xy √ −4a xy √ √ √ √ 164. 4k 10k + k 32k + k 40k − 2k 8k √ 6k 10k 166. p √ 1.21x3 y 3 + xy 0.81xy √ √ 168. cd2 0.49cd − d 0.01c3 d3 ALG catalog ver. 2.6 – page 269 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ 2xy xy √ 0.6cd2 cd MF Topic: Combined methods (simplifying square roots). Directions: 6—Simplify. 7—Simplify, if possible. 98—Perform the indicated operation(s). 1. √ √ √ 2( 8 − 2 ) 2 2. √ √ √ 6( 6 + 24 ) 10—Simplify (assume variable expressions are positive). 3. 18 √ √ √ − 10( 40 + 10 ) 4. √ √ √ − 3( 27 − 3 ) −6 8. √ √ √ 3( 75 − 6 12 ) −21 12. √ √ √ 14(2 7 + 14 ) −30 5. √ √ √ − 11(2 11 + 44 ) 6. √ √ √ − 5( 45 − 5 5 ) 10 7. √ √ √ 7(4 7 + 28 ) 42 −44 9. √ √ √ − 5( 10 + 3 5 ) 10. √ −5 2 − 15 13. √ √ √ 6(2 15 − 42 ) √ 5 − 1 5 − √5 √ 5 5 √ 3 − 1 3√2 − √6 √ 6 6 √ √ 6 + 10 √ √ √ 3+ 5 2 √ √ 3 6 − 10 √ 30 49. √ 2+2 3 3 −140 √ √ 90 − 15 3 − 45 2 √ 12 10 30. 34. 38. 42. 46. 54. 57. √ √ 3 5 + 4 35 √ 2 5 √ √ 7 10 10 √ 3+4 7 2 √ −45 − 30 2 √ √ √ √ 28. 4 5(3 15 − 60 + 70 ) √ √ 20 3 + 20 14 31. 35. 39. 43. 47. √ 30 + 4 66 12 55. √ √ 55 7 − 84 5 35 58. 2 − 3 r 3 2 32. 36. 40. 44. √ √ 5 3+2 5 5 51. √ √ 11 20 − 6 112 √ 2 35 r √ 1 + 2 √2 + 2 √ 2 2 √ 2 + 1 2√3 + √6 √ 6 6 √ √ 14 + 2 √ √ 7+1 2 √ √ 3 5+2 3 √ 15 √ √ 2 10 − 15 √ 4 5 √ 6 − 6 √ 48. √ √ 6−3 3 52. 56. √ √ 3 5 − 10 3 3 59. ALG catalog ver. 2.6 – page 270 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. r 5 3 √ √ 20 7 + 10 2 √ 2 5 √ √ 2 35 + 10 √ √ 2 75 − 5 80 √ 2 15 3 + 5 √ 21 + 6 42 √ 2 7 √ √ 3+6 6 2 √ √ 8 3 − 12 6 √ 4 2 r √ 1 − 3 √3 − 3 √ 3 3 √ 5 + 3 5√15 + 3√5 √ 15 15 √ √ 3 − 21 √ √ 1− 7 3 √ √ 2 5+3 2 √ 10 √ √ 5 2+3 5 5 √ √ 2 2− 3 4 √ 5 + 4 11 √ 2 6 √ √ √ 48 7 + 98 3 63 2 5 √ 1 + 7 √7 + 7 √ 7 7 √ 2 − 5 2√10 − 5√2 √ 10 10 √ √ 30 − 15 √ √ √ 6− 3 5 √ √ 14 − 2 3 √ 21 √ √ √ √ 26. 5 3( 27 − 3 12 − 24 ) √ √ 7 6−6 7 21 √ √ 4 48 + 7 28 √ 3 21 r √ √ 90 5 − 18 11 √ √ √ √ 24. 2 10( 10 − 2 40 − 160 ) 50. 5 + 2 √ 40 − 10 7 210 √ √ 3 13 − 7 √ 7 2 r √ √ √ 20. 6 3(5 15 − 33 ) −212 √ √ 3 26 − 14 14 53. √ √ −30 6 + 30 5 √ √ √ √ 22. −6 2(2 2 + 4 50 − 32 ) √ √ 9 5−5 3 15 √ √ 6 2+2 6 √ 3 6 √ √ √ 16. − 30(6 5 − 5 6 ) 50 √ √ √ √ 25. −3 15( 5 − 2 15 + 30 ) √ √ √ √ 27. 2 6(5 6 + 60 − 150 ) √ √ √ 21( 7 + 3 35 ) √ √ √ 19. 2 5(2 20 − 35 ) √ √ 18 3 + 90 2 √ √ √ √ 23. 3 7( 28 + 5 7 + 63 ) 45. 15. √ 14 2 + 14 √ √ 7 3 + 21 15 √ √ √ 18. 3 6( 18 + 5 12 ) √ √ √ √ 21. 2 5( 45 − 2 20 + 6 5 ) 41. √ −2 15 + 10 √ √ √ 14. − 10(4 2 − 15 ) √ −110 + 165 2 37. √ √ √ 11. − 2( 30 − 5 2 ) √ √ −8 5 + 5 6 √ √ √ 17. −5 11( 44 − 3 22 ) 33. √ √ 6(3 2 − 6 ) √ 6 3−6 √ √ 6 10 − 6 7 29. √ √ 8 15 15 √ √ 3 40 + 13 27 √ 3 30 √ √ 60 3 + 117 10 90 60. r 7 − 4 r 4 7 √ 3 28 28 MF √ √ 1 11 10 + 10 10 10 r r √ 1 7 7 65. 2 − − 21 7 9 r r √ 8 3 69. 10 − 75 + 6 25 4 61. r √ √ 4 2−2 3 73. r 5 +2 2 r r 9 −5 10 1 10 √ 1 √ 5 6 − 6 − 6 6 r r 4 5 37√5 66. 3 +5 10 5 4 r r 8 √ 1 70. 6 + 54 − 24 3 6 62. r √ 3 10 5 √ √ √ √ 83. 5 ab(2 a + 3 ab + 6 b ) r − a2 + 81d 86. √ 5a d 18d a2 36d √ 18a 2b 97. 1 − x2 3 − 16 p 90. − p x2 y + 2 xy 2 √ 3 xy 49 + 2c3 r 2 9 √ 2 6 25 + 3 r 1 x r 50a2 b √ 1− x x 94. 6wz r r 3 2 r √ 9 18 33 2 −3 − + 20 8 25 r √ 2√ 3 √ 189 + 14 + 2 84 8 21 3 7 r r √ 1 5 √ −2 20 − 10 +3 −5 5 5 9 r √ 2 3√ √ 12 + 3 24 − 150 7 6 3 5 r 1 − 2 r √ √ √ √ 84. 2 x( 9x − 5 x3 + 25x ) 16x − 10x2 87. 50 c3 √ 3 2c 2c2 wz 3 √ − 72w3 z 5 18 98. 1 + y3 r √ 5 10 √ √ 5 4cd − 3 32d √ 2 cd 88. √ √ 18m 8mn √ − 6n n 92. √ 5c − 6 2c c r 91. 95. x2 y s p 36x3 + 5 x7 y y √ 11x3 xy 1 y4 √ y+1 y2 r √ 9y 2 − 15y √ −5wz 2 2wz r 1 6√7 7 7 r r 3 1 5√3 68. + 6 4 3 r r r 5 4 1 72. − + + 4 5 5 √ 7− 64. √ √ √ √ 82. −3 y( 8y − 50y + 5 y ) √ x+2 y 3 r 1 3 r √ √ 6 17 3 − 2 12 80. √ 2 3 3 r √ 8 2mn 3n √ 93. 4a 98b − 2b r 71. r 78. √ √ 15ab + 10a b + 30b a √ r 9 −4 2 76. −72c √ √ a b + 2a a 89. 67. r 74. √ √ √ √ 81. 4 3c( 3c − 12c − 75c ) 85. √ 3− √ 3 6 r √ 2√ 3 √ 75. −6 240 + 375 + 10 −20 15 5 5 r r √ 9 8 √ + 2 32 + 15 9 + 18 2 77. 12 16 9 r r 1√ 9 2 √ 79. 72 + 4 − 10 7 2 2 2 25 √ √ 2 ab2 + 8b √ 2 ab 63. 99. d cd √ −√ 2 cd c3 d √ √ c − cd c ALG catalog ver. 2.6 – page 271 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ √ 4 45k − 10 kd3 √ 10kd √ √ 6 2d − d2 10 d p 48p3 1 p −p p5 3p2 √ 11 3 3p √ 96. 3hk 20h2 k + 5k 2 √ 7h2 k 5k √ √ b ab 100. √ + √ ab a3 r h4 5k √ √ a+ b a MG Topic: Multiplying binomials with square roots. Directions: 3—Multiply. 1. (1 + √ 2 )(2 + √ 2) 6—Simplify. 2. √ 4+3 2 5. √ √ (4 3 − 5)(3 3 + 2) 6. √ 7 )(3 7 − 5) √ √ 14. (5 5 + 2)(8 + 5 ) 2+ √ √ √ √ 7 3−5 5 x )(2 − √ x) 2a − √ √ √ √ 27. (x 2 − y 5 )(2x 2 − y 5 ) 29. (1 − 1− √ √ 3 )(1 − 5− √ 3+ √ √ 5) √ √ 33. ( 10 − 4)( 2 + 1) √ √ 4x 2 − 3xy 10 + 5y 2 √ √ 30. ( 2 + 2)( 3 − 2) 34. (2 + 7. √ √ ( 5 + 7)(3 5 + 1) √ √ 11. (4 3 + 1)(5 − 2 3 ) 15. (10 − √ √ 6 )(3 6 − 2) √ 5 )(1 + √ 10 ) √ √ (3 + 2 2 )(1 − 2 ) √ 2 √ √ 12. (3 + 4 7 )(5 7 + 3) √ √ 16. ( 10 − 6)(2 10 + 5) √ −10 − 7 10 √ √ √ 20. ( 7 − 2 2 )( 14 + 1) √ √ 5 2−3 7 √ √ 23. (2 a − 1)( a + 2) 24. (c − √ √ c )( c − 3) √ √ −4c + c c + 3 c √ √ √ √ 28. (p q − 2 r )(p q + r ) √ 8. √ 149 + 27 7 √ √ √ 19. ( 10 + 4)( 5 + 2 ) 31. (2 − √ √ ( 3 − 2)( 3 − 6) −1 − √ √ 26. (3 + k m )(3 + 2k m ) √ ab − b √ √ √ −4 − 2 2 + 2 3 + 6 15 4. √ 15 − 8 3 √ 2a + 3 a − 2 √ y+5 y+6 √ √ √ √ 25. (2 a + b )( a − b ) √ 2) √ √ 9 2+6 5 √ √ 22. ( y + 3)( y + 2) x−x 2 )(5 + √ −38 + 32 6 √ √ √ 18. ( 3 − 5 )(2 − 15 ) √ √ 5 2−3 3 √ √ −19 + 18 3 √ 41 + 42 5 √ √ √ 17. (2 6 + 1)( 3 − 2 ) (4 − √ 22 + 22 5 √ −13 − 2 2 √ −9 + 13 7 21. (1 + √ √ (2 − 3 3 )(4 − 3 ) √ √ 10. (1 − 2 2 )(4 2 + 3) √ −22 + 11 5 √ 3. √ 18 − 2 √ 17 − 14 3 √ √ (2 5 − 3)(4 − 5 ) 13. (6 + √ √ ( 6 + 1)( 6 − 4) √ 2−3 6 √ 26 − 7 3 9. 10—Simplify (assume variable expressions are positive). 7 )(5 + √ 2) √ √ √ 10 + 2 2 − 5 7 − 14 √ √ 35. ( 2 − 4)( 6 − 3) √ 9 + 9k m + 2k 2 m √ p2 q − 3p qr − 2r √ √ 32. ( 5 + 3)( 2 + 1) √ √ √ 3 + 3 2 + 5 + 10 36. (1 + √ √ 6 )(1 − 3 ) √ √ √ 1−3 2− 3+ 6 √ √ √ −4 − 4 2 + 2 5 + 10 √ √ √ 2 + 5 2 + 5 + 2 10 √ √ √ 12 − 3 2 + 2 3 − 4 6 √ √ √ √ 37. ( 2 + 14 )( 7 + 2 ) √ √ √ √ 38. ( 6 − 3 )( 2 + 6 ) √ √ √ √ 39. ( 15 + 5 )( 5 − 3 ) √ √ √ √ 40. ( 5 − 10 )( 2 − 5 ) √ √ √ 2 + 7 2 + 2 7 + 14 √ √ √ 6−3 2+2 3− 6 √ √ √ 5 + 5 3 − 3 5 − 15 √ √ √ −5 + 5 2 − 2 5 + 10 Squares 41. (3 + √ 5 )(3 + √ 5) √ 14 + 6 5 √ 3+2 2 √ √ √ √ 45. ( 6 − 2 )( 6 − 2 ) √ 8−4 3 49. (1 + √ √ √ 42. ( 2 + 1)( 2 + 1) √ 4+2 3 √ √ 53. ( 10 − 2 )2 √ 12 − 4 5 √ 3 )(4 − √ 3) √ 19 − 8 3 √ 50. ( 5 + 2)2 √ 5+2 6 √ 9+4 5 √ √ 54. ( 6 − 3 )2 √ 9−6 2 √ 51. ( 7 − 3)2 √ √ 44. ( 7 − 2)( 7 − 2) √ 11 − 4 7 √ √ √ √ √ √ √ √ 46. ( 10 − 7 )( 10 − 7 ) 47. ( 3 + 2 )( 3 + 2 ) √ 17 − 2 70 3 )2 43. (4 − √ √ √ √ 48. (2 2 + 3 )(2 2 + 3 ) √ 11 + 4 6 √ 16 − 6 7 √ √ 55. ( 5 + 10 )2 52. (4 − √ 10 )2 √ 26 − 8 10 √ √ 56. ( 2 + 6 )2 √ 8+4 3 √ 15 + 10 2 √ √ 57. ( 3 − 2 5 )2 √ √ 58. (2 2 − 3 7 )2 √ √ 59. (2 5 + 6 )2 √ √ 60. (4 3 + 3 4 )2 √ 23 − 4 15 √ 71 − 12 14 √ 26 + 4 30 √ 84 + 48 3 √ √ 61. (2 22 − 5 2 )2 √ √ 62. ( 10 − 5 2 )2 √ √ 63. (2 7 + 14 )2 √ √ 64. ( 15 + 10 3 )2 √ 138 − 40 11 √ 60 − 20 5 √ 42 + 28 2 √ 315 + 60 5 √ √ 67. (3 r − 2 s )2 √ √ 68. (a b + b a )2 √ √ 65. ( x − y )2 √ x − 2 xy + y √ √ 66. ( a + b )2 √ a + 2 ab + b √ 9r − 12 rs + 4s ALG catalog ver. 2.6 – page 272 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ a2 b + 2ab ab + ab2 MG Conjugates 69. (1 + √ 2 )(1 − √ 2) √ √ 73. ( 6 − 3)( 6 + 3) 70. (4 + −1 √ 5 )(4 − √ 5) √ √ 74. ( 3 − 7)( 3 + 7) −3 √ √ √ √ 77. ( 5 + 3 )( 5 − 3 ) 11 −46 √ √ √ √ 78. ( 2 + 6 )( 2 − 6 ) −4 2 81. (−7 − √ 10 )(7 − √ −39 −23 √ √ √ 85. (2 5 + 3)(2 5 − 3) √ 2 )(5 − √ 2) 31 √ √ 89. (10 − 2 7 )(10 + 2 7 ) √ 3) √ √ 75. ( 2 + 6)( 2 − 6) 72. (5 − 1 √ √ √ √ 79. ( 7 − 5 )( 7 + 5 ) 83. (−1 + √ 6 )(1 + 6 ) 84. (−3 + √ √ √ 91. (1 + 6 2 )(1 − 6 2 ) √ √ √ √ 96. ( 6 − 15 )(− 6 − 15 ) 9 √ √ √ √ 97. (− 6 − 2 5 )( 6 − 2 5 ) 14 √ √ √ √ 98. ( 15 − 3 10 )(− 15 − 3 10 ) 103. (−4 5 − 5 )(4 5 − 9 √ √ √ √ 100. (− 5 + 3 2 )( 5 + 3 2 ) 13 −60 √ √ √ √ 102. (−6 2 + 6 )(6 2 + 6 ) −66 √ √ √ −75 104. (2 10 − √ √ √ √ 105. (2 3 − 3 2 )(2 3 + 3 2 ) −6 √ √ √ √ 106. (5 2 + 2 5 )(5 2 − 2 5 ) 30 √ √ √ √ 108. (2 6 + 5 2 )(2 6 − 5 2 ) −26 109. (a + √ 3 )(a − √ 22 110. (x − 3) a2 − 3 113. (2 − √ √ 5 )(x + √ 5) xy )(2 + √ xy ) 114. (3 + 4 − xy a−b 9k − m2 √ √ √ √ 123. ( w + xy )( w − xy ) √ √ √ √ 125. ( c − a b )( c + a b ) √ √ 127. (5 + 3 m )(5 − 3 m ) cd ) √ √ √ √ 118. ( a − b )( a + b ) p−r √ √ 121. (3 k − m)(3 k + m) cd )(3 − √ 9 − cd √ √ √ √ 117. ( p + r )( p − r ) w − xy c − a2 b 25 − 9m √ y )(2 + √ y) 2) −38 112. (4 + 4−y x2 − 5 √ 111. (2 − 2 )(−2 10 − √ 75 5) √ √ √ √ 107. (2 10 − 3 2 )(2 10 + 3 2 ) √ √ √ √ 116. ( n − 7 )( n + 7 ) a−6 n−7 √ √ 119. ( c − d)( c + d) 120. (x + c − d2 √ √ 122. (r + 2 p )(r − 2 p ) √ x2 − y r2 − 4p √ √ √ √ 124. ( ab − c )( ab + c ) ab − c √ √ √ √ 126. (x y − w )(x y + w ) √ √ 128. (2 p − 1)(2 p + 1) √ √ w )(4 − w ) 16 − w √ √ √ √ 115. ( a + 6 )( a − 6 ) ALG catalog ver. 2.6 – page 273 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ 5) 136 −7 √ 5 )(3 + √ √ 92. (12 + 2 2 )(12 − 2 2 ) √ √ √ √ 95. ( 10 − 3 )(− 10 + 3 ) √ √ 52 −23 √ 6 √ √ 88. (3 6 − 2)(3 6 + 2) 87. (5 3 − 5)(5 3 + 5) √ √ √ √ 94. ( 30 + 7 )(− 30 + 7 ) √ 18 −4 √ 17 √ √ √ √ 101. (3 7 + 3 )(−3 7 + 3 ) √ 7) −1 √ √ √ √ √ 93. ( 2 + 21 )(− 2 + 21 ) √ √ √ √ 99. ( 15 + 2 6 )(− 15 + 2 6 ) 7 )(5 + √ √ √ √ 80. ( 2 − 3 )( 2 + 3 ) −71 44 √ √ √ 76. ( 7 + 1)( 7 − 1) −34 50 √ √ 90. (8 − 2 5 )(8 + 2 5 ) 72 3 )(2 + 5 √ 86. (4 2 + 1)(4 2 − 1) 17 √ 2 82. (−5 − 10 ) 71. (2 − 4p − 1 x2 y − w y )(x − √ y) MH Topic: Simplifying complex fractions. Directions: 6—Simplify. 9—Simplify (assume no denominator equals zero). 10—Simplify (assume variable expressions are positive). 3. −7 √ 3+ 2 √ −12 + 6 5 7. 10 √ 3 − 14 −20 √ 3+3 √ 10 3 − 30 3 11. √ 14 5−1 14. 1 √ 3− 7 √ 3+ 7 2 15. √ 6 11 + 2 18. √ 19. √ 1. 2 √ 1− 3 −1 − 3 2. √ 9 7−4 −4 − 5. −4 √ 6+2 √ 4−2 6 6. √ 6 5+2 9. 36 √ 10 − 8 10. 13. −3 √ 4+ 5 17. 5 √ √ 2− 3 √ √ −2 10 − 16 3 √ −12 + 3 5 11 √ √ −5 2 − 5 3 21. 35 √ √ 10 − 5 25. √ 3 √ 5− 3 29. √ 2 √ 2+1 33. √ 3 √ 6−6 37. √ 2 2 √ 5 + 10 41. √ 5 √ 3−1 45. √ 21 √ √ 3+ 7 √ √ −3 7 + 7 3 4 49. √ − 15 √ √ 6− 3 √ √ − 10 − 5 53. √ √ 7 10 + 7 5 √ 5 3+3 22 √ 7 8 √ 6− 5 √ √ 8 6+8 5 −20 √ 2+ 6 √ √ 5 2−5 6 22. √ 26. √ − 6 √ 6+4 √ 3−2 6 5 23. √ 2 30. √ √ − 2−2 3 10 √ √ 10 2 − 4 5 15 √ √ 5 √ √ 30 − 2 15 + 2 √ 5 10 √ 3 − 10 √ √ −10 − 3 10 √ √ −6 − 2 14 8. 18 √ 3− 3 √ 9 + 3 13 12. 11 √ 7+ 5 √ 7− 5 4 √ 6 11 − 12 7 16. √ 10 13 − 4 3 √ 8+ 7 √ √ 6 2−3 7 20. √ −9 √ 10 + 11 28 √ 3+ 7 √ √ −7 3 + 7 7 √ 15 − 4 15 32. √ 36. √ 14 √ 7−4 40. √ 38. √ 2 6 √ 3+2 √ √ −6 2 + 4 6 39. √ 5 3 √ 6 − 15 42. √ − 2 √ 5+4 √ √ 10 − 4 2 11 46. √ 50. 26 √ √ 13 + 10 √ 43. 7− 7 √ 2 √ √ 6−3 2 2 √ √ 10 3 + 5 5 7 √ √ 7 7 + 14 47 √ − 10 √ √ 2+ 5 51. √ 33 √ √ 11 + 6 √ √ 2 5−5 2 3 44. 48. √ √ − 10 + 2 3 55. √ 2 2+1 7 √ √ −7 2 − 4 14 9 √ 3 5 10 + 2 6+ √ √ −3 − 2 3 3 √ 2 √ √ 5 2−2 5 2 √ √ 6 3− 6 34 √ 6 √ 2− 3 √ 15 √ √ 2− 3 √ √ − 30 − 3 5 √ √ −2 3 − 3 2 10 √ 35 − 15 52. √ 56. √ − 6 √ √ 11 + 2 √ 2 √ √ 5+ 6 2 3 3−2 √ √ √ 11 3 − 3 22 5 √ 4− 2 √ √ √ 5 5+5 3 √ 47. √ √ 13 2 − 2 65 3 54. √ √ − 15 √ 4 + 15 35. √ 5 √ −10 13 − 40 3 10 √ 5− 3 31. 34. √ √ 7 2+2 7 5 √ 28. √ − 6 √ 1+ 3 14 √ 7− 2 24. 27. √ √ 5 10 + 2 5 23 −1 + √ √ 9 10 − 9 11 √ 11 − 11 10 10 √ 5− 2 √ √ 7 5+7 2 11 √ 11 + 1 √ √ √ 5 6 + 10 28 4. √ √ 2− √ 4 5+1 √ 2 −3 + √ √ 14 + 6 4 √ √ − 66 + 2 3 9 57. 4 √ 3 2−2 √ 6 2+4 7 58. 8 √ 5−2 5 √ 40 + 16 5 5 59. −13 √ 4 3+3 √ −4 3 + 3 3 60. 7 √ 5 2+8 √ −5 2 + 8 2 61. 11 √ 3+2 5 √ −3 + 2 5 62. −2 √ 3 2+4 √ −3 2 + 4 63. 2 √ 5−2 6 √ 10 + 4 6 64. 4 √ 7−3 5 √ 7+3 5 ALG catalog ver. 2.6 – page 274 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. MH 65. 69. 73. √ 14 √ √ 2 7− 2 √ 2− 3 √ 1+ 3 √ 6+4 √ 2−2 √ √ 7 2+ 7 13 66. √ −5 + 3 3 2 70. 74. 81. √ 6 − 11 √ 7 − 2 11 √ 3 10 + 2 √ 2 5+1 4+ √ 11 78. √ √ √ 30 2 + 4 5 − 3 10 − 2 19 85. √ −11 + 3 15 7 √ 5+2 √ 5−3 √ 1 − 10 √ 6− 2 √ −11 − 5 5 4 71. 75. √ √ 3 7+9 √ 3 7+5 √ 6−5 3 √ 4+3 6 √ 9+6 7 19 79. 83. √ √ √ −24 + 20 3 + 18 6 − 45 2 38 86. √ √ 2 2− 6 √ √ 3− 2 89. √ 1− a 1−a 90. √ 3 √ √ x− 3 87. 93. √ x √ x+2 √ x−2 x x−4 94. √ 97. √ √ c+ d √ √ c− d 98. √ √ a− b √ √ a+ b √ c + 2 cd + d c−d √ m m−1 √ m+ m m−1 √ a − 2 ab + b a−b √ 17 + 9 2 47 68. 72. 76. √ 4−3 5 √ 5+2 5 √ 15 − 12 √ 4 3−7 √ 50 − 23 5 5 80. 84. √ √ 6+ 3 √ √ 2 6− 5 91. w √ w− w 95. √ 99. √ m+1 √ m−1 √ ALG catalog ver. 2.6 – page 275 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. a √ a+ b √ a − ab a−b √ m+2 m+1 m−1 √ − 3 √ 15 + 2 6 √ 7+1 √ 7+4 √ 2− 5 √ 5 + 15 √ √ 5−2 2 3 −1 + 3 √ 7 √ 2+1 √ 3 2−6 √ 11 − 2 6 √ 10 − 5 3 √ −4 − 3 2 6 √ √ √ 22 − 4 6 + 11 3 − 6 2 5 88. √ w+ w w−1 √ √ √ √ 10 − 5 5 − 2 15 + 5 3 10 √ √ √ 12 + 6 2 + 30 + 15 19 √ 3x + 3 x−3 √ 2+ 2 √ 7− 2 √ 3+8 √ 6+1 √ √ − 7−7 3 20 √ √ √ 84 + 48 3 − 12 5 − 7 15 √ √ √ 2 6+4−6 3−6 2 1 √ 1+ a √ 21 √ 3−3 7 √ √ √ 3 2− 3+8 6−8 5 √ √ √ 6 − 6 10 + 2 − 2 5 34 82. √ √ 5− 3 √ √ 5+2 3 67. √ √ 3 15 + 5 3 12 √ √ √ −2 2 − 3 − 6 − 4 77. √ 5 √ √ 3 3 + 15 √ √ 14 + 2 √ √ 7+ 2 √ √ √ 7 2 + 14 − 2 7 + 2 5 92. √ 1 √ a− b √ 96. p √ 1+2 p 100. √ 1− w √ 1+ w √ √ a+ b a−b √ p − 2p 1 − 4p √ 1−2 w+w 1−w MI Topic: Solving equations with square roots. Directions: 15—Solve. 1. 5. 9. 3= √ √ x √ 2. 9 y = 16 −5 = a √ 17. 2 = 5 p 25. √ 49. 8 = √ 57. √ 65. √ √ 58. 5 − Ø √ −5 66. 2 = 3f − 5 1+r =5 70. 42 a + 5 + 11 = 16 77. 8 − h+7 7. 9= 11. √ x+4=0 23. 36 √ 20 8 √ √ 2c 81 y 3 = 2 5 47. 9 = 25 2 51. 7 − 12 √ √ 59. Ø √ 2p + 1 = 0 13 63. 5 = −20 67. 24 + a 4 − 5s = 8 71. 5 = −12 √ n−6 √ 78. −2 = 6 − h + 1 75. 3 + 55 √ k Ø 121 49 16 √ x = 10 c =1 3 √ 44. 3 − k = 8 48. √ 5y = 10 52. 11 = 3 + 1 2 56. 15 = 3 + 2 60. 0 = 6 + Ø 64 16 25 9 Ø 20 √ √ √ 10m 6r √ 3−p 68. 4 = 8 √ 72. 4 + 7y = 9 3 − 4y − 4 − 32 76. 5 = √ Ø 46 −99 101 32 5 24 3g √ 64. x+3=7 17 3x + 1 √ 625 40. 2 − √ 20 + k = 14 79. −1 = 63 8+y √ 1 − c = 10 √ p √ 27 2k = 6 √ √ √ 1 b 1 28. = 16 20 5 √ y 32. −4 = Ø 5 √ 36. 1 = 5 h − 3 1 4 √ 55. 5 2c − 3 = 7 1 12 25 = 24. 2 + 121 36 25 3x 8. 36 √ 20. 4 k = 7 1 9 √ y 5 1 39. − = 36 2 3 2 √ 43. w − 6 = −10 Ø 4 9 √ n=6 √ 16. 0 = 2 m − 22 81 √ 2 =− a Ø 3 √ 35. 8 = 10 a + 3 25 4. 12. 0 = 8 + Ø 31. Ø m−4=3 74. 12 = 5 + m √ 2h = 8 √ √ 25 √ m−3=8 27. 9 64 √ 54. 1 = 2 3x 9 20 n + 30 = 5 √ √ a=5 √ 19. 3 x = 1 1 49 √ 50. − 3n + 10 = 4 27 62. 69. 11 = 73. 46. 5 = 8 3 70 √ 3. √ 15. 72 − 8 y = 0 4 w 1 = 3 8 w − 21 61. 7 = Ø √ 13 5 38. = +2 x 6 6 √ 42. 0 = 3 + n Ø Ø 5n + 6 = 1 √ 16 √ 34. 4 m − 7 = 13 4 9 225 3a − 1 √ 53. 4 5y = 6 100 √ 30. 2 x = −12 Ø g+9=0 6h = 4 √ 101—Give the restriction(s) on each variable, then solve. √ 26. 4 9 1 8 37. 3 p − = 5 5 √ h=4 22. 13 = 81 √ 45. y √ 18. 1 = 7 w 4 25 √ 33. 10 = 3 k + 4 √ √ √ √ 14. 7 n = 14 16 √ 29. −5 n = 10 41. 10 = √ 10. 2 = − c Ø y−5 √ 2 a = 9 3 6. 256 √ 13. 12 = 3 x 21. 4 = 16—Solve and check. −13 11 4−c−7 80. −5 = 2 − √ −140 2x + 15 17 √ 81. 2 = − 8 − 2d Ø √ 85. 3 7x − 6 = 18 6 82. 12 + √ 3+w =5 83. 4 − Ø √ 86. 0 = −15 + 5 5a + 4 √ 3k + 1 = 8 √ 87. 10 = 2 4 − 3n Ø −7 1 √ 89. 2 m − 2 − 3 = 0 17 4 84. −10 = √ y−4−9 √ 88. 32 − 10 3p + 4 = 12 0 √ 90. 5 + 6 4h − 1 = 17 5 4 √ 91. 0 = −24 + 8 1 + 3x √ 92. 6 = 1 + 2 w + 6 1 4 8 3 93. r y =6 2 97. 8 − r 94. 10 = 72 2d = −2 7 350 98. r Ø r x 5 95. −7 = 500 2y −5=1 5 90 99. r ALG catalog ver. 2.6 – page 276 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. r a − 10 7 8x =4 5 10 63 96. 8 + r m = 13 6 100. 0 = −9 + r 3c 2 150 54 MI 101. 6 + r 105. 2 = p 109. r n =0 10 102. 3 = 10 + Ø 2(3 − x) 4 2w − 5 =1 2 −29 7 2 106. 4 = p 110. 2 = r r h 5 103. Ø 3(m − 1) 3 4 − 3k 7 49 −8 r 7s = −2 3 r 2y − Ø 1 3 5 = 4 2 4 √ 3 + 2h − 1 111. 4 = 2 107. 13 104. r 3 + 8 = −1 10 108. r r 1 2 + = 3 9 3 112. 8− Ø 1 √ 5−n = −1 3 −116 √ 2p + 1 113. 6 = + 10 2 √ √ x x − 2 4 √ √ 121. y = 2 3 12 129. x − 133. 137. √ √ √ 5= Ø √ w w + =2 3 6 √ √ 122. 3 c = 6 2 8 √ √ 126. 10 k = 2 10 √ 20 9 6 w= √ w 6 16 2 5 √ √ 50 = n + 2 4 2 √ √ x 134. √ − 18 = 0 24 32 √ 3 5 130. √ 138. √ 4a − 1 =8 2 √ 2 c 3 116. 1 = + Ø 3 2 √ √ 2 d d 120. 144 −2= 3 2 √ √ 124. 0 = x − 5 3 75 Ø √ 118. 400 9 5 y 27 = √ 3 115. 5 − Ø √ 117. 5 = √ √ 125. 3 5 = 5 a 2 √ 114. − 4 y = 2 3 r √ 4 = 3y − 5 3y − 5 √ 3 n n = 5 10 √ √ 123. 10 5 = 5 n 20 119. 1 + 100 √ √ 127. 2 y − 7 2 = 0 49 2 131. √ √ 80 − h = 45 √ a 135. √ = 24 6 139. √ √ √ 128. 8 3 = 6 w √ √ 75 = r − 12 √ √ m 136. 12 = √ 360 30 132. 5 12 √ 7 x+2= √ x+2 16 3 5 √ 10 140. √ = 5c 5c √ 7 3 2 3 8 141. √ −2=0 9 n+7 √ √ 145. 10 = 2a2 ±5 2 √ 149. 7 = 13 + d2 ±6 153. 3 = p (m − 2)2 √ √ 146. 12 = 3w2 √ 150. 5 − x2 = 1 154. 5, −1 165. √ n2 + 5n − 6 5c2 − 2c = 4 y+6= ±2 155. 4 − 162. 6 = 166. 2 + 2, − 85 √ 2y + 3 170. 3 √ p √ 144. 0 = √ 21 2 p y 2 − 9y −4 √ ±3 2 (3 − n)2 = 0 12, −3 √ 159. 5 = ( y − 4 )2 163. 156. 5, −20 −3 ±9 √ ±4 2 p (r + 7)2 = 10 √ 160. 8 = ( 5 − k )2 9 √ x2 + 15x = 10 1 1 − 1−x 2 √ 148. 9 − h2 = 0 √ 152. c2 + 4 = 6 √ 7, −1 √ 158. ( c + 14 )2 = 10 2 12 2y − 5 k 2 ±6 p 151. 4 = y 2 − 2 147. 6 = (p + 1)2 − 1 = 0 −5, 169. √ ±4 3 p 4, −9 √ 143. 3 = √ 2 −2, 0 √ 157. ( x + 5 )2 = 7 161. 0 = 10 142. 5 = √ 2p 164. 7 − √ 3, −17 −3 a2 − 6a = 3 8, −2 2w2 + 5w = 7 167. 12 = 9 + 5 2 √ 5k 2 + 4k 168. 2 = √ 3r2 − r −1, 4 3 1, − 95 3x + 10 = √ 5x 5 171. √ √ n + 7 = 3n − 5 6 172. √ √ 10a − 7 = 5 − 2a 1 √ √ c + 2 = 2c + 5 √ 177. k = k + 2 4 173. 181. c − 185. √ √ 3c = 6 √ 189. 2 x + x = 8 p 5 + 7d = 178. 6 + √ √ 186. 4 c − 4 = c √ 190. 3 h − 2 = h 4 5 194. 4 = x + 2d Ø √ √ 175. n − 2 = 3n + 4 179. n − 9 5y √ 24 y 2 + 11 √ a=a 182. 10 = y − 12 6a − a = −12 193. y = −1 + 174. Ø √ 183. 20 n = 12 √ 2w + 4 = w √ 187. y = 3 y + 10 4 √ 191. 6 = 5 p − p 1, 4 √ x2 − 8 √ 3 195. c + ALG catalog ver. 2.6 – page 277 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ 16 184. 8 √ 2x + 12 = x √ 188. m = 2 m − 1 25 √ 192. 8 = 6 k − k 4, 9 c2 + 3 = 3 Ø √ √ 176. 11h = h − 20 √ 180. 6 = h + h 4 1 196. Ø 18 1 4, 16 √ n2 − 13 + 1 = n 7 MI 197. 201. √ √ h + 2 − h = −10 x2 + 5 + 1 = 2x √ 198. a + 14 202. 2y = 2 33 − 4a = 3 √ 1 + 9y + 6 −4 7 199. r = 5 + 203. √ 4r + 1 200. −7 + 12 √ 3a + 13 − 2a = −3 √ w+9=w 204. 3c = 1 + √ −5 7c2 − 1 Ø 4 205. p 2+ 209. 5 = 213. √ √ p n=3 18 − √ 206. 2 = 49 a−1 210. Ø p√ p√ 2k − 6 50 2m + 3 + 10 = 4 √ h 214. 4 √ 2k + 4 − √ k=2 219. 221. 223. √ √ √ √ 3y + 1 − 1 = w−5− √ √ y+4 w + 10 = −3 √ √ 3p + 8 = 3 p − 2 2 16y + 1 = √ 2y + 1 + √ √ √ 225. 2 r − r − 3 = 5 + r 227. √ 23w + 4 − √ 0, 3 2 4 √ 5x − 2 − 3 w = 0 √ √ 4 229. √ − a− a−4=0 a−4 √ 3 √ 231. √ − y = y + 1 y 9 5 212. 6 = 0, 216. 16 3 2 p√ 3w + 21 = 5 p √ √ a − 5 − 2a − 3 = 0 √ √ 2n + 11 = 2 + n + 2 14, 6 7, −1 3 2 224. √ √ √ m+8− m−7= 5 226. √ √ √ x + 1 + x + 2 = 2x + 3 −2, −1 228. √ √ √ 4 − y + y − 9 = y − 14 5, 9 √ 3 1−2 n √ 230. √ − 5 = n n 232. √ ALG catalog ver. 2.6 – page 278 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 12 4 9 √ √ 2 = x+ x+1 x+1 1 3 30 + √ 16 3 y+4 √ √ x+1= x+4 9 4 √ √ √ 222. 2c − 3 + 4c + 9 = 15 0, 8 √ 6y 20 √ √ 5c + 1 = 1 − 3 c 220. 6 5x − 6 = 2 215. 218. 2 + 5 208. p√ 0, 16 217. Ø 10 + 211. 33 2 h + 12 = 2 + √ h p 207. 4 = 32 9 4 MJ Topic: Using Pythagorean Theorem I. See also categories MK and ML (word problems involving radical equations). Directions: 120—If a, b, and c are sides of a right triangle (c is the hypotenuse), find the missing side. 1. a = 4, b = 3 5. b = 5, c = 13 9. a = 2, b = 5 c=5 a = 12 √ 2. a = 5, b = 12 6. a = 4, c = 5 c = 13 b=3 b = 15, c = 17 a=8 4. a = 8, b = 15 c = 17 8. a = 6, c = 10 b=8 √ 13 12. a = 5, b = 1 c= √ c = 2 10 15. a = 1, b = 7 √ c=5 2 16. a = 2, b = 4 √ c=2 5 18. b = 1, c = 9 √ a=4 5 19. a = 1, c = 3 √ b=2 2 20. b = 1, c = 5 √ a=2 6 22. a = 3, c = 7 √ b = 2 10 23. b = 8, c = 12 √ a=4 5 24. a = 4, c = 10 √ b = 2 21 √ a=4 6 27. a = 9, c = 11 √ b = 2 10 28. b = 7, c = 11 √ a=6 2 c= 13. a = 8, b = 4 √ c=4 5 14. a = 6, b = 2 17. a = 1, c = 7 √ b=4 3 21. b = 2, c = 6 √ a=4 2 25. a = 10, c = 12 7. c = 10 c= 10. a = 1, b = 4 26. b = 2, c = 10 √ a = 8, b = 6 11. a = 3, b = 2 29 c= 3. 17 √ 26 √ b = 2 11 29. a = 33. a = √ √ 5, b = 2 11, b = √ c=3 30. a = 3, b = 5 34. a = c=4 √ √ 6, b = 7 c=4 √ 10 31. a = 7, b = 35. a = √ √ 15 3, b = √ c=8 6 c=3 32. a = 36. a = √ √ 11, b = 5 7, b = √ c=6 2 c=3 c=4 37. b = 3, c = √ √ √ √ 13 a=2 38. a = 2, c = 13 b=3 39. b = 1, c = 10 a=3 40. a = 3, c = 10 b=1 √ 41. a = 4 5, b = 1 c=9 √ 42. a = 2 6, b = 1 c=5 √ 43. a = 1, b = 2 2 c=3 √ 44. a = 1, b = 4 3 c=7 √ 45. a = 3, b = 3 2 √ 46. a = 5, b = 5 2 √ c=3 3 √ 49. a = 3 5, c = 7 b=2 √ 53. a = 2, b = 2 6 6, b = 2 3 62. a = √ a=2 3 √ 5, b = 5 3 √ c=4 5 √ √ 2, b = 3 2 √ √ c=2 5 71. a = √ √ 60. a = 2 6, b = 2 3 c=6 √ √ 7, b = 2 5 64. a = √ 6, b = 3 2 √ √ 68. a = 7 2, c = 5 6 √ b = 2 13 26 √ √ √ c=2 6 √ √ 67. b = 2 7, c = 3 6 a= a=5 √ c=2 6 √ √ 59. a = 2 2, b = 2 7 63. a = √ 52. b = 4 6, c = 11 √ 56. a = 2, b = 2 5 √ c=3 3 √ 66 70. a = b=4 c=6 √ 2, b = 4 3 √ √ 66. a = 4 2, c = 3 11 b= √ 51. a = 2 5, c = 6 √ c = 2 10 √ c=5 2 √ √ 65. b = 4 3, c = 2 15 √ √ √ c=2 3 √ 55. a = 4, b = 2 6 c=5 √ √ c=3 2 69. a = a=3 √ √ 58. a = 2 5, b = 5 c=5 61. a = √ 50. b = 2 10, c = 7 √ c=2 7 √ √ 57. a = 3 2, b = 7 √ 48. a = 2 2, b = 2 √ c=4 3 √ 54. a = 4, b = 2 3 √ c=2 7 √ √ 47. a = 4 2, b = 4 √ c=5 3 √ 5, b = 2 10 √ c=3 5 72. a = √ √ 10, b = 3 2 √ c=2 7 Special triangles (30-60-90 and 45-45-90) 73. a = 1, b = 1 c= √ 77. a = 5, c = 5 2 81. a = √ 6, b = √ b=5 √ 6 √ c=2 3 √ √ 85. a = 3 2, b = 3 2 c=6 2 √ c=5 2 74. a = 5, b = 5 78. b = 1, c = 82. a = √ √ 2 10, b = a=1 √ 10 √ c=2 5 √ √ 86. a = 2 2, b = 2 2 c=4 75. a = 2, b = 2 √ c=2 2 √ 79. a = 6, c = 6 2 83. a = c= √ √ 3, b = √ b=6 3 6 √ √ 87. a = 5 2, b = 5 2 c = 10 ALG catalog ver. 2.6 – page 279 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 76. a = 7, b = 7 √ c=7 2 √ 80. b = 4, c = 4 2 84. a = c= √ 5, b = √ a=4 5 √ 10 √ √ 88. a = 7 2, b = 7 2 c = 14 MJ 89. b = a= √ √ 5, c = √ 10 90. a = b= 5 93. a = 1, b = √ 3 √ 3, c = √ 91. b = 6 √ 3 a= √ c=2 √ 97. a = 2 3, b = 6 √ 3, b = 3 105. a = √ √ c=2 3 √ 99. a = 9, b = 3 3 √ √ b=5 3 √ 6, b = 3 2 √ 15, c = 2 15 √ a=3 5 c=8 102. b = 4, c = 8 106. a = √ √ a=4 3 √ 15, b = 3 5 √ c = 2 15 110. a = √ √ 6, c = 2 6 √ b=3 2 103. a = 1, c = 2 b= √ 3 √ c=4 6 √ √ 111. b = 3 3, c = 6 3 ALG catalog ver. 2.6 – page 280 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. a= √ 2 √ 96. a = 2 3, b = 2 c=4 √ c = 10 3 √ √ 107. a = 2 6, b = 6 2 a=9 √ 2, c = 2 √ 100. a = 15, b = 5 3 √ c=6 3 √ c=2 6 109. b = 92. b = 6 √ 95. a = 4 3, b = 4 √ c=4 3 101. a = 5, c = 10 √ √ 6, c = 2 3 c=6 94. a = 3, b = 3 3 98. a = √ 104. b = 2, c = 4 √ a=2 3 √ √ 108. a = 3 6, b = 9 2 √ c=6 6 √ √ 112. a = 2 3, c = 4 3 b=6 MK Topic: Using Pythagorean Theorem II. See also categories MJ and ML (word problems involving radical equations). Directions: 0—(No explicit directions.) 1. Find c. 10 2. Find a. 5 3. Find c. 25 4. Find a. 15 RT-TRI03.PCX RT-TRI04.PCX RT-TRI01.PCX RT-TRI02.PCX 5. Find x. √ 5 5 6. Find x. √ 2 7 7. Find y. √ 2 10 8. Find y. √ 6 2 RT-TRI07.PCX RT-TRI08.PCX RT-TRI05.PCX RT-TRI06.PCX 9. Find a. √ 4 3 10. Find c. √ 6 2 11. Find y. 2 12. Find x. √ 5 2 RT-TRI10.PCX RT-TRI09.PCX RT-TRI12.PCX RT-TRI11.PCX 13. Find x. 2 14. Find y. √ 5 3 15. Find a. √ 4 3 16. Find c. 8 RT-TRI16.PCX RT-TRI15.PCX RT-TRI14.PCX RT-TRI13.PCX ALG catalog ver. 2.6 – page 281 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. MK 17. Find x. √ 2 14 18. Find x. 3 19. Find y. 3 20. Find y. √ 2 5 TSHELL01.PCX TSHELL03.PCX TSHELL02.PCX TSHELL04.PCX 21. Find the length GH. 22. Find the length CD. √ 5 2 √ 2 14 DIABOX01.PCX √ 5 10 √ √ √ 6, 4 2 and 26 is √ √ √ If c = 4 2, a = 6 and b = 26, then a2 + b2 = c2 . √ √ √ 3, 4 3 and 3 5. Show √ √ √ If c = 4 3, a = 3 and b = 3 5, then a2 + b2 = c2 . 24. Find the length EF. √ 2 22 DIABOX03.PCX DIABOX02.PCX 25. Show that a triangle with sides a right triangle. 27. The sides of a triangle are that the triangle is right. 23. Find the length AB. DIABOX04.PCX √ √ 26. Show that a triangle with sides 7, 26 and 5 3 is a right triangle. If c = 5√3, a = 7 and b = √26, then a2 + b2 = c2 . √ √ 28. The sides of a triangle are 3 3, 5 and 2 13. Show that the triangle is right. √ √ If c = 2 13, a = 5 and b = 3 3, then a2 + b2 = c2 . √ 29. The sides of a right triangle are 4 and 4 2. Find the hypotenuse. 4√3 30. The sides of a right triangle are the hypotenuse. 5√2 31. How long is the hypotenuse of a right triangle whose sides are 5 and 15 ? 5√10 32. How long is the hypotenuse of a right triangle whose sides are 12 and 6 ? 6√5 33. One side of a right triangle is 8 and the hypotenuse is 12. What is the other side? 4√5 34. One side of a right triangle is 10 and the hypotenuse is 14. What is the other side? 4√6 35. In √ a right triangle, one side is is 30. Find the other side. √ 6 and the hypotenuse √ 2 6 √ 35 and √ 15. Find √ 36. In a right triangle, one side is 2 3 and the hypotenuse is 10. Find the other side. 2√22 37. The sides of a right triangle are a and b, and the hypotenuse is c. Find c, if a = 12 and b = 16. 20 38. The sides of a right triangle are a and b, and the hypotenuse is c. Find c, if a = 20 and b = 15. 25 39. The sides of a right triangle are a and b, and the hypotenuse is c. Find b, if a = 10 and c = 26. 24 40. The sides of a right triangle are a and b, and the hypotenuse is c. Find a, if b = 30 and c = 34. 16 41. The sides of a right triangle are√a and b, and √ the hypotenuse is c. Find a, if b = 6 and c = 33. 42. The sides of a right triangle are √ a and b, and the hypotenuse is c. Find a, if b = 4 5 and c = 12. 8 √ 3 3 ALG catalog ver. 2.6 – page 282 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. MK 43. The sides of a right triangle are √ a and b, and√the hypotenuse is c. Find c, if a = 2 7 and b = 2 2. 6 44. The sides of a right triangle are√a and b, and √ the hypotenuse is c. Find c, if a = 5 and b = 2 10. √ 3 5 45. In right triangle ABC, the hypotenuse AB is 9. −−− If BC is 7, how long is AC ? 4√2 46. In right triangle ABC, the hypotenuse AB is 8. −−− If AC is 6, how long is BC ? 2√7 47. In triangle DEF , 6 E is right. If DE and EF are each 7, what is DF ? 7√2 48. In triangle DEF , 6 E is right. If DE is 5 and EF √ is 5 3, what is DF ? 10 49. The legs of a right triangle are 7.5 cm and 12.1 cm. Approximately how long is the hypotenuse? ≈ 14.2 cm 50. The legs of a right triangle are 10.5 in. and 5.8 in. Approximately how long is the hypotenuse? ≈ 12 in. 51. In a right triangle, the hypotenuse is 5.25 feet. If one leg is 3.5 feet, approximately how long is the other leg? ≈ 3.91 ft 52. In a right triangle, the hypotenuse is 16 meters. If one leg is 11.8 meters, approximately how long is the other leg? ≈ 10.8 m ALG catalog ver. 2.6 – page 283 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ML Topic: Word problems involving square roots. See also category NH (quadratic formula). Directions: 0—(No explicit directions.) 16—Solve and check. 40—Write an equation and solve. 1. The hypotenuse of a right triangle is 15 cm long. 2. Find the lengths of the two legs if their sum is 21 cm. 9, 12 cm 39—Translate and solve. The hypotenuse of a right triangle is 13 in. long. Find the lengths of the two legs if their sum is 17 in. 5, 12 in. 3. The perimeter of a right triangle is 200 inches. The length of the hypotenuse is 85 inches. Find the length of each leg. 40, 75 in. 4. The perimeter of a right triangle is 270 centimeters. The length of the hypotenuse is 117 centimeters. Find the length of each leg. 45, 108 cm 5. The hypotenuse of a right triangle is 25 ft. One leg is 17 ft longer than the other. Find the lengths of the legs. 7, 24 ft 6. The hypotenuse of a right triangle is 30 m. One leg is 6 m longer than the other. Find the lengths of the legs. 18, 24 m 7. One leg of a right triangle is twice as long as the other. √ How long is each leg, if the hypotenuse is 2 10 ? 2√2, 4√2 8. One leg of a right triangle is three times as long as the√other. How long is each leg, if the hypotenuse is 30 ? √3, 3√3 9. In a right triangle, the hypotenuse√is twice as long as the first leg. If the second leg is 15, how long is the hypotenuse? 2√5 10. In a right triangle, the hypotenuse√is twice as long as the first leg. If the second leg is 6, how long is the hypotenuse? 2√2 11. The two legs in a right triangle are the same √ length. How long is each leg if the hypotenuse is 22? √11 12. The two legs in a right triangle are the same √ length. How long is each leg if the hypotenuse is 6 3? 3√6 13. In a right triangle, the long leg is 2 more than twice the short leg, and the hypotenuse is 8 more than the short leg. Find the short leg. 5 14. In a right triangle, the long leg is 1 less than twice the short leg, and the hypotenuse is 9 more than the short leg. Find the short leg. 8 15. In a right triangle, the hypotenuse is 2 less than twice the short leg, and the long leg is 2 more than the short leg. Find the short leg. 6 16. In a right triangle, the hypotenuse is 1 more than twice the short leg, and the long leg is 1 more than the short leg. Find the short leg. 3 17. In a square whose side is 8, what is the length of each diagonal? 4√2 √ 19. In a square whose side is 7 2, what is the length of each diagonal? 14 18. In a square whose side is 10, what is the length of each diagonal? 5√2 √ 20. In a square whose side is 3 2, what is the length of each diagonal? 6 21. A rectangle has dimensions 9 × 12. What is the length of each diagonal? 15 22. A rectangle has dimensions 8 × 15. What is the length of each diagonal? 17 23. A rectangle has dimensions 2 × 8. What is the length of each diagonal? 2√17 24. A rectangle has dimensions 5 × 10. What is the length of each diagonal? 5√5 25. The side of a square is 8.6 in. What is the length of a diagonal? (Round to nearest tenth.) 12.2 in. 26. The side of a square is 11.2 cm. What is the length of a diagonal? (Round to nearest tenth.) 15.8 in. 27. The length of a rectangle is 6 ft and the width is 4.6 ft. What is the length of a diagonal? (Round to the nearest hundredth.) 7.56 ft 28. The length of a rectangle is 1.9 m and the width is 0.9 m. What is the length of a diagonal? (Round to the nearest hundredth.) 2.10 ft 29. One dimension of a rectangle is 8. Find the other dimension, if the diagonal is 12. 4√5 30. One dimension of a rectangle is 6. Find the other dimension, if the diagonal is 9. 2√5 31. In a rectangle, each diagonal is 13. If the width of the rectangle is 5, what is the length? 12 32. In a rectangle, each diagonal is 10. If the length of the rectangle is 8, what is the width? 6 33. How long should the side of a square be so that it has the same area as a 5 × 8 rectangle? 2√10 34. How long should the side of a square be so that it has the same area as a 6 × 9 rectangle? 3√13 35. The base and altitude in a triangle are equal. The area of the triangle is 100 cm2 . Find the lengths of the base and altitude. 10√2 36. The base and altitude in a triangle are equal. The area of the triangle is 64 in2 . Find the lengths of the base and altitude. 8√2 ALG catalog ver. 2.6 – page 284 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ML 37. In a right triangle, the hypotenuse is 10 and the two legs are the same length. What is the area of the triangle? 25 39. In a√right triangle, the hypotenuse is 6 and one leg is 3 2. What is the area of the triangle? 9 38. In a right triangle, the hypotenuse is 16 and the two legs are the same length. What is the area of the triangle? 64 √ 40. In a right triangle, the hypotenuse is 2 13 and one leg is 4. What is the area of the triangle? 12 41. Each side of an equilateral triangle is 10 ft. Find the length of an altitude in the triangle. 5√3 42. Each side of an equilateral triangle is 14 m. Find the length of an altitude in the triangle. 7√3 43. Find the area √ of an equilateral triangle whose sides are each 4 3. 6√3 44. Find the area √ of an equilateral triangle whose sides are each 8 3. 24√3 45. The dimensions of a room are 7.5 × 8 × 6 m. Find the length of a wire that stretches from a corner of the floor to the far corner of the ceiling. 12.5 m 46. The dimensions of a garage are 9 × 12 × 8 ft. Find the length of a wire that stretches from a corner of the floor to the far corner of the ceiling. 17 ft 47. The dimensions of a box are 4 × 5 × 6 in. What is the length of a diagonal? (Round answer to nearest tenth). 8.8 in. 48. The dimensions of a box are 5 × 10 × 20 cm. What is the length of a diagonal? (Round answer to nearest tenth). 23.0 cm 49. Cornwall is approximately 36 km south of Alexandria and 48 km east of Chesterville. What is the straight-line distance between Alexandria and Chesterville? ≈ 60 km 50. Porterville is approximately 48 mi north of Bakersfield and 20 mi east of Tipton. What is the straight-line distance between Bakersfield and Tipton? ≈ 52 mi 51. Cities A and B are joined by a direct highway. They are also connected by a highway that runs 70 mi east from City A and then 24 mi north to City B. How much shorter is the direct route than the east-north route? 20 mi 52. Cities A and B are joined by a direct highway. They are also connected by a highway that runs 21 km south from City A and then 72 km west to City B. How much shorter is the direct route than the east-north route? 18 km 53. The diagonals of two different rectangles are 65 ft. The width of one rectangle is 25 ft and the width of the other rectangle is 39 ft. How much longer is one rectangle than the other rectangle? 8 ft 54. The diagonals of two different rectangles are 75 m. The width of one rectangle is 45 m and the width of the other rectangle is 27 m. How much longer is one rectangle than the other rectangle? 12 m DIAREC1.PCX DIAREC1.PCX 56. The diagonals of two different rectangles are 85 in. The length of one rectangle is 77 in. and the length of the other rectangle is 84 in. How much wider is one rectangle than the other rectangle? 23 in. 55. The diagonals of two different rectangles are 100 cm. The length of one rectangle is 96 cm and the length of the other rectangle is 80 cm. How much wider is one rectangle than the other rectangle? 32 cm DIAREC2.PCX DIAREC2.PCX ALG catalog ver. 2.6 – page 285 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ML 57. A wire runs from the top of a 12 m flagpole to a point on the ground that is 9 m from the base of the pole. How long is the wire? 15 m 58. A wire runs from the top of a 30 foot flagpole to a point on the ground that is x feet from the base of the pole. If the wire is 34 feet long, what is x ? 16 FLGPOL1.PCX FLGPOL1.PCX 59. A wire runs from the top of a 6 meter telephone pole to a point on the ground that is x meters from the base of the pole. If the wire is 6.25 meters long, what is x ? 1.75 60. A wire runs from the top of an 18 ft telephone pole to a point on the ground that is 7.5 ft from the base of the pole. How long is the wire? 19.5 ft TELPOL1.PCX TELPOL1.PCX 61. One end of a ramp is raised to the back of a truck, 3 feet above the ground (see figure). The other end rests on the ground, 9 feet behind the truck. What is the approximate length of the ramp? ≈ 9.5 ft 62. One end of a ramp is raised to the back of a truck, 1.5 meters above the ground (see figure). If the ramp is 4 meters long, approximately how far behind the truck is the other end of the ramp? ≈ 3.7 m RAMPTR1.PCX RAMPTR1.PCX 63. A ladder leans against a second-story window, as shown in the figure. If the ladder is 5 meters long, and the base of the ladder is 1.75 meters from the house, how high is the window? ≈ 4.7 m 64. A ladder leans against a second-story window, as shown in the figure. If the window is 16.5 feet above the ground, and the base of the ladder is 4 feet from the house, how long is the ladder? ≈ 17 ft LADDER1.PCX LADDER1.PCX ALG catalog ver. 2.6 – page 286 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ML 65. A traffic light is suspended between two poles, as shown in the figure. The poles are 13 m apart and 8 m tall. If 14 m of wire is used to suspend the light, approximately how far above the street is it? ≈ 7.4 m 66. A traffic light is suspended between two poles, as shown in the figure. The poles are 38 ft apart and 25 ft tall. If 40 ft of wire is used to suspend the light, approximately how far above the street is it? ≈ 18.8 ft TLIGHT1.PCX TLIGHT1.PCX 68. The roof of a house is supported by two angled beams, as shown in the figure. Each beam is 8 m long. If the house is 15 m wide and 6 m tall (measured to the top of the roof), what is the approximate ceiling height? ≈ 3.2 m 67. The roof of a house is supported by two angled beams, as shown in the figure. Each beam is 34 ft long. If the house is 65 ft wide and 25 ft tall (measured to the top of the roof), what is the approximate ceiling height? ≈ 15 ft ROOFBM1.PCX ROOFBM1.PCX 69. A 6 12 meter ladder leans against the side of a building, as shown in the figure. The distance x is 3 12 meters less than the distance y, which is the highest point reached by the ladder. Find x. 2.5 m 70. A 12 12 foot ladder leans against the side of a building (refer to the previous figure). The distance x is 8 12 feet less than the distance y, which is the highest point reached by the ladder. Find x. 3.5 ft LADDER3.PCX LADDER3.PCX 71. One end of a cable is attached to the top of an antenna, as shown in the figure. The other end is staked into the ground a distance d from the bottom of the antenna. If the height of the antenna is 12 meter less than the length of the cable, and d = 4 meters, find the length of the cable. 16.25 m 72. One end of a cable is attached to the top of an antenna (refer to the previous figure). The other end is staked into the ground a distance d from the bottom of the antenna. If the height of the antenna is 1 12 meters less than the length of the cable, and d = 6 meters, find the length of the cable. 12.75 m ANTENNA1.PCX ALG catalog ver. 2.6 – page 287 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ANTENNA1.PCX ML 73. Town C is south of Town A and east of Town B. The distance from A to C is 12 km. The distance from A to B is 4 km more than the distance from C to B. How far apart are Towns A and B ? 20 km ABC-TRI5.PCX 75. Cloverdale is north of Bridgeport and 15 miles west of Albertsville. The distance between Cloverdale and Bridgeport is 9 miles less than the distance between Bridgeport and Albertsville. What is the distance between Bridgeport and Albertsville? 17 mi 74. Town C is south of Town B and west of Town A. The distance from A to C is 24 miles. The distance from B to C is 16 miles less than the distance from B to A. How far apart are Towns B and A ? 26 mi ABC-TRI6.PCX 76. Egleston is north of Franklin and 20 miles east of Grantsville. The distance between Franklin and Grantsville is 10 km more than the distance between Franklin and Egleston. What is the distance between Franklin and Egleston? 15 km Time, distance, rate 77. A ship navigated a course due west for 26 miles, and then went a certain distance to the north. The ship ended up 52 miles from where it started. How far did it go to the north? ≈ 45 mi 78. An airplane flew a route to the north for 240 km, and then went a certain distance to east. The airplane ended up 410 km from where it started. How far did it fly to the east? ≈ 332 km 79. At noon, a train leaves the station and travels south at 35 mph. Two hours later it turns east and increases its speed to 40 mph. At 5:30 that afternoon, approximately how far is the train from the station? ≈ 156.5 mi 80. A ship leaves port at 1:30 pm and sails west at 20 km/hr. At 4 pm, it begins sailing north at a rate of only 12 km/hr. Approximately how far is the ship from its port at 7 pm? ≈ 61.6 km 81. A boy and a girl walk apart from each other, starting at the same time and place. The boy walks north at 3 mph, and the girl walks east at 4 mph. How far apart are they after 2 hours? 10 miles 82. Two cars pull out of an intersection at the same time. One goes west at 24 km/hr and the the other goes south at 18 km/hr. How far apart are the cars after 10 minutes? 5 km 83. Two boats speed apart from each other, one going north at 24 mph, and the other going west at 18 mph. After how many hours will they be 75 miles apart? 84. Two cars leave a highway intersection at the same time. One heads east at 60 kph and the other heads north at 80 kph. After how many hours will they be 120 km apart? 1.2 hrs 2.5 hrs 85. It takes Paul 10 minutes to walk halfway around a city block. The block is 500 m long and 375 m wide. If Paul could walk straight from one corner to the opposite corner, approximately how long would it take? ≈ 7.1 min 86. It takes Jeanine 5 minutes to walk halfway around the school playground. The dimensions of the playground are 600 × 400 ft. If Jeanine could walk straight from one corner to the opposite corner, approximately how long would it take? ≈ 3.6 min 87. Nathan can run around the perimeter of the park in 12 minutes. If the park is square, how long should it take him to run from one corner to the opposite corner? ≈ 8.5 min 88. It takes Ms. Adams 14 minutes to jog from one corner of the park to the opposite corner. If the park is square, how long should it take her to run around the perimeter? ≈ 39.6 min 89. Two motorists left the gas station at the same time. One drove east on the highway, and the other south on the expressway. The driver on the highway went 10 km/hr faster than the other driver. After one hour they were 100 km apart. Find the speed of each driver. 60, 80 km/hr 90. Two motorists left a highway toll plaza at the same time. One continued west on the highway. The other got on a backroad going north. The driver going north went 28 mph slower than the other driver. After one hour they were 68 mi apart. Find the speed of each driver. 32, 60 mph 91. A car starts traveling due east along a road. At the same time and place, another car starts traveling north at a speed that is 8 mph faster than that of the first car. After 2 hours, the cars are 80 mi apart. At what speeds are they traveling? 24, 32 mph 92. From the corner of A Street and Ninth Avenue, Ken rides his bike north and Karen rides her bike east. Karen goes 3 km/hr faster than Ken. After 2 hours, they are 30 km apart. How fast each going? 9, 12 km/hr ALG catalog ver. 2.6 – page 288 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. NA Topic: Perfect square trinomials. Directions: 78—Find the missing term that makes the trinomial a perfect square. 1. n2 + ( ? ) + 9 6n 2. 64 − ( ? ) + c2 5. 1 − ( ? ) + x2 2x 6. w2 + ( ? ) + 16 9. r4 − ( ? ) + 121 22r2 13. 16 + ( ? ) + 49y 2 17. m4 + ( ? ) + n2 56y 2m2 n 16c 3. a2 − ( ? ) + 81 18a 4. 4 + ( ? ) + y2 8w 7. 36 + ( ? ) + h2 12h 8. n2 − ( ? ) + 25 10. 100 + ( ? ) + k 6 14. 144u2 − ( ? ) + 9 18. a2 − ( ? ) + b6 11. c10 + ( ? ) + 144 20k 3 24c5 15. 25 − ( ? ) + 121a2 72u 110a 19. w4 y 8 + ( ? ) + z 2 2ab3 22. k 4 + ( ? ) + 81n2 6xy 18k 2 n 10n 12. 169 − ( ? ) + z 8 26z 4 16. 4w2 + ( ? ) + 81 36w 20. k 2 + ( ? ) + m10 n6 2w2 y 4 z 21. 9x2 − ( ? ) + y 2 4y 2km5 n3 23. 121a2 − ( ? ) + y 8 24. u2 + ( ? ) + 64x4 16ux2 22ay 4 25. 25a6 − ( ? ) + 4b2 26. 9w2 + ( ? ) + 49z 4 20a3 b 27. 144a2 − ( ? ) + 25b2 120ab 42wz 2 29. c2 + 8c + ( ? ) 30. r2 − 18r + ( ? ) 16 33. ( ? ) − 70a + 49 180x2 y 5 31. m2 − 2m + ( ? ) 81 34. ( ? ) + 60y + 9y 2 100 35. ( ? ) − 2k + 1 49 38. 4p2 + 12p + ( ? ) 9 39. 4y 2 − 44y + ( ? ) 41. ( ? ) + 12ax + 4x2 9a2 42. ( ? ) − 2by + y 2 k2 43. ( ? ) − 4pr + r2 b2 32. u2 + 24u + ( ? ) 1 25a2 37. 9x2 − 42x + ( ? ) 28. 81x4 + ( ? ) + 100y 10 121 144 36. ( ? ) + 20m + 25 4m2 40. 9k 2 + 78k + ( ? ) 169 44. ( ? ) + 28a2 b + 4b2 4p2 49a4 45. a2 b2 + 4ab + ( ? ) 46. 25c4 − 20c2 y + ( ? ) 4 47. 4p4 q 2 − 4p2 q + ( ? ) 1 48. 81r10 + 126r5 y 3 + ( ? ) 4y 2 49. ( ? ) − 140x2 y + 100y 2 50. ( ? ) + 72a2 c2 + 16c4 49x4 51. ( ? ) − 30h3 k + k 2 81a4 53. 49k 2 + 112km3 + ( ? ) 100c4 y 2 61. a2 + a + ( ? ) 1 4 1 65. ( ? ) − r + r2 2 1 16 69. 4w2 + 3w + ( ? ) 1 4 1 1 77. ( ? ) + x + x2 3 16 4 9 59. ( ? ) − 182rp3 w + 169r2 60. ( ? ) + 260knp4 + 100n2 169k 2 p8 62. y 2 − 3y + ( ? ) 9 4 63. ( ? ) + 7z + z 2 1 66. ( ? ) + c + c2 3 1 36 4 67. x2 − x + ( ? ) 5 4 25 3 68. m2 + m + ( ? ) 4 9 64 71. 9b2 − 2b + ( ? ) 1 9 72. ( ? ) + 4x + 16x2 1 4 74. c2 − ( ? ) + a 81y 6 49p6 w2 70. ( ? ) − 10m + 16m2 9 16 56. 100x4 − 180x2 y 3 + ( ? ) 36c2 58. ( ? ) − 240c2 dy + 144d2 121a2 x6 144u8 55. 49a6 − 84a3 c + ( ? ) 25z 4 57. ( ? ) + 132ab2 x3 + 36b4 52. ( ? ) + 120u4 + 25 225h6 54. 64y 4 + 80y 2 z 2 + ( ? ) 64m6 73. a2 + ( ? ) + 49y 6 78. 4 25 4 4 − p + (?) 9 5 25 16 64. ( ? ) − 15t + t2 49 4 4x 76. 9 2 y + (?) + 4 16 4 16 79. ( ? ) − b + 5 25 1 2 4b 80. 3 1 2 a + a + (?) 4 10 4 5c 75. 36x2 − ( ? ) + 9 2 25 p 1 9 225 4 3y 9 100 81. w2 + ( ? ) + 0.64 1.6w 82. 0.01 − ( ? ) + x2 0.2x 83. 0.36 + ( ? ) + c2 1.2c 84. z 2 − ( ? ) + 0.09 0.6z 85. a2 + 1.4a + ( ? ) 0.49 86. ( ? ) − 0.8n + n2 0.16 87. ( ? ) + 2.6p + p2 1.69 88. r2 − 2.2r + ( ? ) 1.21 89. 0.25y 2 − ( ? ) + 100 10y 90. 0.04 + ( ? ) + 25u2 2u 91. 0.09 − ( ? ) + 0.16a2 0.24a ALG catalog ver. 2.6 – page 289 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 92. 1.44b2 + ( ? ) + 0.04 0.48b NB Topic: Solving equations with perfect squares. See also categories JB–JD (factorable equations). Directions: 15—Solve. 1. x2 = 16 y2 ±4 − 49 5. 0= 9. −5h2 = −20 ±7 17. y 2 = 9 16 ± Ø 3 4 8 7 ± 45. 49. k2 5 w2 4 =3 − 14. −36 = c2 Ø 100 = k2 81 ± 2 7 26. √ ±5 3 √ ± 15 46. √ 24 =0 64 6 2 ± 50. √ √ 3 ± 2 ±3 62. −3 = 73. − c2 + 41 = 37 5 √ ±2 5 77. (p + 4)2 = 36 2, −10 81. 100 = (x − 15)2 5, 25 1 4 3 1 , 2 2 89. (r + 2)2 = 6 −2 ± 85. (a − 1)2 = 66. 3d2 + 22 = 52 70. 13 = 10 − x2 Ø 90. 15 = (m − 7)2 5 3 28. √ ± 23 97. 3(b + 5)2 = 75 √ 6 ± 2 14 0, −10 25 49 ± √ ± 10 Ø √ ±4 3 √ 5 ± 3 36. 72 = w2 √ ± 15 √ ±6 2 √ ± 3 40. 0 = 42 − 14t2 44. 4n2 = −64 48. 15 = x2 6 Ø √ ±3 10 52. 0 = 10a2 − √ 4 5 ±7 ±6 63. −5 + 3a2 = −2 √ ± 10 67. 6w2 − 9 = 33 √ ± 7 68. 8k 2 + 17 = 41 √ ± 3 71. 25 = 20 − 5b2 Ø 72. 29 − 4y 2 = 31 Ø Ø 75. 85 = 14, −8 −9, −15 3 9 − ,− 2 2 7± √ 15 √ 2 5 ± 56. −40 + k 2 = 9 ±5 5 7 4 7 ± 32. 0 = u2 − 15 √ ±3 5 Ø ±0.1 48 = 3a2 49 ±2 3 1 2 n + 10 2 79. (b − 8)2 = 64 √ ±5 6 16, 0 83. 25 = (w + 8)2 87. ±1 −3, −13 1 = (r − 2)2 9 7 5 , 3 3 91. 2 = (3 − h)2 3± 60. 73 = u2 + 10 94. 18 = (k + 5)2 95. (a + 15)2 = 44 √ −5 ± 3 2 √ −15 ± 2 11 98. −6(1 − y)2 = −6 0, −2 99. 80 = 5(c − 2)2 80. 81 = (u + 9)2 84. (y − 11)2 = 49 16 = (d + 1)2 25 √ ±3 2 0, −18 4, 18 1 9 − ,− 5 5 92. (x + 12)2 = 11 √ 11 96. (d − 9)2 = 28 6, −2 ±10 76. 63 = 10x2 − 117 88. √ 2 √ ±3 7 1 64. 76 − m2 = 51 4 −12 ± 93. 56 = (f − 6)2 ±1 59. w2 + 9 = 21 78. 121 = (x − 3)2 9 4 ± 2 2 m − 32 3 1 1 = z2 9 5 ±11 √ ±4 2 √ ±2 2 82. (a + 12)2 = 9 24. 0.01 = r2 55. 20 = h2 − 5 74. −25 + 2x2 = −9 86. (t + 3)2 = √ 6 51. ±11 k2 − 15 3 ±0.8 c2 5 − =0 5 9 47. 0 = ±9 − 121 = 0 20. 0 = u2 − 43. 100 + 10x2 = 0 √ ± 6 8. k2 1 2 ± 39. −60 = −6c2 Ø a2 = 81 16. 0 = −18 − w2 Ø 1 − p2 = 0 4 4. 12. 7 = 7w2 ±3 35. −45 + y 2 = 0 √ ±4 5 61. 23 = 2r2 + 5 ±6 31. −x2 = −23 √ ±2 6 58. 17 = −15 + p2 69. y 2 + 32 = 10 27. √ ± 6 ±2 11 √ ± 2 − t2 23. x2 = 0.64 12 5 ± 57. x2 − 16 = 28 65. 7 − 9x2 = −11 19. ±1.5 54. b2 + 11 = 132 ±4 0 = 36 ±12 11. 4r2 − 36 = 0 10 9 3 2 a −9=0 2 9 3 2 x = 2 8 7. 144 = r2 15. a2 = −12 34. 0 = 24 − p2 38. 400 = 5s2 ±15 ±4 42. 0 = 7a2 + 42 Ø 53. 20 = n2 + 4 24 1 2 x = 6 25 30. 6 − p2 = 0 37. 2k 2 − 150 = 0 41. −32 = 8y 2 + 225 = 0 22. t2 − 2.25 = 0 √ ±2 10 33. −d2 = −40 6. −y 2 3. ±3 ±1.1 √ ± 11 29. 11 = m2 w2 = 9 18. 21. 0 = −n2 + 1.21 25. 0 = 14z 2 − 2. 26—Solve by any method. 10. 0 = 3y 2 − 48 ±2 13. 64 + n2 = 0 23—Solve by factoring √ 9±2 7 100. −63 = −7(x + 8)2 −5, −11 101. 3(r + 2)2 = 1 3 5 7 − ,− 3 3 102. 9 = 2(n − 3)2 2 9 3 , 2 2 103. 15(a + 1)2 = 20 3 104. 24 = 6(y − 2)2 49 16 12 , 7 7 1 5 − ,− 3 3 105. −38 = (3 − x)2 Ø 106. −6(y − 4)2 = 24 Ø 107. −3(n − 2)2 = 18 ALG catalog ver. 2.6 – page 290 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. Ø 108. −68 = 2(15 − x)2 Ø NB 109. −4(h − 2)2 = −40 2± √ 110. 7(x + 5)2 = 77 −5 ± 10 113. 30 = (r − 1)2 + 5 √ 4 ± 14 11 5± 6 121. 14 = (b − 7)2 + 18 20, −4 118. −12 = 19 − (5 − k)2 Ø √ −3 ± 122. (x + 10)2 + 23 = 13 125. 47 = (4 + y)2 − 5 −4 ± 2 13 129. 1 (1 − w)2 + 7 = 10 3 2± √ 14 134. −7 ± 137. 24 + 3(w − 12)2 = 120 √ √ 135. 9(r + 9)2 − 22 = 23 −9 ± 10 138. 6 − 2(k + 7)2 = −18 1 7 − ,− 2 2 142. 45 = 25(b − 3)2 − 4 − 146. 25(r − 3)2 − 28 = −11 √ 3± 149. 50 = 45 − 4(3 − x)2 157. (2x − 7)2 = 36 17 5 147. 4(x − 8)2 − 7 = 15 8± 150. (5 − p)2 + 17 = −7 Ø 154. 8(a + 5)2 + 9 = 63 158. 25 = (3w − 2)2 2 136. 24 = 30 − (2 − n)2 7 √ 21 140. 58 = 4(y + 6)2 − 38 144. 1 − 9(x + 1)2 = −24 148. 15 = 7 + 36(c + 2)2 √ 22 2 −2 ± 151. 2(x − 11)2 + 30 = 19 √ 4 6 −5 ± 3 −1, 7 3 2 3 152. −24 = (a + 4)2 − 12 Ø 155. 35 = 3(y + 5)2 + 3 √ 3 3 −5 ± 2 1 13 , 2 2 0, 20 2 8 ,− 3 3 Ø √ 2 5 11 ± 3 132. 8(x − 10)2 − 650 = 150 √ Ø 153. 33 = 9(d − 11)2 + 13 128. 23 = 55 − (7 − k)2 √ −6 ± 2 6 25 15 ,− 4 4 √ 5 9 124. 40 = 25 − 5(x + 3)2 2± 143. 16(a + 5)2 − 5 = 20 12 8 , 5 5 145. 10 = 81(h + 7)2 + 5 5 √ 4 ± 2 19 −7 ± 2 3 141. 13 = 4(m + 2)2 + 4 √ 139. 65 = 8(c − 4)2 − 11 √ 12 ± 4 2 −7 ± 2, −14 3 (p + 7)2 − 7 = 8 2 √ 21 √ 7±4 2 3 (m + 6)2 − 11 4 131. 37 = 13, 3 4, −2 133. 84 = 5(y − 2)2 + 14 √ −7 ± 3 11 130. 65 = 15 + 2(a − 8)2 120. 35 = 14 + (d + 6)2 Ø 127. 125 = 26 + (c + 7)2 √ 3±2 5 116. 85 − (3 − x)2 = 60 −6 ± 3 Ø 126. 5 − (3 − y)2 = −15 √ √ 123. 12 − 7(5 − u)2 = 40 Ø √ 7 8, −2 119. 7 − (p + 3)2 = 4 31 112. 35 = 5(y + 1)2 −1 ± 115. 12 + (m − 8)2 = 156 3, −9 117. (h − 9)2 + 5 = 11 9± 111. −28 = −2(a − 4)2 114. 28 = (w + 3)2 − 8 6, −4 √ √ 156. 18 − 7(p − 1)2 = 10 1± 159. 144 = (5b + 11)2 √ 2 2 7 160. (4k − 9)2 = 49 4, 1 2 23 1 ,− 5 5 161. (2m + 15)2 = 11 √ −15 ± 11 2 165. 4(7x − 4)2 = 48 √ 4±2 3 7 169. 15 = (3x − 4)2 + 5 √ 4 ± 10 3 173. 80 − 9(2x + 15)2 = 35 √ −15 ± 5 2 162. (4a − 9)2 = 68 163. 5 = (6x − 2)2 √ 9 ± 2 17 4 166. 30 = 5(2u + 7)2 √ −7 ± 6 2 170. −8 = (12c − 3)2 − 20 √ 3±2 3 12 174. 4(5b − 1)2 + 3 = 15 √ 1± 3 5 √ 2± 5 6 167. 4(10h + 1)2 = 180 √ −1 ± 3 5 10 171. 25 − (5k + 2)2 = 10 √ −2 ± 15 5 175. 29 = 5(12y + 8)2 − 11 √ −4 ± 2 6 ALG catalog ver. 2.6 – page 291 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 164. 45 = (7n + 6)2 √ −6 ± 3 5 7 168. 35 = 7(3p − 10)2 10 ± 3 √ 5 172. −11 − (7r + 8)2 = −59 √ −8 ± 4 3 7 176. 20 = 2(3a − 7)2 + 8 √ 7± 6 3 NC Topic: Solving equations by completing the square. Directions: 24—Solve by completing the square. 1. m2 + 2m = 15 3, −5 2. 33 = a2 − 8a 15—Solve. 3. 11, −3 26—Solve by any method. −28 = c2 + 16c 4. x2 − 22x = −40 8. 0 = y 2 + 10y − 24 20, 2 −14, −2 5. 0 = a2 − 4a − 77 6. r2 + 6r − 27 = 0 3, −9 7. x2 − 2x − 35 = 0 7, −5 −7, 11 9. 2, −12 u2 − 10u = −25 10. r2 + 6r = −9 5 13. w2 + 18w + 80 = 0 14. 0 = k 2 + 20k − 44 −8, −10 22. −4 = n2 + 5n 6, −5 25. 44 = x2 + 7x 4, −11 23. r2 − 3r = 10 −1, −4 26. a2 − 9a = 36 4, 20 19. −18 = r2 − 8r Ø 20. w2 − 10w + 26 = 0 Ø 24. 6 = p2 + p 5, −2 27. −30 = k 2 + 11k 12, −3 −2 ± √ 15 30. x2 − 8x = −10 4± √ 6 −3 ± 33. u2 − 12u = −8 34. p2 + 18p = 9 √ 2±2 7 Ø 41. y 2 − 16y + 16 = 0 38. y 2 + 12y = −56 −4 ± 8±4 3 45. d2 + 5d = 8 √ −5 ± 57 2 49. w2 − 9w − 6 = 0 √ √ −11 ± 101 21 3± 46. −1 = r2 − 3r √ 13 2 √ −7 ± 41 2 36. g 2 − 2g = 44 √ 1±3 5 40. v 2 + 22 = 4v Ø 44. a2 − 14a − 3 = 0 √ 7 ± 2 13 51. k 2 + 9k + 3 = 0 52. 0 = g 2 − 5g − 12 √ −7 ± 13 2 5± −4, 58. 0 = 3y 2 − 2y − 1 1 2 61. 4h2 + 16h = −20 65. 6k 2 − k − 1 = 0 1, − Ø 1 1 ,− 2 3 69. 2x2 − 3x − 3 = 0 −1, − 62. 3z 2 + 12z + 15 = 0 66. 4r2 + 4r = 1 − 1 2 56. 0 = 6x2 + 6x − 72 Ø 2 1 ,− 3 2 74. 0 = 6y 2 − 3y + 1 5 1 2 2 d − d=− 15 3 3 5 78. Ø 8, −2 75. −3 = 8t2 − 6t 79. 1 2 2 p − p = 10 6 3 2 3 64. 0 = 5h2 − 10h + 20 68. 0 = 9y 2 − 6y + 1 −5 ± 4 Ø 1 3 10, −6 √ 5 76. 0 = 9c2 − 6c + 5 80. Ø 1 2 12 h −h+ =0 10 5 6, 4 ALG catalog ver. 2.6 – page 292 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3, − 72. 4r2 + 10r = −5 √ 5 ± 17 4 Ø 1 2 3 a − a=2 8 4 63. −6 = 2x2 + 4x 71. 2a2 − 5a + 1 = 0 √ −1 ± 13 6 73. 10m2 − 5m = −2 77. 60. 6 = 3p2 − 7p 5 2 67. 6x2 − x = 2 70. 1 = 3m2 + m √ 3 ± 33 4 Ø 73 3, −4 59. −5 = 2w2 + 7w 1 3 √ 2 4, −1 57. 2m2 + 7m − 4 = 0 √ −1 ± 33 2 48. 8 = p2 + p 55. 4k 2 − 12k − 16 = 0 7, −2 √ 11 47. k 2 − 7k = −9 √ −9 ± 69 2 54. 2y 2 − 10y = 28 −1 Ø 43. 0 = g 2 + 22g + 20 50. 0 = z 2 + 7z + 2 √ 9 ± 105 2 53. 3a2 + 6a = −3 39. 0 = s2 + 10s + 30 Ø 42. 0 = k 2 + 8k − 5 √ 5± 2 √ 12 ± 2 26 −9 ± 3 10 37. x2 − 8x + 22 = 0 32. t2 − 10t = −14 35. w2 − 24w = −40 √ 2, −3 −7, −8 31. m2 + 6m = −7 √ Ø 28. v 2 + 15v = −56 −5, −6 29. h2 + 4h = 11 2 16. y 2 − 24y + 80 = 0 1, −15 18. 0 = n2 − 4n + 20 Ø 12. −4 = k 2 − 4k −6 15. 0 = m2 + 14m − 15 −22, 2 17. p2 + 6p = −12 21. y 2 − y = 30 11. −36 = t2 + 12t −3 Ø NC 3 7 81. 0 = b2 − b − 4 4 1, − 7 4 82. 1 2 7 1 x + x=− 2 6 3 5 2 83. 0 = d2 − d + 3 3 1, 2 3 84. 3 5 = t2 − t 2 4 2, − 3 4 1 − , −2 3 2 7 85. r2 − r = 5 25 89. √ 1±2 2 5 √ 3 ± 14 11 3 2 9 x − 6x − = 0 2 2 2± √ 93. h2 + 1.8h = −0.32 −0.2, −1.6 1.7 ± √ −10, 0.2 91. 5 2 25 a − 20a = 2 2 √ 21 95. w2 − 1.4w = −0.24 99. v 2 + 2v − 33.4 = 0 −1 ± 102. t2 − 2.8t − 5 = 0 6.96 106. g 2 + 4.6g = 54 √ −2 ± 11 9 −1.2, −0.2 30.9 √ 4 7 87. y 2 + y = 9 81 4± 6 98. w2 − 6w − 21.9 = 0 1.4 ± 8.89 105. z 2 + 9.8z = 2 √ 94. r2 + 2.6r = −1.05 3± 119.8 101. b2 − 3.4b − 6 = 0 √ 4 2 y + 8y + 4 = 0 3 −0.5, −2.1 97. n2 + 20n − 19.8 = 0 −10 ± 90. −3 ± 7 √ 6 5 x− =0 11 121 86. x2 − √ 34.4 103. h2 − 1.8h = −0.65 1.3, 0.5 −10, 5.4 107. 0.2x2 + 3.1x = 28.6 6.5, −22 ALG catalog ver. 2.6 – page 293 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 4 1 88. 0 = p2 + p + 7 49 −2 ± 7 92. √ 3 3 2 21 m + 6m = − 5 5 √ −5 ± 3 2 96. k 2 − 3.2k = −1.12 2.8, 0.4 100. y 2 − 10y − 8.7 = 0 5± √ 33.7 104. n2 + 2.6n = −1.68 −1.2, −1.4 108. 0.2r2 + 3.7r = 1.9 0.5, −19 ND Topic: Solving equations with the quadratic formula. Directions: 25—Solve using the quadratic formula. 1. x2 − 4x + 3 = 0 5. 0 = 2w2 − 3w + 1 3, 1 1, 1 2 2. t2 + 5t + 6 = 0 6. 0 = 2x2 + 3x − 5 1, − 9. 3y 2 − 27 = 0 13. 0 = 5r2 − 20r −2, −3 17. 3b2 − 14b + 15 = 0 0, −3 3 −1, − 7 21. 5x2 = 13x − 12 25. 21 − 2v = 3v 2 −3, 7 3 26. 5c2 = 4 + 8c 29. 3x = 10 − 4x2 −2, 5 4 30. 6 − 6d2 = 5d 33. x2 + 25 = 10x 5 37. 9z 2 + 1 = −6z − 1 3 38. 9 + 16a2 = 24a −1, 1 3 42. 15y 2 − 1 = 2y 41. 3x2 = 1 − 2x 2± √ 1± √ 3± 15 53. 2h2 − 6h + 1 = 0 2 3 ,− 3 2 −7 3 4 1 1 ,− 3 5 65. 0 = 3r2 + 5r − 1 Ø 35. v 2 + 16 = 8v 43. 5r − 3 = 2r2 −3, − 1 2 1 1 ,− 3 5 √ 11 − 3 7 3 2 Ø 28. 11z − 12 = 2z 2 4, 32. 3 − k = 4k 2 3 4 −1, 40. 4b = 4b2 + 1 −10 1 2 1 3 , 2 2 52. −v 2 + 8v − 10 = 0 4± √ 6 56. 0 = 5t2 − 2t − 4 1± √ 21 5 59. 0 = 2z 2 + 20z + 1 60. 5k 2 − 10k + 3 = 0 √ −10 ± 7 2 2 5± √ 10 5 63. 0 = 4d2 + 6d + 3 64. 9h2 − 3h + 2 = 0 Ø 67. 4w2 + 3w − 2 = 0 Ø 68. 0 = 2f 2 − f − 12 √ −3 ± 41 8 1± √ 97 4 69. −4k 2 − k + 4 = 0 70. 0 = −3m2 + 5m − 1 71. −2z 2 − 7z − 2 = 0 72. 0 = −4h2 + 3h + 9 73. 0 = 6y 2 − 3y − 5 74. 12x2 + 11x + 1 = 0 75. 0 = 3w2 − 11w + 9 76. 4d2 + 3d − 8 = 0 √ −1 ± 65 8 √ 5 ± 13 6 √ −11 ± 73 24 √ 3 ± 129 12 77. x2 = 6x − 7 81. 3c + 2 = 6c2 3± √ 2 √ 3 ± 57 12 78. p2 + 8p = 6 82. 7 = 2h2 − 3h −4 ± √ 22 3± √ 65 4 √ 3 ± 3 17 8 √ −7 ± 33 4 √ 11 ± 13 6 √ −3 ± 137 8 √ 79. −4t = t2 − 6 −2 ± 83. 6y 2 = 2 + 5y √ 5 ± 73 12 ALG catalog ver. 2.6 – page 294 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3 2 √ −3 ± 2 2 7 √ √ 1 ± 89 4 1 6 48. 0 = x2 + 6x + 1 55. 9y 2 − 10y − 3 = 0 Ø 0, −5 44. 3 − 8w = −4w2 5 ± 2 13 9 62. 0 = 8r2 + 2r + 3 ±3 36. 20x + 100 = −x2 4 1, 3 4 24. n2 + 8 = −5n Ø √ 5 ± − 42 66. 2t2 − t − 11 = 0 √ −5 ± 37 6 4p2 + 11p + 6 = 0 1, −3 20. 6y 2 + 11y − 2 = 0 51. −g 2 + 10g + 17 = 0 √ 6 ± 33 3 61. 20m2 − 2m + 7 = 0 8. −2, 31. 2g + 1 = 15g 2 −2 ± 58. 3p2 − 12p + 1 = 0 √ −2 ± 7 3 19. 5x2 − 13x − 6 = 0 47. 0 = c2 + 4c − 3 √ −1 ± 71 7 57. 0 = 3x2 + 4x − 1 0 = k 2 + 2k − 3 16. 0 = 3q 2 + 15q 39. −42w = 9 + 49w2 54. 0 = 7y 2 + 2y − 10 √ 3± 7 2 4. 12. 9d2 − 81 = 0 0, 2 27. 7h + 3 = −2h2 50. 0 = −x2 + 6x + 2 √ 15. 4c2 − 8c = 0 2 5 2, − √ 1±2 3 49. 0 = −z 2 + 2z + 14 2 1 ,− 3 2 ±4 23. 10y + 30 = −y 2 46. z 2 − 2z − 11 = 0 5 6z 2 − z − 2 = 0 Ø 34. −49 = m2 + 14m 45. a2 − 4a − 1 = 0 7. 7, 2 2 3, − 5 22. 6t2 + 9t = −10 Ø 0 = m2 − 9m + 14 11. 0 = v 2 − 16 ±2 18. 7m2 + 10m + 3 = 0 5 3, 3 3. −2, − 14. 4x2 + 12x = 0 0, 4 26—Solve by any method. 5 2 10. 0 = 5j 2 − 20 ±3 15—Solve. 10 80. 4y + 3 = y 2 84. 1 − 8r2 = 3y 2± √ 7 √ −3 ± 41 16 ND 85. b − 1 = −4b2 √ −1 ± 17 8 87. 5g 2 + g = 5 90. k = 5k 2 + 2 91. 2d = −7 − 4d2 √ −7 ± 181 22 89. y − 4 = 11y 2 Ø 93. 3r2 + 2r = 4 √ −1 ± 13 3 Ø √ 94. 10g 2 − 2g = 7 97. 8n2 = 5 − 2n 98. 3v 2 = 6 − 4v 101. −4x = 7 − 2x2 102. 4g = −3 + 5g 2 √ −1 ± 41 8 √ 2±3 2 2 105. 6y + 5 = −4y 2 1 ± 71 10 √ −2 ± 22 3 106. 8t − 10 = 3t2 111. (p − 1)2 = 8(7 − p) 1 5 115. x + 4 = (x − 2)(x − 3) 3± √ √ 7 √ 41 3± 5 4 √ −5 ± 97 18 108. −5p = 10p2 + 4 Ø 5± 124. √ 1 5 4± 131. 3a(a − 2) = a(4 + a) − 15 Ø 133. 0 = 3± 137. 1 2 h − 2h + 1 3 √ √ −2 ± 10 3 √ √ − 3 ± 15 2 √ Ø 1± √ 10 2 2 3 x − x+1 5 2 5± 3 1 n + = −n2 5 2 √ 150. y 2 − y 6 = 3 146. √ 6±3 2 2 3 65 8 1± √ 26 5 2 2 136. 0 = c2 − c − 3 3 139. 0 = √ 1± 7 3 5 3 2 1 x − x− 8 2 4 140. √ 34 3 147. −2y 2 = 1.8y + 0.5 √ 151. n2 = 3 + 2n 5 √ ALG catalog ver. 2.6 – page 295 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ 5±2 2 1 5 2 2 y − y− =0 6 3 2 2± √ 19 5 144. 0.1w2 = 0.6w − 0.3 √ 5 ± 13 3 Ø √ 2 4 135. d2 + d − = 0 5 5 143. u − 0.4 = 0.3u2 √ −9 ± 41 20 √ Ø 2± 142. 0.9s + 0.1 = −s2 √ −1 ± 132. 10y(y − 1) = −2(y + 12) √ −1 ± 21 5 10 √ 15 ± 65 8 √ 13 ± 89 20 1 3 m = m2 + 1 2 4 √ 149. 3 − a2 = a 3 1 2 3 a −a− =0 4 2 138. 0 = 141. x2 − 1.3x + 0.2 = 0 2 3 √ 22 3 130. (5a + 2)(a − 1) = 3 − a 2± 6 145. 128. (4y + 1)(2y − 3) = 2 √ 43 6 134. 3 2 1 y +y− =0 4 2 − √ −5 ± 89 16 √ 3 ± 17 4n2 = (5n + 2)(n − 1) 2 √ 5 ± 13 6 − 2d = (2d − 3)2 4 126. (3w + 1)2 = 6w2 + 7 23 3± 5 4 1± Ø 9 2 0, √ 129. 5 + n = (2n + 1)(3n − 2) √ 23 3 √ −1 ± 7 3 5± 107. 2c = 5c2 + 7 122. 125. 7p2 − 11p = (2p + 1)(3p − 2) 127. −5 = (2x − 4)(2x + 1) Ø 120. −1 = (8c − 3)(c + 1) 4 123. (3x + 4)(3x − 2) = x − 6 57 √ −3 ± 4 2 2 116. (t + 4)(t − 4) − 13 = 2(t − 10) 5 √ 8 104. 4r2 − 23 = −12r √ 121. (2y − 1)2 = 2y 100. 2 − 2z = 3z 2 3± 103. 10h − 2 = 11h2 118. d(3d − 8) − 2 = 0 7± 96. 9b2 = 30b − 2 114. 0 = (3b − 2)(3b + 4) + 9 10 119. (2x + 1)(x − 4) = −5 √ 2 ± 46 7x2 = 6 + 4x 7 √ 1 ± 31 3 + 2q = 10q 2 10 112. 5y + 1 = 5y(3 − 5y) − 5± 99. 92. c = 5 + 20c2 Ø 110. r(3r − 5) = r2 + 4r 5, −11 113. (5p + 3)(5p − 1) = −4 117. 5k(k − 2) = −3 Ø 2 3 109. 3k(2 − 3k) = 4(1 − k) − 2k 95. 88. 4v 2 − 3v = 3 √ 5± 3 11 √ 2 ± 19 5 Ø √ −1 ± 101 10 86. 7a − 3 = −11a2 3± Ø √ 6 148. 0.5x2 + 1.6 = 1.2x √ √ 152. p2 2 − p = 2 2 √ √ 2 ± 34 4 Ø NE Topic: Solving for other variables (quadratic equations and square roots). Directions: 19—Solve for the indicated variable. r 1. W = I 2 R; for I r W R 2. d = 16t2 ; for t 3. F = mv 2 ; for v gr r F gr m 4. V = πr2 h; for r r 5. s= 6. A = 4πr2 ; for r r 7. V = 1 2 πr h; for r 3 r 3V πh 8. L= 9. h= r ; for p 1 − p2 r h−r h 10. T = 1 2 gt ; for t 2 r 2s g z √ 11. v 2 = w2 + ; for z 2 v2 − w2 4 r A 13. r = ; for A πr2 π r ` t2 g 15. t = π ; for ` π2 g 17. t = 2π r ` ; for ` g 23. s = h2 + √ 25. x2 − 2x + c = 0; for x 27. 2x2 + 2x − c = 0; for x 4s2 − e2 2 1± √ 1−c −1 ± 29. ax2 − x + 2 = 0; for x 1± 31. ax2 − x + c = 0; for x 1± 2 ; for n n2 − w r R2 − r 2 ; for r t r 2K ; for K 14. V = m √ 2 +w T R2 − kt V 2m 2 1 1 √ ; for L 4Cf 2 π 2 2π LC r 3h 2m2 ; for h 18. m = 3 2 gt2 4π 2 e2 ; for h 4 A 4π 16. f = r r V πh t2 √ L 5 12. k = Fgr wy 2 ; for F gr w p p 21. w = x2 + y 2 ; for x w2 − y2 19. y = 25`2 ; for ` t4 d 16 √ 1 + 2c 2 20. n = 22. b = r √ 24. K = πV ; for L 5L c2 − a2 ; for a r πV 5n2 √ c2 − b2 d2 − 3p2 ; for p 3 26. y 2 + 2y − c = 0; for y √ d2 − 3K 2 3 −1 ± √ 1+c 28. ay 2 − 6y + 1 = 0; for y 3± 1 − 8a 2a 30. n2 + bn − 2 = 0; for n −b ± √ 1 − 4ac 2a 32. y 2 + by − b2 = 0; for y √ ALG catalog ver. 2.6 – page 296 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ 9−a a √ b2 + 8 2 √ −b ± b 5 2 NF Topic: Finding a quadratic equation from roots. Directions: 79—Find a quadratic equation with the given root(s). 1. 0, 6 5. 0, − 9. 4, 7 x2 − 6x = 0 2 3 3x2 + 2x = 0 x2 − 11x + 28 = 0 2. 0, 20 6. 0, − x2 − 20x = 0 3. 0, −5 5x2 + x = 0 7. 0, 1 5 10. 2, −3 x2 + x − 6 = 0 7 4 17. 9 x2 − 9x − 22 = 0 x2 − 18x + 81 = 0 21. ±8 25. −5, x2 − 64 = 0 2 3 3x2 + 13x − 10 = 0 14. −9, −6 x2 + 15x + 54 = 0 4. 0, −8 4x2 − 7x = 0 8. 0, 11. −1, −10 x2 13. −2, 11 x2 + 5x = 0 1 6 x2 + 8x = 0 6x2 − x = 0 12. −5, 9 x2 − 4x − 45 = 0 16. 12, 1 x2 − 13x + 12 = 0 + 11x + 10 = 0 15. −5, 15 x2 − 10x − 75 = 0 18. −12 x2 + 24x + 144 = 0 19. −7 x2 + 14x + 49 = 0 20. 5 22. ±12 x2 − 144 = 0 23. ±6 x2 − 36 = 0 24. ±15 26. −1, − 7 4 27. 11, 1 3 3x2 − 34x + 11 = 0 x2 − 10x + 25 = 0 28. 7, − x2 − 225 = 0 5 2 2x2 − 9x − 35 = 0 4x2 + 11x + 7 = 0 1 6 29. − , − 4 5 30. 2 1 , 3 3 9x2 − 9x + 2 = 0 31. 20x2 + 29x + 6 = 0 33. 4 7 37. ± 49x2 − 56x + 16 = 0 3 8 √ 64x2 − 9 = 0 41. ± 7 x2 − 7 = 0 √ 45. ±2 11 x2 − 44 = 0 √ 49. 4 ± 3 x2 − 8x + 13 = 0 7 4 ,− 2 5 1 8 32. − , 2 9 10x2 − 27x − 28 = 0 34. − 38. ± 3 8 7 6 √ 64x2 + 48x + 9 = 0 35. − 36x2 − 49 = 0 39. ± 42. ± 10 x2 − 10 = 0 √ 46. ±6 3 x2 − 108 = 0 √ 50. −1 ± 11 5 2 1 4 √ √ 54. −3 ± 2 6 x2 − 2x − 49 = 0 57. −2 ± 3 √ 3 58. 9x2 + 12x + 1 = 0 61. √ 3±2 2 5 36. 16x2 − 1 = 0 40. ± 43. ± 5 x2 − 5 = 0 √ 47. ±3 15 x2 − 135 = 0 √ 51. 2 ± 2 x2 − 4x + 2 = 0 25x2 − 30x + 1 = 0 9x2 − 60x + 100 = 0 5 9x2 − 25 = 0 3 √ 44. ± 13 x2 − 13 = 0 √ 48. ±2 6 x2 − 24 = 0 √ 52. −3 ± 10 x2 + 6x − 1 = 0 √ 55. 5 ± 3 3 √ 56. −2 ± 5 2 x2 + 6x − 15 = 0 x2 − 10x − 2 = 0 x2 + 4x − 46 = 0 √ 5± 2 2 √ 3± 5 2 −1 ± 3 59. 2x2 − 6x + 2 = 0 60. 4x2 − 20x + 23 = 0 62. 10 3 4x2 + 20x + 25 = 0 x2 + 2x − 10 = 0 √ 53. 1 ± 5 2 18x2 − 7x − 8 = 0 √ −2 ± 5 3 3 9x2 + 12x − 71 = 0 √ 7 3x2 + 2x − 2 = 0 63. √ −1 ± 3 7 4 8x2 + 4x − 31 = 0 ALG catalog ver. 2.6 – page 297 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 64. √ 5±3 2 2 4x2 − 20x + 7 = 0 NG Topic: Understanding the roots of an equation. See also category LG (statements about real numbers). Directions: 37—Solve for k so that the equation has the given number of roots. 1. x2 + 10x + k = 0 ; one root k = 25 2. x2 + 4x − k = 0 ; one root 3. x2 − 12x − k = 0 ; one root k = −36 4. x2 − 20x + k = 0 ; one root k = 100 5. x2 + kx + 9 = 0 ; one root 6. x2 − kx + 16 = 0 ; one root k = ±8 7. x2 + kx + 18 = 0 ; one root √ k = ±6 2 8. x2 − kx + 3 = 0 ; one root 9. kx2 − 6x − 2 = 0 ; one root k = − 92 10. kx2 + 5x + 10 = 0 ; one root 11. 3x2 + 2x − k = 0 ; one root k = − 13 12. 6x2 − 8x + k = 0 ; one root k = ±6 13. x2 + 10x + k = 0 ; two roots 15. x2 + 4x − k = 0 ; two roots k < 25 k > −4 17. kx2 − 6x − 2 = 0 ; no real roots 19. 3x2 + 2x − k = 0 ; two roots k < − 92 k > − 13 k = −4 √ k = ±2 3 k= k= 14. x2 + 10x + k = 0 ; no real roots 16. x2 + 4x − k = 0 ; no real roots 18. kx2 + 5x + 10 = 0 ; two roots 5 8 8 3 k > 25 k < −4 k< 20. 6x2 − 8x + k = 0 ; no real roots 5 8 k> 8 3 special 21. x2 + kx + 9 = 0 ; two roots k > 6 or k < −6 23. x2 − kx + 16 = 0 ; no real roots 25. kx2 − 12 = 0 ; one root 27. 6x2 − k = 0 ; one root k>0 k<0 30. 3x2 + kx = 0 ; two roots k > 8 or k < −8 k = 0 or k = 4 k 6= 0 32. x2 + kx + k = 0 ; no real roots ALG catalog ver. 2.6 – page 298 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. −6 < k < 6 k=0 28. x2 + kx + k = 0 ; one root k=0 31. 6x2 − k = 0 ; no real roots 24. x2 − kx + 16 = 0 ; two roots 26. 3x2 + kx = 0 ; one root Ø 29. kx2 − 12 = 0 ; two roots −8 < k < 8 22. x2 + kx + 9 = 0 ; no real roots 0<k<4 NH Topic: Word problems involving the quadratic formula. See also categories JF (factoring) and NG (square roots). Directions: 0—(No explicit directions.) 16—Solve and check. 40—Write an equation and solve. 1. 3. 39—Translate and solve. A number is 32 less than its reciprocal. Find the number. −1±√10 A number is 4 more than its reciprocal. Find the number. 2 ± √5 2. The sum of a number and its reciprocal is 3. What is the number? 3±√5 4. The difference between a number and its reciprocal is 10. What is the number? 5 ± √26 6. Find a negative number whose square is 1 more than the number itself. 1−√5 8. Find a positive number whose square is 31 more than the number itself. 1+5√5 3 2 5. Find a positive number whose square is 3 more than the number itself. 1+√13 7. Find a negative number whose square is 29 more than the number itself. 1−3√13 9. Find two numbers whose sum is 16 and product is 50. 8 ± √14 10. Find two numbers whose sum is 20 and product is 80. 10 ± 2√5 11. Find two numbers whose sum is 10 and product is 18. 5 ± √7 12. Find two numbers whose sum is 16 and product is 30. 8 ± √34 2 2 2 2 Area, perimeter 13. A square has an area of 25 cm2 . By how much should each of its sides be increased in order to double its area? ≈ 2.1 cm 14. A square has an area of 18 ft2 . By how much should each of its sides be increased in order to double its area? ≈ 1.8 ft 15. A square of an area of 200 in2 . By how much should each of its sides be decreased in order to form a square with half the area of the original? ≈ 4.1 in. 16. A square of an area of 144 m2 . By how much should each of its sides be decreased in order to form a square with half the area of the original? ≈ 3.5 m 17. Each side of a square is decreased by 8 ft in order to make a square with an area of 18 sq ft. What is the length of each side of the original square? ≈ 12.2 ft 18. Each side of a square is decreased by 2 m in order to make a square with an area of 72 m2 . What is the length of each side of the original square? ≈ 10.5 m 19. Each side of a square is increased by 5 inches in order to make a square with an area of 60 sq in. What is the length of each side of the original square? 20. Each side of a square is increased by 3 cm in order to make a square with an area of 80 cm2 . What is the length of each side of the original square? ≈ 2.7 in. ≈ 5.9 cm 21. A painting is 12 cm longer than it is wide. Its area is 240 sq cm. What are the dimensions of the painting? about 10.6 × 22.6 cm 22. A chalkboard is 4 ft wider than it is tall. Its area is 36 sq ft. What are the dimensions of the chalkboard? about 4.3 × 8.3 ft 23. The length of a rectangle is 10 m more than twice the width. The area is 120 m2 . What are the dimensions of the rectangle to the nearest tenth? 5.6 × 21.2 m 24. The length of a rectangle is 8 in. less than twice the width. The area is 210 in2 . What are the dimensions of the rectangle to the nearest tenth? 12.4 × 16.8 in. 25. The perimeter of a building is 62 meters. It covers an area of 200 m2 . Find the length and width of the building (round to the nearest tenth). 9.2, 21.8 m 26. The perimeter of a garden is 38 feet. It covers an area of 75 ft2 . Find the length and width of the building (round to the nearest tenth). 5.6, 13.4 ft 27. A picture frame has an area of 340 cm2 and a perimeter of 80 cm. What are the dimensions of the picture frame? about 12.3 × 27.7 cm 28. A bulletin board has an area of 450 in2 and a perimeter of 106 in. What are the dimensions of the bulletin board? about 10.6 × 42.4 in. 29. Find the sides of a rectangle whose perimeter is 56 and diagonal is 22. 14 ± √46 30. Find the sides of a rectangle whose perimeter is 40 and diagonal is 18. 10 ± √62 31. A rectangular sandbox is made from a 19 ft piece of wood (the wood is cut into four pieces). If the area of the sandbox is 14 sq ft, what are its dimensions to the nearest hundredth? 1.82 × 7.68 ft 32. A rectangular picture frame is made from a 3 m piece of wood (the wood is cut into four pieces). If the area of the frame is 0.55 m2 , what are its dimensions to the nearest hundredth? 0.64 × 0.86 m ALG catalog ver. 2.6 – page 299 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. NH 33. A rectangular patio is surrounded on three sides by a fence (the remaining side is up against the house). If the area of the patio is 38 m2 , and the total length of fence is 18 m, what is the length and width of the patio? about 11.2 × 3.4 m 34. A rectangular patio is surrounded on three sides by a fence (the remaining side is up against the house). If the area of the patio is 260 sq ft, and the total length of fence is 48 ft, what is the length and width of the patio? about 31.4 × 8.3 ft FENCE1.PCX FENCE1.PCX 35. A rectangular lot, whose area is 425 sq ft, has one of its longer sides next to a river. The total length of fence surrounding the lot is 70 ft. Find the dimensions of the lot. about 54.4 × 7.8 ft 36. A rectangular lot, whose area is 210 m2 , has one of its longer sides next to a river. The total length of fence surrounding the lot is 42 m. Find the dimensions of the lot. about 25.6 × 8.2 m FENCE2.PCX FENCE2.PCX 37. A rectangular flower bed, whose dimensions are 7 × 14 ft, has one of its longer sides against a house. The remaining three sides are to be increased by a strip of uniform width, so that the area of the garden is increased by 50%. How wide should that strip be? ≈ 1.6 ft 38. A rectangular flower bed, whose dimensions are 4 × 10 m, has one of its longer sides against a house. The remaining three sides are to be increased by a strip of uniform width, so that the area of the garden is increased by 75%. How wide should that strip be? ≈ 1.4 m GARDEN1.PCX GARDEN1.PCX 39. A rectangular deck, whose dimensions are 6 × 8 m, has one of its shorter sides up against a wall. The remaining three sides are to be increased by a uniform strip of wood, so that the area of the deck is tripled. How wide should that strip be? ≈ 3.3 m 40. A rectangular deck, whose dimensions are 9 × 12 ft, has one of its shorter sides up against a wall. The remaining three sides are to be increased by a uniform strip of wood, so that the area of the deck is doubled. How wide should that strip be? ≈ 2.8 ft DECKHS1.PCX 41. The length of a rectangular garden is twice the width. When a 5 ft strip is cut away from all sides of the garden, the area is decreased by half. What are the original dimensions of the garden? DECKHS1.PCX 42. The length of a rectangular lawn is 5 m more than the width. When a 2 m strip is added to all sides of the lawn, the area is doubled. What are the original dimensions of the lawn? about 7.7 × 12.7 m about 26.2 × 52.4 ft 43. A rectangular swimming pool is 12 meters long and 8 meters wide. It is surrounded by a cement walkway of uniform width. The area of the walkway is twice the area of the pool. How wide is the walkway? 44. A rectangular parking lot is 60 feet long and 45 feet wide. Its area is doubled when a strip of uniform width is added to all four sides. How wide is the strip? ≈ 10.7 ft ≈ 3.5 m ALG catalog ver. 2.6 – page 300 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. NH Right triangles 45. The hypotenuse of a right triangle is 8 meters. Find the lengths of the legs, if one leg is 2 meters longer than the other. about 4.6 and 6.6 m 46. The hypotenuse of a right triangle is 14 ft long. Find the lengths of the legs, if one leg is 4 ft longer than the other. about 7.7 and 11.7 ft 47. The hypotenuse of a right triangle is 5 cm long. Find the lengths of the two legs if their sum is 6 cm. 48. The hypotenuse of a right triangle is 10 in. long. Find the lengths of the two legs if their sum is 13 in. about 1.1 and 4.9 cm about 3.7 and 9.3 in. 49. In a right triangle, the two legs are each 5 less than the hypotenuse. What is the hypotenuse? ≈ 17.1 50. In a right triangle, the two legs are each 8 less than the hypotenuse. What is the hypotenuse? ≈ 27.3 51. In a right triangle, the first leg is 6 less than the hypotenuse, and and the second leg is 8 less than the hypotenuse. What is the length of the hypotenuse? 52. In a right triangle, the first leg is 2 less than the hypotenuse, and and the second leg is 3 less than the hypotenuse. What is the length of the hypotenuse? ≈ 23.8 ≈ 8.5 53. The diagonal of a square is 5 in. longer than its sides. How long is each side? ≈ 12.1 in. 54. The diagonal of a square is 8 cm longer than its sides. How long is each side? ≈ 19.3 cm 55. In a square, the length of a side is 6 cm less than a diagonal. How long is each diagonal? ≈ 20.5 cm 56. In a square, the length of a side is 2 in. less than a diagonal. How long is each diagonal? ≈ 6.8 in. 57. A 14 ft ladder leans against the side of a building, as shown in the figure. Find out how high the ladder reaches, if the distance between the bottom of the ladder and the building is 11 ft less than the distance between the top of the ladder and the ground. 58. A 5 m ladder leans against the side of a building (refer to the previous problem). Find out how high the ladder reaches, if the distance between the bottom of the ladder and the building is 2 m less than the distance between the top of the ladder and the ground. 2+√46 or about 4.4 m √ 11+ 271 2 or about 13.7 ft 2 LADDER2.PCX LADDER2.PCX 59. A ladder leans against the side of a building, as shown in the figure. The distance x is 4 feet less than the distance y, which is 1 foot less than the length of the ladder. How long is the ladder? 6+ √ 10 or about 9.2 ft 60. A ladder leans against the side of a building (refer to the previous problem). The distance x is 3 meters less than the distance y, which is 1 meter less than the length of the ladder. How long is the ladder? 4+ √ 6 or about 6.4 m LADDER3.PCX LADDER3.PCX ALG catalog ver. 2.6 – page 301 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. NH Formulas 61. A prism, whose height is h, has a square base of side s. Its surface area is given by the formula S = 2s2 + 4hs. Find s, if the surface area is 200 square units and the height is 10. −10 + 10√2 62. A prism, whose height is h, has a square base of side s. Its surface area is given by the formula S = 2s2 + 4hs. Find s, if the surface area is 98 square units and the height is 7. −7 + 7√2 PRISM1.PCX PRISM1.PCX 63. The surface area of a square prism is given by the formula S = 2s2 + 4hs, where h is the height and s is a side of the base. If a square prism has a surface area of 132 in2 and a height of 11 in., what is s to the nearest tenth of an inch? 2.7 64. The surface area of a square prism is given by the formula S = 2s2 + 4hs, where h is the height and s is a side of the base. If a square prism has a surface area of 192 cm2 and a height of 8 cm, what is s to the nearest tenth of an inch? 4.6 65. A boy throws a rock over the edge of a cliff. The rock is h feet above the boy after t seconds, as given by the formula h = 48t − 16t2 . 66. Frank throws a rock over the edge of a cliff. The rock is h meters above him after t seconds, as given by the formula h = 10t − 5t2 . a) What is the height of the rock after 1 second? 3 seconds? 5 seconds? a) What is the height of the rock after 1 second? 2 seconds? 4 seconds? b) At what time is the rock at its maximum height? b) At what time is the rock 3 meters above Frank? c) At what time is the rock 8 feet above the boy? d) Can you figure out how long the rock is in the air? Explain. c) At what time is it 10 meters above him? d) At what time is the rock 24 feet below the boy? 32, 0, −160 ft; 1.5 sec; about 0.2 and 2.8 sec; about 3.4 sec 5, 0, −40 m; about 0.4 and 1.6 sec; never; no, the height of the cliff is unknown. CLIFFR1.PCX 67. Jeanine jumps off a diving board into a swimming pool. Her height is h meters above the board after t seconds, as given by the formula h = 8t − 5t2 . a) At what time is Jeanine 2 meters above the diving board? CLIFFR1.PCX b) At what time is she 4 meters above the diving board? 68. A woman jumps off a diving board into a swimming pool. Her height is h feet above the board after t seconds, as given by the formula h = 32t − 16t2 . a) At what time is the woman 8 feet above the diving board? c) If the diving board is 3 meters above the water, approximately how long is Jeanine in the air? about 0.3 and 1.3 sec; never; about 1.9 sec b) At what time is she 4 feet below the diving board? c) Can you figure out how long the woman is in the air? Explain. about 0.3 and 1.7 sec; about 2.1 sec; no, the height of the diving board is unknown. DIVER2.PCX ALG catalog ver. 2.6 – page 302 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. DIVER2.PCX NH 69. A football is thrown along a path which can be described by the equation 1 2 x . 64 In the equation, y is the height of the football above the ground at a horizontal distance x. Find the distance of the ball when y = 19 feet (round to the nearest tenth). 20.7, 43.3 ft y =5+x− 70. A football is thrown along a path which can be described by the equation 1 2 x . 20 In the equation, y is the height of the football above the ground at a horizontal distance x. Find the distance of the ball when y = 4 meters (round to the nearest tenth). 2.3, 17.7 m y =2+x− FTBALL2.PCX 71. When an arrow is shot at a 45 ◦ angle, its path may be described by the equation 1 2 x . 75 In the equation, y is the height of the arrow at a horizontal distance x. (Note: the height is measured above the shoulders.) Find the distance of the arrow when the height is 10 meters. 11.9, 63.1 m y =x− FTBALL2.PCX 72. When an arrow is shot at a 45 ◦ angle, its path may be described by the equation 1 2 x . 200 In the equation, y is the height of the arrow at a horizontal distance x. (Note: the height is measured above the shoulders.) Find the distance of the arrow when the height is 45 feet. 68.4, 131.6 ft y =x− ARROW1.PCX ARROW1.PCX 73. A rocket is shot straight up in the air at 200 meters per second. The rocket will be at a height h after t seconds, as given by the formula h = 200t − 5t2 . At what time(s) is the ball at a height of 500 m? about 2.7 and 37.3 sec 74. A baseball is hit straight up in the air at 128 feet per second. The ball will be at a height h after t seconds, as given by the formula h = 128t − 16t2 . At what time(s) is the ball at a height of 144 ft? about 1.4 and 6.6 sec vt − 16t2 75. Use the formula h = to find out how long it takes an object to reach a height of 200 ft, if it is shot upward with an initial velocity v of 128 ft/sec. (Round answer to the nearest hundredth.) 2.13 sec 76. Use the formula h = vt − 5t2 to find out how long it takes an object to reach a height of 50 m, if it is shot upward with an initial velocity v of 60 m/sec. (Round answer to the nearest hundredth.) 0.90 sec 77. The stopping distance d of a car traveling at x mph may be approximated by the formula d = 0.05x2 + 0.1x (d is measured in feet). 78. The stopping distance d of a car traveling at x km/hr may be approximated by the formula d = 0.006x2 + 0.02x (d is measured in meters). a) What is the stopping distance of a car whose speed is 30 mph? 50 mph? a) What is the stopping distance of a car whose speed is 40 km/hr? 80 km/hr? b) The stopping distance of a certain car was 80 ft. How fast was it going? 48, 130 m; about 39 mph b) The stopping distance of a certain car was 25 m. How fast was it going? 10, 39 m; about 63 km/hr 79. The density of smoke from a diesel truck is related to its engine speed, and may be approximated by the formula D = 2r2 − 14r + 30. In the formula, D is measured in millions of particles per cubic foot, and r is hundreds of revolutions per minute. If the density of smoke from a truck is 14, what is its engine speed (rpm)? about 144 or 556 rpm 80. The density of smoke from a diesel truck is related to its engine speed, and may be approximated by the formula D = 50r2 − 400r + 800. In the formula, D is measured in millions of particles per cubic meter, and r is hundreds of revolutions per minute. If the density of smoke from a truck is 150, what is its engine speed (rpm)? about 227 or 573 rpm ALG catalog ver. 2.6 – page 303 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. OA Topic: Simple inequalities. See also category OB. Directions: 15—Solve. 31—Solve by graphing. 34—Solve each inequality and graph. 35—Solve and graph. 88—Graph the solution. 1. x + 7 ≥ 12 5. 6 < m + 15 9. 3 2 + a < − 52 13. 0 ≥ k + 6 3 5 < 11 + y > 17 m > −9 6. 3≥9+p a < −4 10. y + k ≤ −6 17. y − 9 6= 13 21. y − 2. x≥5 y= 6 22 7 5 p ≤ −6 ≥ − 14 y ≥ −2 3. 3 4 7. 2 > y + 10 +a≤ 7 8 a≤ 1 8 y < −8 11. r + 5 ≤ −11 r ≤ −16 8. 18 ≤ 21 + x k< m < 12 16. 0 < a − 15 18. 5 6= x − 8 x 6= 13 19. 33 6= 18 + r r 6= 15 20. 14 + p 6= 23 c≤1 23. 8 < k − 14 3 7 ≥c− 4 7 k > 22 26. x − 21 ≤ −25 x ≤ −4 27. y − 4 31 ≥ −5 y ≥ − 23 29. −12 + x > −6 x>6 30. −4 ≤ −17 + p p ≥ 13 31. −14 > r − 24 r < 10 35. x − 8 6= −26 x= 6 −18 34. a + 35 6= 19 a 6= −16 1 10 x ≥ −3 12. 7 + p > −13 15. m − 12 < 0 m < −5 y 6= −7 < 3 10 k+ c ≥ −7 25. −15 > m − 10 33. 17 6= 24 + y 1 5 4. 14. c + 7 ≥ 0 22. y<2 7 4 y>6 p > −20 a > 15 p= 6 9 24. a − 8 ≥ 19 a ≥ 27 28. −4 < c − 2 21 c > − 32 32. c − 19 ≤ −11 c≤8 36. −20 6= −12 + m m 6= −8 37. 3k ≥ 21 k≥7 38. 42 ≤ 6x 41. 10 ≤ 12 y y ≥ 20 42. 45. 8y ≥ 30 y≥ 49. −18 > 3a 53. 6p > 6 54. 4 ≤ a c 6= −3 69. −35 < −5y 73. 3y ≤ −20 y ≤ − 20 3 77. −36 > −10c 81. −45x < 9 c> 18 5 x > − 15 74. 22 ≥ −4a k ≤ −11 a< 5 3 r ≤ − 16 86. 108 6= −18a 89. 4 − c < 16 c > −12 90. 2 − x ≥ 10 a 6= −6 x ≤ −8 y > −3 52. −24 ≥ 8c y 6= 4 67. −2c ≤ 26 c ≥ −13 68. −4x < 32 102. 3 > −a − 12 105. 3k + 8 ≥ 17 k≥3 106. 5 + 2x > 19 109. 15 ≤ 4c − 9 c≥6 110. 21 < −9 + 5r a > −15 x>7 r>6 x > −8 72. −27 ≤ −9p m > − 15 4 79. −9y ≤ −24 y≥ 83. −10 > 15c c < − 23 8 3 76. 3x > −14 p≤3 x > − 14 3 80. −33 ≥ −6k 84. −35p ≤ 14 k≥ 11 2 p ≥ − 25 87. −90 6= −15y y= 6 6 88. −13m 6= 78 m 6= −6 91. 15 < −k + 8 k < −7 92. 11 ≤ −r + 5 r ≤ −6 a > 22 96. 17 − c > −5 c < 22 99. −16 > −8 − y x < −17 r < −1 r≤3 64. −r ≥ −3 x≥8 101. 7 < −x − 10 c ≤ −3 x 6= 3 a<6 r>6 21 5 60. 96 6= 32x 63. −6 < −a 95. 14 − a < −8 98. −4 − x ≤ −12 m> 56. 10r < −10 x ≤ −1 w ≤ 20 r>5 c ≤ 36 48. 5m > 21 94. −13 ≤ −w + 7 97. −3 − r < −8 p<6 13 3 x≥ 75. 30 > −8m a ≥ − 11 2 x 6= −7 y ≥ 34 44. 6 ≥ 16 c 71. −4r < −24 x≤6 85. −12x = 6 84 93. −26 ≥ −y + 8 x > 25 >5 59. 25y = 6 100 x 6= −8 78. −12a > −20 82. −3 ≥ 18r 1 5x 55. −8 ≥ 8x 70. −6x ≥ −36 y<7 40. 9p < 54 51. 5y > −15 k ≤ −4 p > −5 66. −2k > 22 y ≤ −8 c<9 47. 26 ≤ 6x 11 2 a≥4 58. 9x 6= −72 62. 5 > −p m≥2 65. −3y ≥ 24 r> 39. 45 > 5c 43. a < 24 50. 9k ≤ −36 p>1 61. −m ≤ 2 <8 46. 22 < 4r 15 4 a < −6 57. −42 6= 14c 1 3a x≥7 103. −y − 24 ≤ −21 107. 31 > 7 + 8a 111. −13 + 7y < 1 ALG catalog ver. 2.6 – page 304 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. y>8 y ≥ −3 a<3 y<2 100. −17 ≥ −9 − m m≥8 104. −p − 15 ≥ −11 p ≤ −4 108. 26 ≤ 6x + 8 x≥3 112. 4w − 17 ≥ 3 w≥5 OA 113. 11 + 10m > 6 m > − 12 114. 8a + 15 ≥ 6 a ≥ − 98 117. −24 6= 15k − 4 k 6= − 43 118. 28 6= −7 + 4x x 6= 121. −3 + 7c < −17 c < −2 122. 5p − 2 ≤ −27 p ≤ −5 35 4 115. −2 > 6y + 7 y < − 32 119. 14 + 5y 6= 23 y 6= 123. 19 ≥ 8x − 3 9 5 x ≥ − 14 120. 24a − 19 6= 33 a 6= 13 6 124. −28 < −10 + 6x 11 4 x≤ 116. −1 ≤ 2 + 12x x > −3 125. −9 ≤ 2a − 25 126. −2 < −17 + 3r a≥8 129. −11 + 6a > −11 a>0 130. 9x − 8 ≤ −8 127. −25 + 4m > −5 r>5 m>5 131. −13 ≥ −7w − 13 x≤0 128. 2c − 15 ≥ −7 c≥4 132. −12 < −4k − 12 k<0 w≥0 133. −20 ≤ −25 − 5x 134. −15 > −23 − 8w x ≤ −1 135. 3p − 13 < −10 p<1 136. 12c − 35 ≥ −23 c≥1 140. 39 ≥ −11x + 6 x ≥ −3 w > −1 137. −15a + 6 < 36 a > −2 138. 14 − 12m > 50 139. 31 ≤ 15 − 8x x ≤ −2 k>4 m < −3 141. 21 < −4 − 5a a < −5 142. 20 ≥ −9r − 7 r ≥ −3 143. −3k + 14 < 2 x≤6 146. 75 − 6w ≤ 27 w≥8 147. −25 < −4c − 13 145. −9x + 71 ≥ 17 149. −19 ≥ 17 − 12a a≥3 150. −38 < −14p + 18 x> 157. 17 − 9w 6= −64 5 2 w 6= 9 x ≥ − 12 154. −27 + 12k ≤ 15 k≤ 7 2 158. −25c − 58 6= 92 165. −17 ≤ −25 − 4n 162. 24 ≥ 20 − 6r r≥2 148. −52 > −9m − 7 m>5 152. −9 − 11r < −64 r>5 x≥2 155. 22 > −5r + 17 r > −1 159. −22 6= −7 + 18m 156. 34 < −8a + 26 a < −1 160. 21 6= 45 + 30a a 6= − 45 m 6= − 56 c 6= −6 161. −4x + 28 ≤ 30 c<3 151. −12 − 15x ≤ −42 p<4 153. 20x − 21 ≥ 29 144. 19 − 4r ≤ 11 r > − 23 166. −13 − 2a ≤ −7 a ≥ −3 163. 21 > −9x + 27 167. 15 − 2k < 7 x> k>4 2 3 164. 30 − 8p > 26 p< 168. 8 < −3c + 17 c<3 1 2 n ≤ −2 169. −8x + 17 ≤ −17 x≥ 17 4 m>7 173. −40 < −12 − 7w w<4 177. −3p − 5 ≥ −5 170. −21 > −8m + 35 174. −14 − 6a < −74 178. −9 ≤ −7x − 9 172. 36 − 11x ≥ −63 x≤9 r<5 175. −39 − 17r ≥ −90 x≤0 179. 8 > −6k + 8 ALG catalog ver. 2.6 – page 305 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 176. −10 ≤ −26 − 12c c≤ r≤3 a > 10 p≤0 171. −57 < −16r + 23 k>0 4 3 180. −5a + 11 > 11 a<0 OB Topic: Advanced inequalities. See also category OA. Directions: 15—Solve. 31—Solve by graphing. 34—Solve each inequality and graph. 35—Solve and graph. 88—Graph the solution. 1. 3y + 5 − 4y > 10 2a + 6 + 3a < 16 2. y < −5 5. 3. 4 ≥ 3x − 2 + 5x 7 ≤ 6m + 8 − 3m 6. 3 4 x≤ m ≥ − 13 9. 15 ≥ 5n + 4 − 3n − 3 13. 2w − 5 ≥ 3w 17. 25h > 3h − 33 h ≤ −8 h> 18. 5k + 32 > 13k 3 2 7. c>1 5y − 6 − 3y ≥ −16 6r + 8 + r < −34 8. r < −6 11. 3p + 13 − 4p − 6 ≥ 8 12. 10a − 12 + 4a − 11 > 19 p ≤ −1 14. −10x ≥ 4x + 7 w ≤ −5 1 > −4c + 7 − 2c 4. y ≥ −5 10. 29 ≤ 4h − 6 − 9h − 5 n≤7 6 < 5w − 3 − 8w w < −3 a<2 x ≤ − 12 k<4 15. 10y < 13y − 21 a>3 16. 12c + 18 < 14c y>7 19. 25 − 4a ≥ −34a 20. −15m ≥ 35 − 10m a ≥ − 56 21. 2n − 11 > 3n + 5 22. 12 − 5u < 3u + 13 u > − 18 n < −16 25. 15 − 18y < 12 − 14y y> 26. 18 + 6c ≥ 4c − 5 c ≥ − 23 2 3 4 29. 3w − 5 + 4w < 5 − w + 11 w< 31. 3y + 6 − 8y ≤ 7 + 5y − 12 y≥ 33. 8 − 2x + 13 < 5x − 3 − 2x x> 35. 24 + 35a + 18 ≤ 3a − 8 + 2a 41. 12w − 35 6= 5w + 7 45. 3(2x − 5) > 5x − 3 r 6= 3 k≤ a< y > −8 49. 3 − 2(4t − 7) > 5t − 2 t< 51. 23 < 10z − 3(5 − 3z) z>2 53. 5(4x − 3) < 2(10x − 1) IR 55. 4(5 − 4k) ≤ −2(8k + 1) Ø 52. 95 < 10(14 − c) + 5c 56. 7(3c + 4) < 3(7c + 4) a≥5 s≤ p> a 6= − 72 1 4 IR Ø 58. 7y − (6 − y) > 10(y − 1) y<2 61. 5(2n − 13) − 1 6= 6(3n + 1) n 6= −9 62. 3 − 4(5c + 9) 6= 2(6c + 11) + c h > 13 64. 16 − (p − 4) 6= 5(2p − 3) + 2 w<3 c= 6 − 53 p 6= 3 66. 4x − [8 − (3 − x)] > 2 − (5 − x) ALG catalog ver. 2.6 – page 306 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. m > −3 c<9 60. 5(2w + 3) < 4(15 − w) − 3 65. 8 + h < 3h − [7 − (2 − h)] 1 3 11 34 x≥7 h 6= 2 c≥ n>1 59. 11(2 − x) ≤ 3x − 4(2x + 5) 63. 25 + 7(h − 3) 6= 3(8 − h) 2 5 f ≥ − 16 3 44. 14a − 13 − 10a 6= 3a + 15 + 9a 54. −6(3h − 7) ≥ 9(1 − 2h) 57. 5 − 3(10 − 7a) ≥ 4(2a + 10) k> 1 3 50. 13 − 5(2 − 7p) > 15 − 13p 19 13 3 4 p≥ 40. 7m + 21 − 15m > −4m − 6 − 13m y 6= 1 3 h < −2 36. −13 − 4f ≥ −5f − 8 − 2f − 21 48. 4s + 13 ≤ 6(4 − 5s) 15 11 28. 33a − 11 < 11 − 33a x ≤ −1 46. 7(3 − 4n) < 12n − 19 x > 12 47. 7k − 12 ≥ 9(2k − 3) 27. 16 − 20x ≤ 15 − 21x 42. 6 − 17y 6= 5 − 14y 43. 3r − 25 + 4r 6= 5 + 2r − 15 x≥3 38. 13c + 11 + 12c ≥ 3c − 8c + 21 h≥1 w 6= 6 24. 7x + 18 ≥ 45 − 2x r ≥ − 11 2 34. k + 10 + 6k − 12 > 4k − 2k 24 5 39. 18y − 25 − 13y < 35y + 15 − 25y 23. 8r − 6 ≤ 10r + 5 32. 18p + 4 + 11p ≥ 7 + 9p + 12 11 10 a ≤ − 53 37. 3h − 5h + 4 ≤ 4h − 5h + 3 m ≤ −7 30. 14h − 9 − 24h > 15 − 3h − 10 21 8 c>9 x>1 OB 67. 7 + 3 [2 − 5(4 − a)] > 2a − 1 69. 2(5 − 6m) ≥ 12 + 3 [2 − 4(2m − 5)] 71. 3n − 5 [4 + 2(n − 7)] ≤ 4(5 − 2n) 73. 2 3c − 4 c > 18 > 11 − 16 c 77. 2 3p − 6 < 12 p − 5 p<6 17 3 n ≤ −30 72. 8w + 2 [3(4 − w) + 7] ≥ 6(3w − 1) 75. 78. 1 2y − 7 y>3 79. 5 + 16 h ≥ 23 h − 4 ≥ 23 (3x + 9) x≥ 83. 1 3 (12 − 3c) ≥ 45 (5c − 20) c≤4 85. 5 4 (8m − 24) 87. 3 20 (60a + 120) 6= 89. 3 4 (2h − 5) + 4 > 8 − 25 (10h − 15) 6= 43 (9m − 27) 82. 15 4 ≥ 12 u 91. 7 − 23 (9x − 2) ≤ 10 − 32 (3x + 1) h> 5 2 5 2 (6t + 14) a≥ > 29 (27t + 36) t > −3 a<0 99. 5w(4w − 3) + 21 ≥ 2w(10w + 1) − 13 101. 5m(6m + 1) − 11 6= 3m(10m − 2) − 15 103. 3c(6c − 2) + 5 6= 2c(9c − 1) + 7 c 6= − 12 n ≤ − 23 86. 2 9 (81 − 54s) 6= 43 (12s − 16) s= 6 88. 4 5 (30x − 20) 6= 47 (35x − 28) x 6= 0 90. 4 3 (3 − 4w) + 2 10 7 < 35 (5w + 10) − 5 w≤2 4 m 6= − 11 3 5 w> n ≥ − 13 c > −6 96. x2 − 7x + 20 ≤ 5 + x(x + 5) 17 14 x≥ 5 4 98. 4h(3h + 5) − 2 ≤ 6h(2h + 3) + 1 h≤ 100. 3y(3y + 5) − 20 > 9y(y + 2) + 4 y < −8 102. 2 − 4a(a + 6) 6= 3 + 2a(3 − 2a) 104. 6 − 4r(5 − 4r) 6= 8r(2r + 5) − 12 ALG catalog ver. 2.6 – page 307 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 34 5 11 4 + 2 ≤ 34 r a < 10 94. c(c + 3) < c2 + 4c + 6 2 9 a> r≥8 80. 8 + 52 a > 12 a + 7 92. 3 + 41 (7 − 3n) ≥ 13 (2 − 3n) + 4 x ≥ − 19 11 14 w≤ 1 2r 76. u≥1 84. − 32 (6n − 12) ≤ 43 (12 − 9n) a 6= −2 95. a2 + 11a − 15 ≥ a(a − 3) + 2 3 1 4u − 4 h ≤ 18 m 6= 3 20 3 (3a + 6) y< > −5 − 16 y y≥ 70. −3(2a − 9) < 4 [2(3a − 7) − 5a] + 15 3 1 8x + 1 ≤ 4x − 1 x ≤ −16 3 4 (8x − 12) 97. 2a(3a + 5) < a(6a − 3) m≥ 74. 81. 93. y(y − 4) > y 2 + 5y − 2 68. 4 − 2 [3y + 2(y − 5)] ≤ 4y + 13 46 13 a> 3 2 1 a 6= − 30 r= 6 3 10 OC Topic: Compound inequalities (and, or). Directions: 15—Solve. 31—Solve by graphing. 35—Solve and graph. 85—Graph. 1. x < 3 and x > −2 y ≥ 6 and y < 11 2. −2 < x < 3 5. m > 5 and m < 3 k ≤ −2 and k ≥ 1 6. g≥3 13. d > 5 or d < −3 IR 18. b ≤ −7 or b > −10 IR 21. e > 3 or e ≥ 5 e>3 29. 7 < b − 3 < 11 22. t < −5 or t ≤ −2 26. −5 < y ≤ 0 same 2<x<8 35. −3 < z − 4 and 3 − z ≥ −4 1<z≤7 x < 9 or x > 13 39. 12 ≤ w + 3 or −5 < 1 − w 47. 52 < 4 − 3d < 13 same 19. z ≥ −11 or 2 > z Ø 51. 19 + 2p < 5 or 4p − 6 ≥ 6 20. 6 ≤ f or 12 ≥ f 23. 6 ≤ x or x > 10 27. 1 ≤ k < 7 m≤5 28. −2 < a < 4 same 4 < k ≤ 13 34. y − 5 ≤ 1 and y + 2 ≥ 0 −2 ≤ y ≤ 6 36. 5 ≥ d + 2 and 3 > 1 − d −2 < d ≤ 3 38. y + 6 ≤ 2 or 3 − y ≤ −3 y ≤ −4 or y ≥ 6 k ≤ 2 or k > 7 46. 29 ≥ 4x + 1 ≥ 13 7≥x≥3 48. 14 < 5 − 3f ≤ 53 −3 > f ≥ −16 52. 5n − 4 > 6 or 5 − 4n ≥ 1 −1 ≤ j ≤ 3 −2 ≤ t < 2 Ø 54. 9 − 3x ≤ 6 and 5 − 4x ≥ 13 55. 3 + 5h > 18 and 6 − 2h ≤ 18 h>3 56. 7 − 3k ≥ −5 and −2 ≤ 5 − 7k 59. 3t + 7 ≥ 13 or 8 − 5t ≥ −2 58. 6n − 11 < 1 or 3 − 2n < −1 60. 3m − 13 < −4 or 7 − 2m ≤ 5 IR 61. 4c − 6 + 2c < 36 and 5 − 3c − 10 ≥ −8 c≤1 w ≤ 2 or w ≥ 3 n ≤ 1 or n > 2 53. 4r − 19 ≥ −3 and 3 − 2r > 5 d≥3 same 1 ≥ r > −4 50. 5w + 3 ≤ 13 or 6 − 7w ≤ −15 u < 1 or u ≥ 3 p < −7 or p ≥ 3 57. 7d + 5 ≥ 26 or 45 ≤ 5 + 10d IR 24. −4 ≥ m or m ≤ 5 44. 5 − 6t ≤ 17 and 3t + 8 < 14 −7 < k ≤ 1 −1 < y ≤ 13 49. 9 + 2u ≥ 15 or 3 − 4u > −1 16. −3 ≥ x or x > 5 42. 7j − 12 ≤ 9 and 4j + 5 ≥ 1 2<n<5 43. 8 − 5k ≥ 3 and 2k + 3 > −11 12. p < 8 and 8 ≥ p 40. 4 ≤ 6 − k or k + 3 > 10 w ≥ 9 or w < 6 41. 2n + 5 > 9 and 3n − 2 < 13 45. −5 < 2y − 3 ≤ 23 15. −2 > r or 1 ≤ r 32. 15 < k + 11 ≤ 24 33. x + 3 > 5 and x − 2 < 6 Ø p<8 30. 4 ≥ r + 3 > −1 8 ≥ n ≥ −20 37. x − 4 < 5 or x + 2 > 15 11. 4 ≤ 6h and h > 10 x≥6 10 < b < 14 31. 31 ≥ n + 23 ≥ 3 3 > n and n ≥ 9 8. IR t < −2 same −4 ≤ d and −6 ≥ d same same 17. c < 6 or c ≥ 4 7. −20 ≤ r ≤ −10 h > 10 14. w ≤ 14 or w ≥ 20 same −10 ≥ r and −20 ≤ r 4. Ø 10. g ≥ 3 and 2 ≤ g t < −5 4 > z and −3 ≤ z −3 ≤ z < 4 Ø t < −5 and −3 > t 25. −9 ≤ x ≤ −3 3. 6 ≤ y < 11 Ø 9. 34—Solve each inequality and graph. 88—Graph the solution. Ø k≤1 n 6= 2 IR 62. 18 + 4t − 12 ≤ 22 and 7 − t − 5 < 1 1<t≤4 63. 15 ≥ 3r − 9 − 7r and −12 + 5r + 32 ≥ 30 −6 ≤ r ≤ 2 64. 8f + 5 − 2f + 11 > 4 and −13 < 9 + 3f − 1 65. 3x + 23 − 8x ≥ 3 or 5 − 2x − 3 + 7x ≤ 12 x≤4 66. 2y − 3 + 5y ≥ 18 or 6 − 4y − 11 > −1 y < −1 or y ≥ 3 ALG catalog ver. 2.6 – page 308 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. f > −2 OC 67. 23 > 5w + 18 − 10w or −14 ≤ 13 − 3w − 6 IR 68. 45 < 12 + 5v − 2 + 2v or 9v + 6 − 13v > −10 v < 4 or v > 5 69. 4h − 5 − 6h < 1 and 5 > 2 + 5h − 8 −3 < h < 11 5 71. 15 < 5k − 12 + 4k and 8k − 11 + 4k − 12 ≥ 25 70. 9 + 10u + 6 ≥ 5 and 4u − 11 − 7u ≤ 12 u ≥ −1 72. −31 > 5 − 2b + 18 − 5b and 4b + 5 + 6b + 7 ≤ 8 Ø k≥4 73. 7d − 5 − 8d > 5 or 4 + 3d − 9 > 15 d < −10 or d > 74. 12 ≤ 17q + 6 − 8q or 5q − 7 + 3q ≤ 15 75. −16 ≥ 6p − 7 − 10p or 13 > 5 + 3p + 9 p < − 13 or p ≥ 76. −3a − 18 + 7a − 12 > 6 or 5 ≤ 8 − 5a − 3 − 6a 9 4 a ≤ 0 or a > 9 77. 15g − 9 < 9 − 6g and 3g + 8 < 5g − 12 79. 3x − 5 > 2x − 1 and 4 − 9x ≤ 3 + 5x Ø x>4 81. 14w − 6 + 3w < 5 + 2w and 16 − w ≥ 6 + 3w − 4 w< IR 20 3 11 15 78. 8j + 11 ≥ 14 + 3j and 5j − 12 < 2j + 9 80. 2 − 7k ≤ 5 + 13k and 4 + 11k ≥ 8 − k k≥ ≤j<7 1 3 82. 5 − 7t + 12 ≤ 5t + 23 and −10 < 2t − 12 − 5t − 13 Ø 83. 3f − 8 + 7f > 2 − 9f and 65 + 4f < 3f + 25 − 5f 84. 21 − 8h ≥ 3h − 13 + 2 + 5h and 7h + 8 − 3h ≥ 4 − 4h − 12 ≤ h ≤ Ø 85. x + 2 < 2x − 5 < x + 4 87. 7 − v < 5 ≤ −v + 15 3 5 7<x<9 2<v 89. 6y − 8 ≤ 8 − 5y or 3 + 7y ≥ 5 − 9y 91. 3k + 5 < 2k − 12 or 5 − 4k ≥ 6 + 9k IR 1 k ≤ − 13 1 2 86. 5 + 3c ≥ 4c − 9 > 3c − 1 14 ≥ c > 8 88. 3 + 5p > 6p − 1 ≥ 5p + 7 Ø 90. 3x + 4 − 5x > 2x − 11 or 16x ≥ 3x − 9 − 5x IR 92. 2n + 13 > 5 − 8n or 12n + 25 > 13n + 26 n < −1 or n > − 45 93. 8k + 10 < 3k − 4k − 5k or 5k − 9 ≥ 15 − 3k + 8 k < − 57 or k ≥ 4 95. 5u + 8 + 4u ≥ 3u − 8 and 6 − 7u ≥ 4u − 13 − 11u u ≥ − 83 97. 10d + 8 + 2d > 3d − 7 + 4d and 2d + 8 ≥ 5 + 4d − 11 −3 < d ≤ 7 99. 2f + 5 − 8f ≤ 3f − 1 or 4f + 7 < 9f + 2 − 5f f≥ 2 3 94. 4w − 7 + 2w > 6w − 5 and 3w + 4 − 19w ≤ 5w + 8 Ø 96. 8x − 5 + 3x ≤ 5 − 3x + 8 and 4x − 7 − x < 7 + 3x x≤ 9 7 98. 6 − 5r + 21 < r + 5 − 7r or 4r + 7 ≤ 3r − 11 + 7r IR 100. 10z − 7 − 3z > 4z + 6 + 3z or 5z − 1 − 2z > 6 + 3z Ø ALG catalog ver. 2.6 – page 309 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. OD Topic: Equations with absolute value. Directions: 15—Solve. 1. |−25| = r 5. x + 5 = |3| 9. k + |4| = −2 16—Solve and check. 25 −2 2. t = |−19| 6. |12| = 4 − d 13. |w | = 12 12, −12 14. |x| = 7 17. |s| = −2 Ø 18. −18 = |c| 25. |3c| = 24 −8 10. |−14| − m = 3 −6 21. −13 = − |d| 19 7. |−9| = a + 21 15. |y | = 18 35, −35 6, −6 8. f − 4 = |−2| −7 12. −8 = |−8| + r 16. |m| = 23 20. 7 = − |w | 27. |−8r | = 16 2, −2 28. |6p| = 0 Ø 34. −64 = 16 |n| Ø 35. 8 = −32 |u| 38. |p| + 12 = 12 0 39. 6 − |z | = 4 Ø 43. −11 = |p| − 8 Ø 2, −2 41. |y | + 6 = 1 Ø 42. 17 − |k | = 20 45. 9 = |x + 9| 0, −18 46. |h + 23| = 1 −22, −24 49. |t − 4| = 5 9, −1 50. 32 = |m − 8| 40, −24 51. |a − 12| = 6 18, 6 54. − |x + 4| = 5 Ø 55. −6 = |k − 9| Ø 58. |u + 12| = 0 −12 57. 0 = |k − 6| Ø 6 61. |15 − b| = 1 62. |23 − y | = 23 0, 46 63. |18 − c| = −6 2, 6 66. 11 = |5 − 2k | 8, −3 67. |5h + 8| = 3 69. −6 = |2n − 10| 70. |5g + 32| = −52 Ø 73. − |4x + 1| = −5 1, − 32 74. −11 = − |2r − 5| Ø 40. 8 = 23 − |m| 15, −15 44. −5 − |r | = 9 Ø 48. |x + 5| = 21 16, −26 15, 35 56. − |h − 12| = 1 Ø −7 64. −14 = |4 − x| Ø −1, − 11 5 −2, − 32 3 75. |34 − 8p| = −22 5, −5 36. 15 |x| = −15 60. |7 + s| = 0 71. |3a + 19| = 13 Ø 0 52. |y − 25| = 10 5 16, 14 65. |3z − 12| = 6 Ø −10, −6 59. |5 − w | = 0 24, −24 32. −40 = −8 |k | 0 47. |y + 8| = 2 −16 Ø 24. − |y | = −24 31. 0 = 14 |t| 6 23, −23 5, −5 33. |7v | = −21 53. |m + 10| = −3 15 23. −5 = − |n| 30. 28 = 7 |a| 17, −17 −12 Ø 1, −1 37. |a| + 5 = 22 |15| = z 18, −18 29. 12 |j | = 12 4, −4 4. 31 19. − |a| = 10 Ø 26. |−5b| = 30 8, −8 g = |31| 11. x + |−11| = 4 11 7, −7 22. − |h| = −35 13, −13 3. Ø 68. |5 − 4d| = 9 Ø 7 2 −1, 72. |7 − 2r | = 21 14, −7 76. |6y + 8| = −3 Ø 8, −3 77. |7h + 3| = 21 24 18 7 ,− 7 78. |3x + 1| = 19 6, − 20 3 79. |5t − 8| = 28 36 5 , −4 80. −31 = − |6p − 5| 6, − 13 3 81. |−10u − 9| = −11 Ø 82. − |−8k + 2| = 18 Ø 83. 4 = |−3s + 17| 7, 13 3 84. |−10w − 1| = 9 −1, − 45 85. |5s − 13| = 0 y 89. 12 = 5 86. 0 = |18 + 3d| 13 5 c 90. = 1 2 60, −60 w 93. − 2 = 3 3 15, −3 97. 3 = |u − 8| − 4 15, 1 87. |−21y − 9| = 0 −6 8a 91. = 6 3 2, −2 m 94. 4 − = 10 5 98. |y + 6| + 2 = 9 70, −30 1, −13 − 37 2u 92. = 8 5 9 9 4,−4 k 95. 3 + = 1 4 −8, −16 99. |d + 1| + 4 = 10 88. |34 − 2x| = 0 5, −7 17 20, −20 c 96. 18 = + 6 3 36, −72 100. |h + 11| − 3 = 7 −21, −1 101. |c − 6| + 12 = 2 Ø 102. |z + 10| − 4 = −9 Ø 103. 5 − |y + 6| = 12 ALG catalog ver. 2.6 – page 310 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. Ø 104. 4 = 7 + |x + 1| Ø OD 105. 11 − |4k − 4| = −13 109. 4 + |8y − 2| = 12 − 34 , 106. 8 = 6 + |2x + 4| 107. |3n − 9| + 4 = 10 − 12 , 113. − |5x + 8| + 2 = −11 1, − 21 5 111. −2 = |3x + 2| − 4 7 10 2, −4 121. 4 |c − 9| + 5 = 17 114. 7 − |4y + 1| = −2 −1, 118. 5 |k + 1| = 15 2, 129. 2 |3m − 1| − 12 = 4 5, 13 127. 8 = 6 − 2 |4p + 9| Ø 10 3 137. |2z − 6| = 3z − 9 3 141. 6 − n = |1 + 3n| Ø 1, 131. 3 |5 − k | − 11 = 4 135. |1 − 3a| = a 2 3 138. |3x + 12| = x + 4 −4 142. |5a + 2| = 14 + a 5 7 4,−2 128. 7 − 3 |2m − 3| = 1 132. 27 = 6 + 7 |5 − 4n| 2, 136. r = |2r + 5| 1 1 2, 4 139. 5u + 6 = |2 + 3u| 1 2 Ø −1 140. |6k − 5| = 8k − 9 2 143. |1 − 2x| = x + 4 5, −1 144. |8 − 7p| = 3p + 4 3, 147. |4y + 10| = y + 1 Ø 148. |3x + 14| = x + 2 Ø 2 5 3, − 83 145. |5r + 6| = r + 1 Ø 149. |4c + 2| = |c + 3| 146. d + 2 = |2d + 18| Ø 150. |u − 6| = |2 − 3u| −2, 2 1 3 151. |3 − g | = |1 − 2g | −2, 152. |5 − 3w | = |2w + 10| −1, 15 4 3 153. y 2 + 3 + 1 = 13 154. t2 + 1 + 3 = 8 157. x2 + 5x = 6 −6, −3, −2, 1 158. 6 = w2 − 5w 159. 24 = z 2 − 10z 160. 10c + c2 = 24 161. 30 = b2 + 13b 162. 30 = 13c − c2 163. 54 = y 2 + 15y 164. −15m + m2 = 54 3, −3 2, −2 −1, 2, 3, 6 −10, −3, 2, −15 165. |d − 2| = d − 2 Ø 1 5 2, 2 130. 4 − 2 |5a + 3| = 6 134. |5y − 4| = y − 32 , − 52 124. 4 − 6 |x + 1| = 13 0, 10 Ø 120. 12 |h + 2| = 6 18, −4 3, − 73 −1, 1 7 4, 4 123. 8 + 3 |y − 7| = 41 126. 7 |3w − 8| − 2 = 12 1, −6 116. 7 = − |4 − 4a| + 10 1 3 119. −7 |9 − j | = −28 2, −4 −8, 0 125. 3 |2g + 5| − 5 = 16 11 5 2 , 2 115. 10 − |6r + 2| = 6 122. 3 = 23 − 5 |a + 4| 12, 6 112. −6 + |8 − 2z | = −3 0, − 43 2, − 52 117. 24 = 8 |d + 1| 108. − |2y − 5| + 8 = 1 6, −1 110. |10p − 1| + 3 = 9 5 4 133. |3 + 2x| = x 1, 5 −1, −3 7, −5 166. |5 − h| = h − 5 5, −5 −9, −6, 3, −18 h≥5 167. |3 − a| = 3 − a ALG catalog ver. 2.6 – page 311 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 156. 20 = 2 u2 − 6 4, −4 −12, −6, −4, 2 −2, 4, 6, 12 10, 3, 2, −15 d≥2 155. 3 x2 − 14 = 33 9, 6, −3, 18 a≤3 168. 6 − x = |x − 6| x≤6 OE Topic: Inequalities and absolute value. Directions: 15—Solve. 31—Solve by graphing. 35—Solve and graph. 85—Graph. 1. |−a| < 0 5. |p| 6= 8 9. |x| ≤ 4 2. |x| > 0 p 6= 8, −8 6. |d| 6= −5 −4 ≤ x ≤ 4 10. |−h| ≤ 12 Ø 13. |u| > 5 17. |v | > −3 |t| ≤ 0 IR 7. |−x| = 6 12 18. −8 ≤ |w | −12 ≤ h ≤ 12 − 52 < y < 11. − |y | > −6 c> 1 7 37. |−4r | ≥ −12 |k | >3 3 42. Ø |m| ≥ −1 4 20. − |d| ≤ 1 IR 24. − |x| > 5 Ø 7 2 35. |5y | ≤ 45 32. 27 |a| ≥ −36 − 74 < c < 7 4 36. |−7h| > 39 −9 ≤ y ≤ 9 39. |−3n| ≤ −18 43. IR 1 46. a ≥ 3 6 50. |p| − 8 ≤ −11 IR h > 7 or h < −7 a ≥ 18 or a ≤ −18 49. |n| − 9 < −1 −14 ≤ n ≤ 14 2 3 |a| 1 >− −4 6 40. |45c| ≤ 36 Ø − 23 < m < 2 3 44. Ø −8 < n < 8 −k > −2 47. 3 3 IR 51. |y | + 3 > 9 − 45 ≤ c ≤ 4 5 − |u| 3 <− 2 4 u> − 72 ≤ y ≤ p 6= 3, −3 −9 < z < 9 28. 7 |n| ≤ 98 k > 9 or k < −9 1 7 45. y ≥ 5 10 12. |z | < 9 or t < − 13 4 38. |−8c| < 14 IR IR 31. −18 |m| < −12 Ø 34. |12t| > 39 13 4 − |m| = 6 −3 or c < − 17 − 23 < m < t> 8. IR c ≥ 10 or c ≤ −10 27. 35 |−c| > 5 30. 10 |−k | ≤ −24 or x ≤ − 10 3 |y | ≥ 0 16. |c| ≥ 10 23. |−m| ≤ −10 Ø 5 2 33. |−9x| ≥ 30 −6 < y < 6 19. −5 < |−a| −12 < w < 12 29. −6 |y | > 15 p 6= 12, −12 4. f > 4 or f < −4 26. −2 |w | > −24 h ≥ 8 or h ≤ −8 t=0 15. |−f | > 4 IR 22. −2 ≥ |−z | Ø 25. 4 |h| ≥ 32 41. 3. r ≥ 19 or r ≤ −19 IR 21. −14 > |n| 10 3 x 6= 0 14. − |r | ≤ −19 u > 5 or u < −5 x≥ 34—Solve each inequality and graph. 88—Graph the solution. 3 2 or u < − 32 r 1 48. < 10 2 −5 < r < 5 52. |x| + 15 > 0 IR y > 6 or y < −6 53. − |d| − 4 < 0 IR 54. 5 − |w | ≤ 2 −3 ≤ w ≤ 3 55. 4 − |z | ≥ 10 Ø 56. − |v | + 5 ≤ −12 v ≥ 17 or v ≤ −17 57. |x + 5| > 3 58. |h − 3| ≥ −2 IR x > −2 or x < −8 61. |9 − z | ≤ 5 4 ≤ z ≤ 14 59. |−8 + m| ≤ 6 60. |c + 7| > 12 2 ≤ m ≤ 14 62. |7 − u| < 6 1 < u < 13 c > 5 or c < −19 63. |6 − n| ≥ 5 64. |5 − b| < 14 n ≤ 1 or n ≥ 11 65. |32 − 8y | < 32 1 69. c − 4 ≤ 10 3 −18 ≤ c ≤ 42 73. |6x − 3| 6= 9 x 6= −1, 2 y≤ or y ≥ 68. |3t + 9| ≤ −12 Ø −3 < w < 5 1 71. u − 8 ≥ 5 2 3 72. 9 − b ≥ 21 2 74. |10n + 35| 6= 5 75. |8 − 2r | 6= 12 76. |−3w + 15| 6= −6 n 6= −3, −4 r 6= −2, 10 78. |5k − 4| ≤ 6 11 6 67. |4 − 4w | < 16 2 70. 4 − y > 6 5 y > 25 or y < −5 77. |4 − 6y | ≥ 7 − 12 66. |5t − 10| ≥ 15 t ≥ 5 or t ≤ −1 0<y<8 −9 < b < 19 − 25 ≤k≤2 u ≥ 26 or u ≤ 6 b ≥ 20 or b ≤ −8 79. |12 − 6g | > 14 g< ALG catalog ver. 2.6 – page 312 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. − 13 or g > 13 3 80. |5r + 21| ≥ 34 r≥ 13 5 or r ≤ −11 IR OE 81. |3c − 5| ≤ −8 82. |5m + 6| ≥ −2 Ø IR 83. |2p − 7| ≤ 13 84. |3 − 5u| ≥ 33 −3 ≤ p ≤ 10 u≥ 5 1 85. k − ≥ 2 6 2 a 7 86. + 3 > 2 2 3 1 87. 2 − p < − 4 2 89. |5.9 + 2x| < 4.3 90. |7n − 1.4| ≤ 3.5 91. |5y − 1.5| ≥ 2 a > 1 or a < −13 k ≥ 3 or k ≤ − 95 −5.1 < x < −0.8 −0.3 ≤ n ≤ 0.7 93. 3 |2y − 1| < 27 94. −2 |4 − 5y | > 8 Ø 1 10 <y< 1 6 92. |3.6 + 3k | ≥ 2.1 k ≥ −0.5 or k ≤ −1.9 95. 9 |6j + 3| < 27 96. 2 |5n + 9| ≤ −6 Ø −1 < j < 0 97. 5 |5 − 3k | ≥ −25 IR 98. −8 |6 − 7m| ≥ −24 3 7 101. 6 |2 − 3u| > 30 ≤m≤ 9 7 g ≤ − 95 or g ≥ 105. |3w + 5| − 2 ≤ 4 0<r< 109. 1 − |2p + 5| ≥ 13 Ø m≤ 117. 13 − 5 |9 − 2j | ≤ 8 or m ≥ − 13 IR 121. 10 |8x − 1| + 2 ≥ −2 IR 125. |11 − (5 − x)| − 6 > −1 x > −1 or x < −11 126. 9 + |2 − (y + 8)| > 12 130. −4 > |z | ≥ −2 Ø 141. |x| > x + 6 −10 ≤ e ≤ −7 or 4 ≤ e ≤ 73 5 < c < 7 or 0 < c < 2 142. |a| ≥ a + 10 x < −3 g< − 72 116. 3 |5m + 1| − 6 ≥ 12 m ≤ − 75 or m ≥ 1 or g > 0 119. 4 |3n + 5| − 2 ≤ 18 120. 5 − 7 |4 − g | > 12 Ø ≤n≤0 123. 7 − 6 |3c + 7| > 25 Ø 127. |−3 − (n − 7)| − 4 ≤ 0 124. 5 − 3 |4k + 3| > 2 131. 1 ≤ |w | ≤ 7 132. 5 > |r | > 0 a ≤ −5 135. −2 < |8y + 5| ≤ 3 −1 ≤ y < − 14 ≤x≤ 18 5 0 < r < 5 or −5 < r < 0 136. −5 < |2 − 3w | < 7 − 53 < w < 3 139. 24 ≤ 3 |5x − 8| ≤ 30 16 5 128. 8 − |8 − (3 − r)| ≥ 3 −10 ≤ r ≤ 0 1 ≤ w ≤ 17 or −17 ≤ w ≤ −1 137. 13 ≤ 1 − 3 |4r − 9| ≤ 19 138. 15 < 5 |2c − 7| < 35 Ø 115. 7 − 3 |4g + 7| < −14 0≤n≤8 134. 11 ≤ |2e + 3| ≤ 17 2 < h < 4 or −3 < h < −1 IR − 12 < k < −1 4 < d ≤ 8 or −8 ≤ d < −4 133. 3 < |2h − 1| < 7 3 2 112. 7 − |5w + 2| ≤ 14 − 52 y > −3 or y < −9 129. 4 < |d| ≤ 8 111. |4x − 9| + 20 > 35 − 10 3 122. 13 − 9 |4k + 11| > 4 −3 < k < 1<d< x < − 32 or x > 6 118. 9 − 5 |2v + 13| < 24 k ≤ 4 or k ≥ 5 17 7 108. 6 + |5 − 4d| < 7 −1 ≤ c ≤ 2 110. 4 + |3k + 6| ≥ 10 − 43 2 3 104. −3 |4 − 7y | ≤ −39 IR 107. 5 − |2c − 1| ≥ 2 9 2 114. 2 |6m + 5| + 5 ≥ 11 x < −3 or x > 2 103. −8 |7y − 1| ≤ 4 − 16 3 ≤e≤ y ≤ − 97 or y ≥ k ≤ −4 or k ≥ 0 113. 4 |2x + 1| − 11 > 9 100. 5 |3e + 7| ≤ 45 1 2 7 5 106. |4r − 9| + 5 < 14 1 3 99. 6 |10d − 1| ≥ 24 3 d ≤ − 10 or d ≥ 102. −4 |5g + 1| ≤ −32 7 3 u < −1 or u > − 11 3 ≤w ≤ or u ≤ −6 2 1 88. 5y − < 3 6 Ø y ≥ 0.7 or y ≤ −0.1 −5 < y < 6 36 5 or 143. |y | ≤ 3y − 2 − 25 ≤x≤0 y≥1 140. 25 ≤ 4 |3 − 2f | − 3 ≤ 33 −3 ≤ f ≤ −2 or 5 ≤ f ≤ 6 144. |m| ≥ 5m + 12 m ≤ −2 145. |2 − 3x| > 3x x< 149. |y | < |y + 4| y > −2 1 3 146. |k + 5| < 3 − k 150. |x| ≥ |x − 2| k < −1 x≥1 147. |p − 8| ≥ p + 4 151. |a + 2| > |3a| − 12 < a < 1 ALG catalog ver. 2.6 – page 313 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. p≤2 148. |c − 3| ≤ 3 − c 152. |n + 3| ≤ |2n| n ≥ 3 or n ≤ −1 c≤3 PA Topic: Slope between two points. See also categories PG (mixed practice and review) and PH (perpendicular and parallel lines). Directions: 80—Find the slope. 1. (0, 0)(−6, 2) − 13 2. (3, 9)(0, 0) 5. (−7, 0)(0, 7) 1 6. (0, −10)(−4, 0) 9. (9, 8)(3, 0) 4 3 13. (4, 3)(5, −2) −5 3 − 52 13 5 15. (7, −5)(8, 4) 0 22. (1, 11)(5, 11) 37. (−3, −7)(−1, −7) 41. (2, 14)(2, 16) − 47 53. ( 73 , 5)( 43 , 2) 3 57. (1, 13 )(3, − 23 ) 61. ( 65 , 0)(3, 6) 65. (2, − 14 )(1 12 , 14 ) 54. (−4, 3 25 )(2, 1 25 ) − 13 78. (1, 6)(−2, 0.9) − 13 20 81. (−3, 0.2)(1.5, 0.7) 1 9 24. (8, −1)(−8, −1) 0 3 2 35. (9, 9)(−11, 7) 1 10 0 undef. −1 −5 − 85 7 32. (3, 12)(9, 10) − 13 36. (6, 0)(−6, −9) 3 4 40. (7, −5)(2, −5) 0 44. (8, 5)(8, 2) undef. 48. (−4, −4)(4, −9) 1 6 56. (2 23 , 0)(− 13 , 3) −1 2 3 60. (− 72 , 0)(− 12 , 2) 63. ( 13 , 2)(− 13 , 3) − 32 64. (3, 23 )(1, 1) − 16 68. ( 12 , 73 )(4, 13 ) 2 − 47 72. (6, − 12 )(6 12 , 0) 3 7 75. (1.7, 2)(−0.3, −4) 3 − 10 9 83. (2.8, 3.1)(2, −1.9) 25 4 − 58 52. (−10, 1)(2, 3) 1 79. (−1.3, 0)(−4, 3) 17 10 1 2 3 4 71. (5, 27 )(3, − 47 ) − 54 82. (3.5, 0.2)(0.5, 5) −1 0 28. (8, 3)(7, −4) 59. (−1, 12 )(0, 32 ) 67. (1, 35 )( 45 , 15 ) 4 15 74. (7.4, −3)(1.4, 3) 1 2 undef. 55. ( 21 , −3)(4 12 , 0) 1 8 70. (1, −2)( 35 , − 32 ) 5 3 20. (−3, 6)(−3, 0) 51. (−6, 9)(−3, −6) 2 66. (− 34 , 35 )( 34 , 1) −1 73. (0, −2.8)(6, 0.2) 77. (6, 2.4)(2, 5) 1 62. (2, 14 )(−2, − 14 ) 10 3 undef. 47. (−4, −5)(−8, −7) − 11 6 1 6 − 74 43. (−2, 4)(−2, 8) undef. (0, −2)(12, 0) 16. (6, −8)(−2, 6) 39. (8, 0)(−6, 0) 0 50. (−4, −8)(1, −3) 58. ( 25 , 1)( 75 , 3) − 12 69. (4, 56 )(3, − 56 ) 38. (1, 12)(−3, 12) 46. (5, 6)(11, −5) 9 4 − 53 8. − 35 9 3 5 31. (−2, −11)(−15, 2) 34. (−3, −3)(−9, 7) (5, −3)(0, 0) −1 27. (−4, 2)(4, 14) 7 2 42. (9, −5)(9, 5) undef. 45. (0, 14)(−8, −4) 49. (4, 9)(11, 5) 0 19. (5, 2)(5, 8) 4. 12. (−4, 0)(−9, 5) 23. (0, 6)(−4, 6) −5 30. (2, −5)(6, 9) − 15 undef. 0 26. (1, −6)(−1, 4) 33. (−2, −6)(8, −8) −3 14. (7, 6)(2, −7) 21. (2, −8)(3, −8) 8 (3, 0)(0, 9) 11. (−1, 0)(−11, −6) 18. (−4, −3)(−4, 5) 29. (1, 12)(−1, −4) 7. 1 7 −4 undef. − 29 (0, 0)(−7, −1) 10. (2, −5)(0, 3) 17. (10, −1)(10, 1) 25. (−9, 5)(9, 1) 3. 1 76. (2.5, 1)(−2.5, 3) 80. (2, 3)(1.4, −1) − 25 20 3 84. (−1.6, 1.4)(0.6, −0.6) − 10 11 85. (4, −1.7)(3.3, −0.3) 86. (4.1, 4.2)(3.8, 3.6) 2 −2 89. (a, 3)(3, a) 88. (−0.5, 3)(−3, 2.5) 1 5 −10 −1 93. (−4, −b)(4, b) 97. (c, d)(c, −d) 87. (−1, 1.2)(−0.9, 0.2) b 4 undef. 101. (a, −a)(a − 2, a) 105. (2x, y)(7x, 2y) a y 5x 90. (−1, n)(−n, 1) 1 91. (c, 0)(0, −c) 94. (x, y)(−x, −y) y x 95. (−2, e)(2, −e) 98. (s, 5)(t, 5) 99. (r, 3r)(r, 4r) 0 92. (r, s)(s, r) 1 −1 − 2e 96. (−p, 1)(p, 0) 1 2p undef. 100. (−2, y)(2, y) 0 102. (k + 3, 2k)(k, k) k 3 103. (2p, 3)(2p − 2, 1) 106. (k, n)(k − n, 3n) 2 107. (3c, 5d)(c, −d) −1 3d c 104. (c + 3, −c)(c, 2c) −c 108. (5a, a + 2)(−a, a − 1) 1 2a 109. (r − p, 3s)(p − r, s) s r−p 110. (x − 2y, 0)(x − 2y, −w) undef. 111. (n, −4k)(2k + n, −4k) 0 ALG catalog ver. 2.6 – page 314 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 112. (y, x − 1)(3y, 1 − x) 1−x y PB Topic: Midpoint. See also category PG (mixed practice and review). Directions: 81—Find the midpoint. 1. (−1, 9)(−1, 1) 5. (−4, 0)(5, 0) (−1, 5) ( 12 , 0) 2. (−7, 0)(3, 0) 6. (1, −2)(10, −2) (−2, 0) 3. (6, 5)(−6, 5) 7. (0, −11)(0, 2) (0, 5) (0, −4 21 ) 4. (0, −12)(0, −4) 8. (4, −3)(4, 8) (0, −8) (4, 2 12 ) (5 21 , −2) 9. (2, 3)(10, 7) 10. (12, 5)(8, 11) (6, 5) 13. (−7, −8)(−3, 8) (−5, 0) (10, 8) 14. (−6, 4)(0, −4) (−3, 0) 11. (9, 16)(3, 4) (6, 10) 15. (−2, −1)(10, −9) 12. (11, 0)(7, 14) (9, 7) 16. (−5, 2)(3, −8) (−1, −3) 20. (7, −2)(9, −9) (8, −5 12 ) (4, −5) 17. (0, 2)(−8, 5) (−4, 3 12 ) 18. (2, −9)(−9, 1) 19. (6, 6)(4, 13) (5, 9 12 ) (−3 12 , −4) 21. (6, −13)(1, 2) (3 21 , −5 12 ) 22. (−3, 7)(2, −6) (− 12 , 12 ) 23. (−8, −3)(5, 0) 24. (5, 10)(4, −7) (4 21 , 1 12 ) (−1 12 , −1 12 ) 25. (−4, −2)(3, 9) (− 12 , 3 12 ) 26. (−8, −5)(−1, 6) 27. (8, 0)(−3, −7) (−4 12 , 12 ) 29. (− 12 , 1)(2 12 , 3) (1, 2) 30. (0, 23 )(−2, 1 31 ) 28. (−7, 5)(−6, −5) (2 12 , −3 12 ) (−1, 1) (−6 12 , 0) 31. (−1, −3 12 )(1, − 12 ) 32. (2 54 , −3)(− 45 , 1) (1, −1) (0, −2) 33. (5, −4 13 )(−2, 5) 1 37. ( 34 , 12 )(− 34 , 10 ) (1 21 , 13 ) (0, 3 10 ) 34. ( 12 , −3)(−3, 2) 35. (−1, 2)( 51 , −5) (−1 14 , − 12 ) (− 25 , −1 12 ) 38. (4, −2)(−2 25 , 1 12 ) 39. ( 43 , 13 )(− 14 , 16 ) 36. (7, 0)(2, 2 23 ) ( 41 , 14 ) (1.6, −5.2) 45. (3.3, −2.8)(7.1, 0) (5.2, −1.4) 49. (2p, p − 3)(4p, p + 1) (3p, p − 1) 53. (x, y − 8)(x + 6, 2 − y) (x + 3, −3) 42. (3, 1)(−4.8, 0.3) 43. (−4, −4)(1.5, 1) (−0.9, 0.65) (−1.25, −1.5) 46. (−2, −2.5)(4.6, 5.5) (1.3, 1.5) 50. (a − 6, a)(3a, 8 − a) (2a − 3, 4) 54. (−12, 3y)(4x, y + 2) (2x − 6, 2y + 1) 40. (− 72 , −1)( 12 , 52 ) (−1 12 , 34 ) ( 54 , − 14 ) 41. (−2, 0.6)(5.2, −11) (4 12 , 43 ) 47. (−0.7, 4)(−2.3, −3.9) (−1.5, 0.05) 51. (−7k, 2k − 3)(−k, −9) (−4k, k − 6) 55. (a + b, b)(a − b, −b) (a, 0) ALG catalog ver. 2.6 – page 315 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 44. (7.5, 9)(−3, −2) (2.25, 3.5) 48. (1.5, −0.6)(−2, 2.8) (−0.25, 1.1) 52. (n − 5, 10)(5 − n, 4n) (0, 2n + 5) 56. (3b, −5a)(2a − b, a + 2b) (a + b, −2a + b) PC Topic: Distance between two points. See also category PG (mixed practice and review). Directions: 82—Find the distance. 1. (0, 0)(5, 0) 5. (−3, −11)(−3, −2) 9. (4 21 , 0)(−5 12 , 0) 5 9 (−8, 0)(3, 0) 11 3. (0, 10)(0, 2) 6. (8, 1)(8, −6) 7 7. (−9, 5)(5, 5) 10. (−0.8, 1)(−4.8, 1) 10 13. (7, 6.2)(7, 3.4) 2. 14. (−4, −3)(−4, 32 ) 2.8 4 8 14 11. (−2, 53 )(−2, 23 ) 1 (0, −6)(0, 0) 8. (12, −1)(10, −1) 2 12. (0, 5.6)(0, −1.4) 7 6 16. (− 74 , 2)(−3, 2) 15. (1.5, −6)(−2.8, −6) 9 2 4. 5 4 4.3 1 17. ( 10 , 3)(− 45 , 3) 21. (3, −4)(0, 0) 18. (3 13 , −5)(4 16 , −5) 9 10 22. (0, 0)(−8, −15) 5 25. (4, −6)(−1, 6) 13 26. (7, 0)(10, −4) 29. (0, −13)(7, 11) 25 30. (−3, 6)(6, −6) √ 37. (−7, 4)(−2, 5) 26 38. (8, −7)(5, −9) 41. (5, 5)(11, 3) 45. (10, −8)(8, 0) √ 2 10 √ 2 17 49. (4, −3)(−9, −4) 53. (1, 2)(− 12 , 0) 42. (−2, 2)(0, −2) √ 170 50. (1, 12)(4, 1) 61. (−2n, n)(2n, −2n) √ 130 58. (1.7, −3)(2, −2.6) 5n √ 3 10 62. (5k, −5k)(0, 7k) 0.5 13k 13 32. (−8, −7)(12, 8) √ 5 2 40. (−2, −2)(2, −1) √ 4 5 √ 4 10 48. (1, 9)(10, −4) 51. (−4, 12)(3, 9) √ 58 52. (−5, −3)(2, −8) 56. ( 53 , 4)(3, 5) 59. (−0.2, 5)(0.6, 3.5) 1.7 63. (7a, a + 3)(a, −7a + 3) 10a ALG catalog ver. 2.6 – page 316 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. √ 17 √ 5 2 44. (−6, 3)(−5, 10) 47. (3, −10)(7, 2) 15 4 10 25 36. (−7, 5)(−2, 0) √ 29 55. ( 41 , −2)(−2, 1) 5 3 20 √ 4 2 43. (−6, −4)(−2, 4) 5 16 28. (−10, −3)(−4, 5) 17 35. (1, 1)(−3, −3) 39. (0, 1)(2, 6) √ 2 5 54. (−4, 13 )(−3, −1) 1 2 13 46. (−5, −3)(−2, 6) 5 2 57. (0, 1)(−0.6, 0.2) √ √ 20. (0, −1 32 )(0, −6 56 ) 24. (12, 5)(0, 0) 31. (−15, −1)(1, −13) 15 7 34 10 27. (−2, −7)(6, 8) 5 34. (−4, 10)(−3, 11) 19. (−6, 2 41 )(−6, −5 21 ) 23. (0, 0)(−8, 6) 17 √ 3 2 33. (−2, −7)(1, −4) 5 6 √ 5 10 √ 74 13 5 60. (3, 0)(2.5, −1.2) 1.3 64. (p − 1, −8p)(9p − 1, 7p) 17p PD Topic: Points on a line. Directions: 0—(No explicit directions.) 1. Find four points on the line: y = −7x 3. Find four points on the line: y = 61 x 5. Find four points on the line: 2y = x 7. Find four points on the line: −8y = 6x 9. Find four points on the line: y = −3 11. Find four points on the line: y = 2 2. Find four points on the line: y = 5x [points] 4. Find four points on the line: y = − 15 x [points] 6. Find four points on the line: −9y = −x 8. Find four points on the line: 6y = 10x [points] [points] 10. Find four points on the line: x = 8 [points] 13. Find four points on the line: 9x − 12y = 0 [points] [points] 17. Find three points on the line: y = 25 x + 6 [points] 19. Find three points on the line: x + 6y = −6 [points] 21. Find three points on the line: 3x + 4y + 8 = 0 [points] [points] [points] [points] 14. Find four points on the line: −x + 4y = 0 [points] 16. Find four points on the line: y = −3x + 9 [points] 18. Find three points on the line: y = − 23 x − 8 20. Find three points on the line: −x − 4y = 12 [points] [points] 22. Find three points on the line: 7x − 2y − 6 = 0 24. Find three points on the line: −2x + 10y = 25 [points] 25. Which points are on the line: y = −3x ? A(−3, 1)B(1, −3)C(−2, 6)D(3, 0) A(4, 2)B(−3, 1 21 )C(0, 12 )D(−6, −3) A, D 31. Which points are on the line: x = −3 ? A 37. Which points are on the line: y = −4x + 7 ? D 39. Which points are on the line: y = 6x + 1 ? A, C, D 41. Which points are on the line: 2x + 5y = −3 ? A(0, 0.6)B(1, −1)C(−1.5, 0)D(−6, 3) 32. Which points are on the line: y = 8 ? A, B, D 34. Which points are on the line: 2x + 8y = 0 ? B, C all 36. Which points are on the line: −4x + y − 1 = 0 ? A(−27)B( 21 , −3)C(2, 9)D(0, 1) B, D A(7, 0)B(−2, 1)C(−1, −11)D(3, −5) C, D A(0, 0)B(8, −2)C(−1, 14 )D(1, − 14 ) C 35. Which points are on the line: x − 8y + 5 = 0 ? A(−1, −5)B(−5, 0)C(0, 1)D( 12 , 4) A(1, 23 )B(2, 3)C( 31 , − 12 )D(−3, 2) A(0, 8)B(−8, 8)C(8, −8)D(4, 8) none 33. Which points are on the line: −6x − 3y = 0 ? 3 4 )B(3, 1)C(10, −2)D(−5, 0) 28. Which points are on the line: −3y = −2x ? A(0, 1)B(−1, 0)C(0, −1)D(−2, −1) all A( 21 , −2)B(1, 2)C(−3, 6)D(6, −3) B, C, D 30. Which points are on the line: y = −1 ? 29. Which points are on the line: x = 7 ? A(0, −3)B(6, −3)C(6, 3)D(3, −3) 26. Which points are on the line: −2y = 5x ? A(5, 2)B(−2, 5)C(4, −10)D(0, 0) B, C 27. Which points are on the line: y = 21 x ? A(2, [points] [points] 23. Find three points on the line: 10x + 15y = −9 A(7, −7)B(7, 3)C(7, 7)D(7, 0) [points] [points] 12. Find four points on the line: x = −5 [points] 15. Find four points on the line: y = 5x − 1 [points] C, D 38. Which points are on the line: y = 23 x − 9 ? A(6, −5)B(0, 9)C(−3, 8)D(9, −15) A 40. Which points are on the line: y = − 12 x − 5 ? A(0, 5)B(−4, 3)C(2, −4)D(−5, 0) none 42. Which points are on the line: −x + 3y = 8 ? A(7, 5)B(−5, 1)C(1, 3)D(−8, 0) ALG catalog ver. 2.6 – page 317 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. all PD 43. Which points are on the line: −5x − y = −3 ? A(1, 2)B(−2, 7)C(0, −3)D(4, −15) none 45. Find the missing coordinates, so that each point is on the line: y = 5x. (0, )( , 15)(−2, ) 0, 3, −10 47. Find the missing coordinates, so that each point is on the line: −y = 4x. ( , 8)( , −4)(0, ) −2, 1, 0 49. Find the missing coordinates, so that each point is on the line: −15y − 6x = 0. ( , 25 )(5, )( , −10) −1, −2, 25 51. Find the missing coordinates, so that each point is on the line: x − 8y = 0. (−8, )(4, )( , 2) −1, 12 , 16 53. Find the missing coordinates, so that each point is on the line: x + 6y = 6. (12, )( , −3)(0, ) −1, 24, 1 55. Find the missing coordinates, so that each point is on the line: 6x + 5y = 15. (0, )(5, )( , 9) 3, −3, −5 57. Find the missing coordinates, so that each point is on the line: y = 10 3 x − 3. (3, )( , 0)(−6, ) 7, 9 10 , −23 59. Find the missing coordinates, so that each point is on the line: y = 5x − 8. ( , 0)(−2, )( , 4) 8 12 5 , −18, 5 44. Which points are on the line: 4x + 6y = 15 ? A(3, 12 )B(2, 1)C(5, −1)D(0, 2 12 ) A, D 46. Find the missing coordinates, so that each point is on the line: y = − 13 x. ( , 0)(−12, )( , 2) 0, 4, −6 48. Find the missing coordinates, so that each point is on the line: 21y = 3x. (14, )( , 0)(−7, ) 2, 0, −1 50. Find the missing coordinates, so that each point is on the line: −12x + 2y = 0. ( , −18)( 12 , )( , 4) −3, 3, 2 3 52. Find the missing coordinates, so that each point is on the line: 2y + 8x = 0. ( , 12)(2 12 , )( , −6) −3, −10, 3 2 54. Find the missing coordinates, so that each point is on the line: −3x + y = −1. ( , 5)(0, )(4, ) 2, −1, 11 56. Find the missing coordinates, so that each point is on the line: 2x − 9y = 12. (−3, )( , −4)( , 0) −2, −12, 6 58. Find the missing coordinates, so that each point is on the line: y = 12 x + 12 . (−1, )(5, )( , 3 12 ) 0, 3, 6 60. Find the missing coordinates, so that each point is on the line: y = 4x − 43 . (0, )( 13 , )(1, ) ALG catalog ver. 2.6 – page 318 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. − 43 , 0, 8 3 PE Topic: Graphing lines. Directions: 85—Graph. 36—Solve for y and graph. 83—Find the slope and y-intercept for each line. 84—Find the x- and y-intercepts for each line. 86—Graph on the same coordinate system. 87—Graph on separate coordinate systems. 1. x=5 5. y = −4 9. y=x [graph] [graph] [graph] 13. y = − 14 x [graph] 17. y = −x + 2 [graph] 21. y = 2x + 3 [graph] 25. y = − 47 x − 7 29. y = 21 x − 1 2 33. y = − 83 x + [graph] [graph] 5 6 [graph] 37. y = 52 x − 2 45 [graph] 41. y = 0.3x − 1.5 [graph] 2. y = −7 6. x=1 [graph] [graph] 3. x = −4 7. y=6 [graph] [graph] 10. y = −x [graph] 11. y = −3x 14. y = 21 x [graph] 15. y = 38 x 18. y = x − 5 [graph] 22. y = −6x − 1 [graph] 26. y = 25 x + 4 30. y = − 16 x + 34. y = 43 x − [graph] 5 6 1 8 [graph] [graph] 38. y = − 12 x − 3 12 [graph] 42. y = −0.5x + 0.5 8. x = −2 [graph] [graph] [graph] 16. y = − 35 x [graph] [graph] 23. y = −4x + 2 y=3 12. y = 4x [graph] 19. y = x + 6 4. [graph] [graph] 20. y = −x − 1 [graph] 24. y = 5x − 7 [graph] 27. y = 51 x − 5 [graph] 28. y = − 13 x + 1 31. y = 49 x + [graph] 3 32. y = − 10 x− 3 4 35. y = − 13 x − 2 31 39. y = 21 x + 9 2 [graph] [graph] 43. y = −2.2x + 4 [graph] [graph] 1 10 36. y = 41 x + 3 34 40. y = − 76 x + [graph] [graph] 11 6 44. y = 1.6x − 4 [graph] [graph] [graph] 45. y = −1.5x + 3.5 46. y = 1.8x + 0.2 [graph] 47. y = 0.25x + 1 [graph] 48. y = −0.1x − 2 [graph] [graph] 49. −x + y = 0 53. 2x − y = 0 [graph] [graph] 50. x − y = 0 [graph] 54. −5x − y = 0 [graph] 57. −x − 3y = 0 [graph] 58. x + 8y = 0 61. 6x + 20y = 0 [graph] 62. −12x + 9y = 0 65. −5y = −7x [graph] 69. 3x − y = −6 [graph] 66. 3y = 2x [graph] [graph] 70. −4x + y = 2 [graph] 73. x − y − 4 = 0 [graph] 74. x + y − 8 = 0 77. 4x + 4y = 12 [graph] 78. x − 3y = 3 81. −x + 5y + 15 = 0 [graph] [graph] [graph] [graph] 86. −4x + 9y − 18 = 0 90. 5x − 4y = −16 [graph] [graph] 56. 3x + y = 0 59. 2x − 14y = 0 [graph] 60. 5x − 10y = 0 63. 2x + 5y = 0 [graph] [graph] 68. 9y = −6x 71. −x − y = 3 [graph] 72. x − y = −5 75. 5x + y − 5 = 0 79. x + 4y = −8 [graph] [graph] [graph] [graph] [graph] [graph] 76. 2x + y + 8 = 0 [graph] 80. 10x − 5y = 30 [graph] 84. x − 3y − 12 = 0 [graph] 87. 3x + 2y − 8 = 0 91. 10x − 2y = 4 [graph] 64. −11x + 4y = 0 67. −4y = 10x [graph] [graph] 52. −x − y = 0 55. −9x + y = 0 [graph] [graph] [graph] [graph] 83. −6x + 2y + 2 = 0 82. 8x + 2y + 6 = 0 [graph] 85. 6x − 2y + 14 = 0 89. 2x + 7y = 21 [graph] 51. x + y = 0 88. 15x + 5y + 10 = 0 [graph] [graph] 92. −21x + 7y = −7 [graph] 93. 6x + 5y = 30 [graph] 94. −3x + 8y − 24 = 0 [graph] 97. 18x − 21y + 28 = 0 [graph] 98. 20x + 35y = −14 [graph] 95. 5x − 7y + 35 = 0 [graph] 99. −10x − 4y = 30 [graph] ALG catalog ver. 2.6 – page 319 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 96. 10x + 2y = −20 [graph] 100. 8x + 18y − 12 = 0 [graph] PE 101. −15x + 10y − 25 = 0 102. 12x + 9y − 15 = 0 [graph] 105. x y − =1 3 2 109. x − 16 y = 103. 36x + 15y + 24 = 0 [graph] 2 3 [graph] [graph] 113. 2x + 43 y = −4 [graph] 117. 4y − 3x = 2y + x − 8 106. − x y + =1 5 4 [graph] 110. 3x + 12 y = −4 114. 6x − 92 y = 3 2 [graph] [graph] 118. y + 5x = 4y − x + 9 [graph] 104. −30x − 45y + 18 = 0 [graph] [graph] x y + =1 6 3 x y − =1 2 8 [graph] 108. 111. −x − 15 y = 1 [graph] 112. 2x + 14 y = − 12 [graph] 116. x − 54 y = −10 [graph] 107. − 115. −4x + 85 y = 1 8 [graph] 119. −6x − y = x − 5y − 6 [graph] 120. 10x + 7y = 2x − y + 4 [graph] [graph] 121. 2x − 7y + 6 = 3(y − x) − 4 [graph] 122. 2(x + 3y) + 3 = −7(x − 1) [graph] 123. 4(x + y) − 5 = 3x − 2y − 1 [graph] 124. −5(2x − y) = 3(y + 1) − 8 [graph] 125. 2y = −6 x−2 [graph] 126. 2y + 1 =4 x−1 129. y−1 2 = x + 10 5 [graph] 130. y+4 1 =− x−6 2 [graph] [graph] [graph] 127. y−4 = −1 x+2 [graph] 128. 3y =9 x+1 131. 2y − 1 1 = 3x 6 [graph] 132. y+5 5 =− x+8 4 ALG catalog ver. 2.6 – page 320 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. [graph] [graph] PF Topic: Writing equations of lines. Directions: 91—Write 92—Write 93—Write 94—Write 95—Write 96—Write 97—Write the the the the the the the equation equation equation equation equation equation equation 1. slope = −2, y-intercept = 7 3. slope = − 23 , y-intercept = −8 5. slope = 16 , y-intercept = − 56 7. slope = 5, y-intercept = −2 12 9. slope = 3, y-intercept = 0 11. slope = −2, y-intercept = 0 of of of of of of of the the the the the the the line. line in standard form. line in general form. line in point/slope form. line in point/point form. line in slope/intercept form. line and graph. y = −2x + 7 y = − 23 x − 8 y = 61 x − 5 6 y = 5x − 5 2 y = 3x − 5 y = −6x − 6 17. slope = −5, contains point (−3, −5) 19. slope = 3, contains point (5, 10) y = −5x − 20 passes through the origin 25. slope = − 14 , contains point (4, −2) 29. slope = 23 , contains point (−9, 0) 5 12 , y= slope = − 92 , y-intercept = 8. slope = −1, y-intercept = − 34 2 3 37. slope = 15 , contains point (−6, 2 45 ) y = − 58 x + 3 4 y = − 35 x y = 73 x 14. slope = 1, contains point (−4, −6) y =x−2 16. slope = −4, contains point (2, −5) y = −4x + 3 18. slope = −4, contains point (1, −3) y = −4x + 1 y = 7x + 14 28. slope = 13 , contains point (6, 4) y = 13 x + 2 38. slope = − 38 , contains point (4, 3 21 ) 7 3 y = − 85 x − 9 y = 74 x + y = 3x + 4 42. slope = 3, contains point (2, 10) 43. slope = −1, contains point (−4, 4) y = −x 44. slope = 2, contains point (−3, −6) 45. slope = − 13 , contains point (9, −3) y = − 13 x 46. slope = 52 , contains point (10, 4) 47. slope = − 74 , contains point (−4, 7) y = − 74 x 48. slope = 65 , contains point (12, 10) y = −0.5x + 2 y = −0.4x + 1 y = 2x y = 25 x y = 56 x 50. slope = 0.25, contains point (−2, 3.5) 52. slope = 0.7, contains point (5, 2.5) ALG catalog ver. 2.6 – page 321 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3 5 y = − 38 x + 5 y = 74 x − 2 y = 8x + 6 5 2 3 y = − 10 x− 40. slope = 74 , contains point (2, 32 ) 41. slope = 8, contains point (−1, −2) 51. slope = −0.4, contains point (1.5, 0.4) y = − 56 x − 4 3 36. slope = − 10 , contains point (8, −3) 5 25 12 x + 4 y = −8x y = 12 x + 4 34. slope = 47 , contains point (−2, −1) 7 4 y = − 13 x − 49. slope = −0.5, contains point (−2.8, 3.4) y = 4x 32. slope = − 85 , contains point (−5, −1) y = 15 x + 4 39. slope = − 13 , contains point (−2, − 53 ) y = −x − 30. slope = − 56 , contains point (6, −9) y = 92 x − 15 y= 2 3 26. slope = 21 , contains point (−8, 0) y = − 17 x − 3 contains point (−15, 0) y = − 92 x + 24. slope = −8, passes through the origin 10 3 x y = 23 x + 6 33. slope = − 58 , contains point (−2, 3) 35. slope = 6. y = 15 x + 2 22. slope = 4, passes through the origin y = − 12 x y = − 14 x − 1 27. slope = − 17 , contains point (−7, −2) 31. slope = 92 , contains point (4, 3) slope = 51 , y-intercept = 2 y = 4x − 1 20. slope = 7, contains point (−2, 0) y = 3x − 5 21. slope = − 12 , passes through the origin 10 3 , 4. 12. slope = 37 , y-intercept = 0 y = −2x 15. slope = −6, contains point (−1, 0) 23. slope = slope = 4, y-intercept = −1 10. slope = − 35 , y-intercept = 0 y = 3x 13. slope = 3, contains point (2, 1) 2. y = 0.25x + 4 y = 0.7x − 1 PF 53. vertical, passes through (−3, −6) x = −3 54. vertical, passes through (2, −1) 55. vertical, contains the point (4, 7) x=4 56. vertical, contains the point (−5, 0) x=2 x = −5 57. horizontal, contains the point (8, 2) y=2 58. horizontal, contains the point (−4, 4) 59. horizontal, passes through (−1, −5) y = −5 60. horizontal, passes through (3, −9) 61. zero slope, passes through (1, −4) 62. zero slope, passes through (3, 5) y = −4 63. zero slope, contains the point (0, −6) 65. undefined slope, contains (−5, 0) y=4 y = −9 y=5 64. zero slope, contains the point (−7, −2) y = −6 66. undefined slope, contains (−7, −8) x = −5 y = −2 x = −7 67. undefined slope, passes through (9, −3) x=9 68. undefined slope, passes through (4, 1) 69. y-intercept = 4, contains point (10, −8) y = − 65 x + 4 70. y-intercept = 6, contains point (−6, 2) y = 23 x + 6 72. y-intercept = −2, contains point (9, 1) y = 13 x − 2 71. y-intercept = −3, contains point (−4, −5) 73. x-intercept = 2, y-intercept = 8 y = 12 x − 3 74. x-intercept = −3, y-intercept = 9 y = −4x + 8 y = 3x + 9 75. x-intercept = 6, y-intercept = −6 y =x−6 76. x-intercept = −1, y-intercept = −5 77. x-intercept = 6, y-intercept = −3 y = 12 x − 3 78. x-intercept = −8, y-intercept = −10 79. x-intercept = 7, y-intercept = 2 80. x-intercept = −2, y-intercept = 5 y = − 27 x + 2 x=4 y = −5x − 5 y = − 54 x − 10 y = 25 x + 5 81. x-intercept = −5, contains point (1, 6) y =x+5 82. x-intercept = −1, contains point (4, −5) y = −x − 1 83. x-intercept = 8, contains point (2, −3) y = 12 x − 4 84. x-intercept = 4, contains point (−4, −6) y = 34 x − 3 85. contains (−2, 5) and (−2, −1) x = −2 86. contains (4, 0) and (4, −6) 87. passes through (−1, 7) (−1, 3) x = −1 88. passes through (5, −3) and (5, −9) 89. passes through (−8, 6) and (0, 6) 91. contains (5, 2) and (−5, 2) x=4 90. passes through (−1, −3) and (1, −3) y=6 y=2 y = −4 y = 5x y = 3x 94. contains (3, 15) and (−2, −10) 95. contains (−7, 7) and (5, −5) y = −x 96. contains (−3, 6) and (3, −6) 97. contains (10, −6) and (−5, 3) y = − 35 x 98. contains (4, 14) and (2, 7) 99. contains (3, 8) and (−6, −16) y = 83 x 100. contains (8, −2) and (−4, 1) y = −x + 6 103. passes through (1, 6) and (−2, −9) y = 5x + 1 y = −2x y = 27 x y = − 14 x 102. passes through (−2, 2) and (2, −10) y = −3x − 4 104. passes through (−3, −4) and (5, 12) y = 2x + 2 105. contains (−1, 7) and (3, −9) y = −4x + 3 106. contains (3, −4) and (−5, −12) 107. contains (−5, 8) and (−3, 0) y = −4x − 12 108. contains (−1, 16) and (2, −5) 109. contains (−5, −3) and (10, 0) 111. contains (3, −5) and (−6, −2) 110. contains (8, −3) and (−2, 2) y = 15 x − 2 112. contains (−12, 0) and (4, 4) y = − 13 x − 4 113. passes through (6, −5) and (−2, 7) y = − 32 x + 4 y =x−7 y = −7x + 9 y = − 12 x + 1 y = 14 x + 3 114. passes through (12, 7) and (−6, −8) 115. passes through (−4, −4) and (8, 11) y = 54 x + 1 116. passes through (6, −9) and (−9, 1) 117. contains (−4, −5) and (−8, −16) 11 4 x+6 118. contains (−4, 1) and (8, −8) 119. contains (−10, 3) and (5, 12) y= 121. passes through (12, 2) and (3, 1) y = 19 x + 123. passes through (−3, 1) and (9, −1) y = − 16 x + 125. contains (2, −2) and (−6, 1) y = − 38 x − 127. contains (−1, −5) and (3, 9) y = 72 x − 3 2 5 4 y = − 23 x − 5 y = − 76 x + 6 122. passes through (−5, 3) and (11, −5) 2 3 1 2 124. passes through (8, 6) and (−4, 2) 126. contains (8, 1) and (−7, −5) y= 128. contains (12, −10) and (−4, 0) ALG catalog ver. 2.6 – page 322 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. y = 56 x − 3 y = − 34 x − 2 120. contains (−6, 13) and (6, −1) y = 35 x + 9 y = −3 92. contains (4, −4) and (−7, −4) 93. contains (−1, −3) and (2, 6) 101. passes through (2, 4) and (−1, 7) x=5 y = − 12 x + y = 13 x + 6 33 15 x − 15 y = − 58 x − 5 2 10 3 1 2 PG Topic: Mixed practice and review (slope, midpoint, distance, equations of lines). Directions: 0—(No explicit directions.) 1. What is the slope of the y-axis? 3. What is the slope of all horizontal lines? 5. Find the slope between (−2, 7) and (4, −3). 7. Find the slope between (−5, −4) and (7, −1). 9. What is the slope between (−4, −7) and (10, 0) ? undef. 0 − 53 1 4 1 2 2. What is the slope of the x-axis? 4. What is the slope of all vertical lines? 6. Find the slope between (1, 6) and (−8, 12). − 23 8. Find the slope between (6, 5) and (−6, 14). − 34 0 undef. 10. What is the slope between (11, −5) and (−5, 11) ? −1 11. What is the slope between (0, 8) and (8, −2) ? − 54 12. What is the slope between (−3, −4) and (−1, 4) ? 4 13. Find the slope of the line which passes through (2, 9) and (7, 4). −1 14. Find the slope of the line which passes through (−3, −8) and (0, −2). 2 15. What is the slope of the line which contains (14, −6) and (4, −4) ? − 1 16. What is the slope of the line which contains (−15, 5) and (12, 2) ? − 1 17. A line contains the points (−12, 5) and (−8, 5). What is the slope of the line? 0 18. A line contains the points (6, −1) and (6, 4). What is the slope of the line? undef. 19. A line passes through (9, −2) and (6, −2). What is the slope of the line? 0 20. A line passes through (−7, 0) and (−7, 10). What is the slope of the line? undef. 21. Find the slope of the line which contains ( 32 , −4) and passes through the origin. −6 22. Find the slope of the line which contains (−3, 1 12 ) and passes through the origin. − 1 23. Find the slope of the line which contains (−7, −2.1) and passes through the origin. 3 24. Find the slope of the line which contains (2.4, 4) and passes through the origin. 5 5 9 2 10 3 25. Find the slope of the line which contains (5, −2) and whose y-intercept is 8. −2 26. Find the slope of the line which contains (8, 3) and whose y-intercept is −7. 5 27. Find the slope of the line which contains (1, −3) and whose x-intercept is 4. 1 28. Find the slope of the line which contains (−6, 6) and whose x-intercept is −2. − 3 29. Find the slope of the line whose y-intercept is −5 and x-intercept is −7. − 5 30. Find the slope of the line whose y-intercept is 8 and x-intercept is −6. 4 31. Find the slope of the line whose y-intercept is 4 and x-intercept is 10. − 2 32. Find the slope of the line whose y-intercept is −9 and x-intercept is 3. 3 33. Find the slope of the line whose y-intercept is 7.5 and x-intercept is −1.5. 5 34. Find the slope of the line whose y-intercept is 8 and x-intercept is 3.2. − 5 4 2 7 5 35. Find the slope of the line whose y-intercept is x-intercept is − 32 . 4 2 3 9 37. Find the slope of the line: x − y = 8. 2 36. Find the slope of the line whose y-intercept is x-intercept is 18 . −2 38. Find the slope of the line: x + y = 0. 1 39. Find the slope of the line: −x + y = −3. and 3 40. Find the slope of the line: −x − y = 0. 1 −1 −1 41. What is the the slope of the line y = − 25 x ? − 25 42. What is the the slope of the line y = 3x ? 3 43. What is the the slope of the line y = −5x ? −5 44. What is the the slope of the line y = 21 x ? 1 2 45. Find the slope of the line: −5x + y = 1. 47. Find the slope of the line: −x − 3y = −6. 5 − 13 46. Find the slope of the line: 2x − y = 0. 2 48. Find the slope of the line: x + 7y = 5. − 17 ALG catalog ver. 2.6 – page 323 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 1 4 and PG 49. What is the the slope of the line x = −2 ? 51. What is the the slope of the line x = 5 ? 53. Find the slope of the line: 9x + 6y = 0. undef. undef. − 32 55. Find the slope of the line: −8x + 2y = 14. 4 50. What is the the slope of the line y = 8 ? 0 52. What is the the slope of the line y = −1 ? 0 54. Find the slope of the line: −5x − 15y = 3. − 13 56. Find the slope of the line: 6x − 10y = −1. 3 5 57. Given M (3x, 8) and N (−6, −x). Find the value of x, ←−→ if the slope of MN is 23 . 4 58. Given B(x, 2x) and C(6, 0). Find the value of x, if ←→ the slope of BC is −6. 9 59. Given H(−1, 0) and J(x, x). What is the value of x, ← → if the slope of HJ is − 23 ? − 2 60. Given A(−5, x) and D(2x, 5x). What is the value ←→ of x, if the slope of AD is 3? 2 61. A line contains the points (x − 4, x) and (2, x + 5), and has a slope of −10. What is the value of x ? 62. A line contains the points (x − 4, −4) and (2x, 2), and has a slope of 32 . What is the value of x ? 0 5 2 13 2 64. Line PQ contains the points (x, x + 3) and (1, x), and 63. Line MN contains the points (0, 2x + 1) and (3x, x + 5), and has a slope of 5. Find the value of x. has a slope of − 13 . Find the value of x. −8 1 4 65. Find the midpoint between (3, 12) and (−7, 2) 66. Find the midpoint between (5, −8) and (−9, −8) (−2, −8) (−2, 7) 67. Find the midpoint between (9, 0) and (11, −10) (10, −5) 68. Find the midpoint between (−2, −3) and (16, 7) (7, 2) 69. Given E(−3, 9) and F (−8, 0). Find the midpoint −−− of EF . (− 11 , 9 ) 70. Given K(5, 6) and N (10, −6). Find the midpoint −−− of KN . ( 15 , 0) −−− 71. Find the midpoint of GH , if G = (15, −3) and H = (4, 4). ( 19 , 1 ) −−− 72. Find the midpoint of AB, if A = (8, 6) and B = (−5, 11). ( 3 , 17 ) −−− 73. What is the midpoint of RS , if R = (−4, −1) and S = (4, 6). (0, 5 ) −−− 74. What is the midpoint of PQ, if P = (2, 2) and Q = (−3, 14). (− 1 , 8) 75. Given Q(−5, −2) and R(7, −9). What is the −−− midpoint of QR ? (1, − 11 ) 76. Given E(9, −7) and H(0, −7). What is the midpoint −−− of EH ? ( 9 , −7) 77. What point is halfway between the origin and (−5, 2.2) ? (−2.5, 1.1) 78. What point is halfway between the origin and (4, − 23 ) ? (2, − 1 ) 79. What point is halfway between the origin and ( 51 , 1) ? 80. What point is halfway between the origin and (−1.6, −0.4) ? (−0.8, −0.2) 2 2 2 2 2 2 1 1 ( 10 , 2) 81. Find the midpoint between (3 12 , 13 ) and (−3 12 , 23 ). (0, 1 2) 83. Find the midpoint between (2, −2) and (−0.4, −0.6). (0.8, −1.3) 2 2 2 2 2 3 82. Find the midpoint between (−0.5, 3.9) and (1.7, −0.1). (0.6, 1.9) 84. Find the midpoint between (− 15 , 6) and (2 15 , −5). (1, 12 ) 85. A segment has endpoints at (a, a − 1) and (3a, a + 1). What is the midpoint? (2a, a) 86. A segment has endpoints at (n − 6, 5p) and (6 − n, −p). What is the midpoint? (0, 2p) 87. A segment has endpoints at (k, k + 4) and (8 − k, k + 2). What is the midpoint? (4, k + 3) 88. A segment has endpoints at (x − 2, −7y) and (x + 2, 3y). What is the midpoint? (x, −2y) 89. Given X(4, −2) and Q(7, −6). Find a point Y such −−− that Q is the midpoint of XY . (10, −10) 90. Given P (9, 3) and X(−5, −4). Find a point Q such −−− that X is the midpoint of PQ. (−19, −11) ALG catalog ver. 2.6 – page 324 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. PG 91. Given A(8, −1) and M (0, 6). Find a point B such −−− that M is the midpoint of AB. (−8, 13) 92. Given Y (−10, 2) and Z(−3, −7). Find a point X −−− such that Y is the midpoint of XZ . (4, −16) 93. A segment has endpoints at (2x, 0) and (7, y + 5). Solve for x and y if the midpoint is (−3, −1). 94. A segment has endpoints at (x − 8, 3y) and (−6, y). Solve for x and y if the midpoint is (−4, 4). x = 6, y = 2 x = − 13 2 , y = −7 95. A segment has endpoints at (x + 1, y + 3) and (x, −3). Solve for x and y if the midpoint is (5, −2). 96. A segment has endpoints at (−x, 5) and (5x, 2y − 1). Solve for x and y if the midpoint is (8, 0). x = 4, y = −2 x = 29 , y = −4 97. Find the distance between (9, −1) and (−3, 4). 13 99. Find the distance between (−8, −5) and (0, 10). 17 101. Given A(0, 3) and B(−10, −7). Find the length −−− of AB. 10√2 −−− 103. Given P (5, −3) and Q(3, 1). Find the length of PQ. √ 2 5 98. Find the distance between (−2, 5) and (−5, 9). 5 100. Find the distance between (−1, 2) and (7, −4). 10 102. Given C(−3, −1) and D(−10, 0). Find the length −−− of CD. 5√2 104. Given M (−2, 5) and N (−10, 9). Find the length −−−− of MN . 4√5 −−− 105. What is the length of RT , if R = (2, −2) and T = (8, 2) ? 2√13 −−− 106. What is the length of AD, if A = (−4, −6) and D = (6, −4) ? 2√26 −−− 107. What is the length of NK , if N = (7, 4) and √ K = (4, −5) ? 3 10 −−− 108. What is the length of EH , if E = (9, −6) and √ H = (−3, 0) ? 6 5 109. Given A(−3, 6), B(2, 1) and C(4, −5). Find the −−− distance between A and the midpoint of BC . 10 110. Given A(1, −9), B(−6, 0) and C(−2, 6). Find the −−− distance between A and the midpoint of BC . 13 111. Given D(−1, −3), E(−2, −7) and F (8, 7). Find the −−− distance between D and the midpoint of EF . 5 112. Given D(2, −11), E(−3, 9) and F (−9, −1). Find the −−− distance between D and the midpoint of EF . 17 113. Given X(0, 5), Y (−4, −3) and Z(10, −1). Find the −−− −−− distance between the midpoints of XY and XZ . 114. Given X(−2, −5), Y (−8, 5) and Z(2, −9). Find the −−− −−− distance between the midpoints of XZ and YZ . √34 √ 5 2 115. Given P (−7, 8), Q(3, −2) and R(−1, 6). Find the −−− −−− distance between the midpoints of PQ and RQ. √ 10 116. Given P (5, 4), Q(−3, 0) and R(−11, −6). Find the −−− −−− distance between the midpoints of PR and QR. √ 2 5 117. What is the slope and y-intercept for the line: y = 2x + 25 ? 2 and 2 118. What is the slope and y-intercept for the line: y = 21 x − 32 ? 1 and − 3 119. What is the slope and y-intercept for the line: y = −5x − 7 ? −5 and −7 120. What is the slope and y-intercept for the line: y = −4x + 12 ? −4 and 1 121. What is the slope and y-intercept for the line: 9y + 6x − 9 = 0 ? − 2 and 1 122. What is the slope and y-intercept for the line: −10x − 5y + 20 = 0 ? −2 and 4 123. What is the slope and y-intercept for the line: −2x − 8y = −4 ? − 1 and 1 124. What is the slope and y-intercept for the line: −6x + 15y = 25 ? 2 and 5 125. What are the x- and y-intercepts of the line: 10x − 4y = −20 ? −2 and 5 126. What are the x- and y-intercepts of the line: −12x + 6y = 12 ? −1 and 2 127. What are the x- and y-intercepts of the line: −9x − 12y = 36 ? −4 and −3 128. What are the x- and y-intercepts of the line: 15x − 10y = 30 ? 2 and −3 129. What are the x- and y-intercepts of the line: 4y = 21x − 14 ? 2 and − 7 130. What are the x- and y-intercepts of the line: 10x − 9y − 24 = 0 ? 12 and − 8 5 3 4 3 2 2 2 2 2 5 ALG catalog ver. 2.6 – page 325 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3 5 3 PG 131. What are the x- and y-intercepts of the line: 12x + 8y = −6 ? − 1 and − 3 2 133. Graph: x = −5. 132. What are the x- and y-intercepts of the line: −5x + 16y − 6 = 0 ? − 6 and 3 4 134. Graph: y = 2. 5 [graph] 135. Graph: x = 4. 8 136. Graph: y = −7. [graph] [graph] [graph] 138. Graph: y = − 73 x. 137. Graph: y = 6x. [graph] [graph] [graph] 141. Graph: y = − 25 x − 1. 142. Graph: y = 4x − 12 . [graph] [graph] [graph] [graph] 143. Graph: y = −3x + 23 . 144. Graph: y = 21 x + 5. [graph] 148. Graph: −12x − 4y = 16. 147. Graph: −10x + 8y + 8 = 0. [graph] 149. Graph: (y + 4) = −6(x − 2) 150. Graph: (y − 2) = − 32 (x + 6) [graph] 153. Graph: [graph] [graph] 146. Graph: x + 3y = 12. 145. Graph: 9x − 3y + 6 = 0. 140. Graph: y = 41 x. 139. Graph: y = −3x. 154. Graph: [graph] 151. Graph: (y + 1) = 5(x − 1) 152. Graph: (y + 6) = 14 (x + 8) [graph] [graph] y−1 2 = x 3 [graph] y+2 =4 x−4 155. Graph: [graph] y 1 =− x+4 2 [graph] [graph] 157. Solve for y and graph: −4x + 6y = −18. y = 23 x − 3 159. Solve for y and graph: −10x − 2y = 10. y = −5x − 5 y−3 = −3 x+5 156. Graph: [graph] 158. Solve for y and graph: 3x − 5y = −20. 160. Solve for y and graph: 7x + 7y = 14. y = 35 x + 4 y = −x + 2 161. Write in slope-intercept form and graph: x + 5y = 10. 162. Write in slope-intercept form and graph: −4x − 2y = 1. y = −2x − 1 y = −1x + 2 5 2 163. Write in slope-intercept form and graph: 7x − 3y = −3. y = 7 x + 1 164. Write in slope-intercept form and graph: −2x + 6y = −4. y = 1 x − 2 165. Write the equation of the vertical line through (−5, 9). x = −5 166. Write the equation of the vertical line through (7, −1). x = 7 167. Write the equation of the horizontal line through (−8, −3). y = −3 168. Write the equation of the horizontal line through (4, 6). y = 6 169. Write the equation of the line which passes through the origin and contains (−3, −5). y = 5 x 170. Write the equation of the line which passes through the origin and contains (4, −6). y = − 3 x 171. Write the equation of the line which passes through the origin and contains (10, 2). y = 1 x 172. Write the equation of the line which passes through the origin and contains (−7, 7). y = −x 173. Write the equation of the line which has a y-intercept of −4 and slope of 53 . y = 5 x − 4 174. Write the equation of the line which has a y-intercept of 21 and slope of − 32 . y = − 3 x + 1 175. Write the equation of the line which has a y-intercept of 1 and slope of −2. y = −2x + 1 176. Write the equation of the line which has a y-intercept of − 13 and slope of 3. y = 3x − 1 177. Write the equation of the line which contains (4, −10) and has a slope of −3. y = −3x + 2 178. Write the equation of the line which contains (−2, −12) and has a slope of 6. y = 6x 179. Write the equation of the line which contains (7, 1) and has a slope of 14 . y = 1 x − 3 180. Write the equation of the line which contains (10, −6) and has a slope of − 25 . y = − 2 x − 2 181. Write the equation of the line which contains (3, 11) and has a slope of 37 . y = 7 x + 4 182. Write the equation of the line which contains (−1, −5) and has a slope of 4. y = 4x − 1 3 3 5 3 4 3 4 3 3 2 2 2 3 5 ALG catalog ver. 2.6 – page 326 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. PG 183. Write the equation of the line which contains (−8, 4) and has a slope of − 12 . y = − 1 x 184. Write the equation of the line which contains (6, 0) and has a slope of − 53 . y = − 5 x + 10 185. Write the equation of the line which contains (−3, 6) and (4, −8). y = −2x 186. Write the equation of the line which contains (3, −1) and (−5, 5). y = − 3 x + 5 187. Write the equation of the line which contains (12, −8) and (6, −9). y = 1 x − 10 188. Write the equation of the line which contains (−2, −7) and (2, 13). y = 5x + 3 189. Write the equation of the line which contains (−1, −1) and (−5, 6). y = − 7 x − 11 190. Write the equation of the line which contains (8, 0) and (−8, 2). y = − 1 x + 1 191. Write the equation of the line which contains (1, 10) and (−2, −2). y = 4x + 6 192. Write the equation of the line which contains (7, 3) and (14, 6). y = 3 x 193. Write the equation of the line which contains (−3, 1) and whose y-intercept is −8. y = −3x − 8 194. Write the equation of the line which contains (−6, −2) and whose y-intercept is 1. y = 1 x + 1 195. Write the equation of the line which contains (8, 4) and whose y-intercept is −4. y = x − 4 196. Write the equation of the line which contains (14, −1) and whose y-intercept is 3. y = − 2 x + 3 197. Write the equation of the line which contains (10, 11) and whose x-intercept is 5. y = 11 x − 11 198. Write the equation of the line which contains (2, −15) and whose x-intercept is −1. y = −5x − 5 199. Write the equation of the line which contains (−10, 3) and whose x-intercept is 20. y = − 1 x + 2 200. Write the equation of the line which contains (−9, −2) and whose x-intercept is −7. y = x + 7 201. Write the equation of the line whose y-intercept is 2 and x-intercept is −6. y = 1 x + 2 202. Write the equation of the line whose y-intercept is 5 and x-intercept is −5. y = x + 5 203. Write the equation of the line whose y-intercept is 8 and x-intercept is 4. y = −2x + 8 204. Write the equation of the line whose y-intercept is −7 and x-intercept is −3. y = − 7 x − 7 205. Write the equation of the line which has an x-intercept of 6 and slope of 32 . y = 3 x − 9 206. Write the equation of the line which has an x-intercept of −2 and slope of −6. y = −6x − 12 207. Write the equation of the line which has an x-intercept of 15 and slope of − 45 . y = − 4 x + 12 208. Write the equation of the line which has an x-intercept of −9 and slope of 31 . y = 1 x + 3 209. Given D(1, 7), E(−3, 3) and F (0, 4). Write the equation of the line which passes through F and the −−− midpoint of DE . y = 2x + 4 210. Given A(−4, 5), B(4, −9) and C(3, −2). Write the equation of the line which passes through C and the −−− midpoint of AB. y = −2 211. Given P (−2, 3), Q(3, −6) and R(6, −5). Write the equation of the line which passes through Q and the −−− midpoint of PR. y = −5x + 9 212. Given K(0, 5), M (−1, −2) and N (7, 10). Write the equation of the line which passes through K and the −−−− midpoint of MN . y = − 1 x + 5 2 6 4 4 5 10 3 2 5 3 4 4 8 7 2 7 3 3 ALG catalog ver. 2.6 – page 327 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3 PH Topic: Parallel and perpendicular lines. Directions: 0—(No explicit directions.) 1. What is the slope of all lines parallel to the x-axis? 2. 0 What is the slope of all lines parallel to the y-axis? undef. 3. What is the slope of all lines perpendicular to the x-axis? undef. 4. What is the slope of all lines perpendicular to the y-axis? 0 5. What is the slope of all lines parallel to the line x = 5? undef. 6. What is the slope of all lines parallel to the line y = −2? 0 7. What is the slope of all lines perpendicular to the line x = −3? 0 8. What is the slope of all lines perpendicular to the line y = 7? undef. 9. What is the slope of all lines parallel to y = 5x − 2 ? 10. What is the slope of all lines parallel to y = − 43 x + 13 ? − 4 5 3 11. What is the slope of all lines parallel to y = x + 3 2 ? 1 12. What is the slope of all lines parallel to y = − 12 x − 4 ? − 12 13. What is the slope of all lines perpendicular to y = − 52 x ? 2 14. What is the slope of all lines perpendicular to y = x + 3 ? −1 15. What is the slope of all lines perpendicular to y = 41 x − 74 ? −4 16. What is the slope of all lines perpendicular to y = −4x − 1 ? 1 17. What is the slope of all lines parallel to 8x − 2y = 5 ? 18. What is the slope of all lines parallel to −5x + 6y = 0 ? 5 5 4 4 6 19. What is the slope of all lines parallel to −10x − 8y = 2 ? − 5 20. What is the slope of all lines parallel to x + 4y = −6 ? 21. What is the slope of all lines perpendicular to −3x − y = 9 ? 1 22. What is the slope of all lines perpendicular to x − 5y = −10 ? −5 4 3 23. What is the slope of all lines perpendicular to 4x + 14y = 0 ? 7 2 − 14 24. What is the slope of all lines perpendicular to −15x + 9y = 3 ? − 3 5 25. A line contains the points P (−3, 7) and Q(2, −3). ←→ What is the slope of all lines parallel to PQ ? −2 26. A line contains the points N (0, −2) and K(6, 12). ←→ What is the slope of all lines parallel to NK ? 7 27. Line AB contains (4, −10) and (−5, −1). What is the slope of all lines parallel to line AB ? −1 28. Line CD contains (−1, 8) and (3, 6). What is the slope of all lines parallel to line CD ? − 1 29. Line EF contains (0, 4) and (6, 0). What is the slope of all lines perpendicular to line EF ? 3 30. Line QR contains (2, −4) and (−3, 1). What is the slope of all lines perpendicular to line QR ? 1 2 31. A line contains the points M (9, 6) and N (3, −2). ←−→ What is the slope of all lines perpendicular to MN ? − 34 3 2 32. A line contains the points B(−4, −2) and C(5, −5). ←→ What is the slope of all lines perpendicular to BC ? 3 33. Write the equation of the line that contains (2, 4) and is parallel to the x-axis. y = 4 34. Write the equation of the line that contains (−5, 8) and is parallel to the x-axis. y = 8 35. Write the equation of the line that contains (1, −10) and is parallel to the y-axis. x = 1 36. Write the equation of the line that contains (−12, 5) and is parallel to the y-axis. x = −12 ALG catalog ver. 2.6 – page 328 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. PH 37. Write the equation of the line that contains (−1, 7) and is parallel to the line y = −2x − 5. y = −2x + 5 38. Write the equation of the line that contains (2, 9) and is parallel to the line y = 3x. y = 3x + 3 39. Write the equation of the line that contains (8, 0) and is parallel to the line y = 43 x + 1. y = 3 x − 6 40. Write the equation of the line that contains (−4, −3) and is parallel to the line y = − 12 x. y = − 1 x − 5 41. Write the equation of the line that contains (−5, 1) and is perpendicular to the line y = 52 x + 2. 42. Write the equation of the line that contains (−12, 5) and is perpendicular to the line y = 3x + 6. 4 2 y = − 13 x + 1 y = − 25 x − 1 43. Write the equation of the line that contains (4, −3) and is perpendicular to the line y = −4x. y = 1 x − 4 4 44. Write the equation of the line that contains (−2, 4) and is perpendicular to the line y = − 13 x + 23 . y = 3x + 10 45. Given A(5, 2), B(−1, 4) and C(6, −5). Write the equation of the line which passes through C and is ←→ parallel to AB. y = − 1 x − 3 46. Given A(0, −3), B(3, 8) and C(−2, 5). Write the equation of the line which passes through B and is ←→ parallel to AC . y = −4x + 20 47. Given D(8, 0), E(6, −3) and F (−2, 3). Write the equation of the line which passes through D and is ← → parallel to EF . y = − 3 x + 6 48. Given D(−4, 2), E(−2, 4) and F (−3, −3). Write the equation of the line which passes through F and is ←→ parallel to DE . y = x 49. Given A(−6, 0), B(−2, 2) and C(5, 9). Write the equation of the line which passes through A and is ←→ perpendicular to BC . y = −x + 6 50. Given P (−3, −4), Q(−8, −3) and R(−1, 4). Write the equation of the line which passes through Q and ← → is perpendicular to PR. y = − 1 x − 5 51. Given A(7, −1), B(2, 2) and C(−8, 4). Write the equation of the line which passes through B and is ←→ perpendicular to AC . y = 3x 52. Given P (9, −9), Q(−5, 1) and R(−3, 4). Write the equation of the line which passes through P and is ←→ perpendicular to QR. y = − 2 x − 3 53. Given A(9, −1) and B(3, −4). Write the equation of ←→ the line which is perpendicular to AB and contains −−− the midpoint of AB. y = −3x + 15 54. Given R(−3, −4) and S(5, 4). Write the equation of ← → the line which is perpendicular to RS and contains −−− the midpoint of RS . y = −x + 1 55. Given Q(1, −11) and R(7, 1). Write the equation of ←→ the line which is perpendicular to QR and contains −−− the midpoint of QR. y = − 1 x − 3 56. Given E(−7, 4) and F (1, −8). Write the equation of ← → the line which is perpendicular to EF and contains −−− the midpoint of EF . y = 2 x 3 4 2 4 3 ALG catalog ver. 2.6 – page 329 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 3 PI Topic: Graphing inequalities in two variables. Directions: 85—Graph. 31—Solve by graphing. 86—Graph on the same coordinate system. 87—Graph on separate coordinate systems. 88—Graph the solution. 1. y≥x [graph] 2. y > −x [graph] 3. x+y ≤0 5. y<3 [graph] 6. y ≤ −2 [graph] 7. y > −5 9. x ≤ −4 [graph] 10. x < 7 13. y < 13 x [graph] 14. y ≤ − 52 x 17. y > −x + 6 21. y < 3x + 2 [graph] [graph] 18. y ≥ x + 1 [graph] 22. y ≤ 6x − 1 [graph] 26. y > − 14 x + 3 29. y ≥ − 23 x − [graph] 30. y > 74 x − 33. y < −0.3x − 1 [graph] [graph] 1 4 [graph] [graph] 34. y ≥ 0.5x + 3 [graph] [graph] 15. y > − 12 x [graph] 25. y ≤ − 47 x − 4 7 6 11. x ≥ 1 [graph] [graph] [graph] [graph] 19. y < x − 2 27. y ≥ 15 x + 1 31. y < − 16 x + [graph] [graph] 2 3 [graph] 16. y ≥ 37 x [graph] [graph] [graph] 24. y ≥ −2x + 2 [graph] 28. y < 65 x − 5 [graph] 32. y ≤ 14 x + [graph] 1 2 [graph] 40. y − x + 4 < 0 [graph] 44. −8x + 2y > 0 [graph] 39. y + x − 1 ≤ 0 41. −10y − 4x ≤ 0 [graph] 42. 15y + 5x > 0 [graph] 43. 9x − 6y ≥ 0 [graph] 47. 6y − 12x < −6 [graph] [graph] [graph] 12. x > −6 [graph] [graph] 49. x − 2y < 4 [graph] 36. y > 0.75x − 4 38. x − y − 5 < 0 46. −10x + 2y ≤ −8 y≥0 [graph] [graph] [graph] 8. [graph] 35. y ≤ 0.25x + 2 37. −x − y + 2 ≤ 0 45. 9x − 3y > 12 x−y<0 20. y ≤ −x − 3 [graph] 23. y > −4x − 3 4. 48. −5y − 20x ≥ 20 [graph] 50. −8y + 6x ≥ −16 51. 5y − 2x > −5 [graph] 52. 6x + 4y ≤ 16 [graph] [graph] 53. 4y + x > −24 [graph] 54. −6x − 9y ≤ 18 [graph] 55. −4y + 15x < 28 56. 15x − 10y ≥ −30 [graph] 57. 6x + 5y − 30 ≤ 0 [graph] 61. 5x − 5y + 20 ≥ 0 [graph] 65. −6y + 10x − 6 > 0 [graph] 69. 12y + 6x + 15 > 0 [graph] 58. 4y + 9x + 36 > 0 59. x − 3y − 9 ≥ 0 [graph] [graph] [graph] 62. 2y + 12x + 12 > 0 [graph] 66. 4x − 14y − 28 ≥ 0 [graph] 70. x − 4y + 10 ≤ 0 [graph] 60. −3y − 2x + 6 > 0 [graph] 63. 4y − 16x − 16 < 0 [graph] 67. x + 6y + 24 ≤ 0 [graph] 71. 4x − 20y − 16 < 0 [graph] ALG catalog ver. 2.6 – page 330 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 64. −9x − 3y − 18 ≤ 0 [graph] 68. 12y + 8x − 12 < 0 [graph] 72. −4y − 10x + 1 ≥ 0 [graph] PJ Topic: Graphing the intersection of inequalities. Directions: 85—Graph. 1. −3 < x < 5 5. y ≤ −4 and y ≤ 0 31—Solve by graphing. [graph] 2. 0≤y≤4 6. x > 2 and x ≥ −3 [graph] 9. Ø 13. 0 ≤ y < 4 and x ≤ 3 −6 ≤ x < −2 7. x < 5 and y ≥ 2 [graph] 11. y ≥ 0 and y ≤ −4 18. y ≤ 4 and y < −x [graph] y < −1 and x ≥ 6 [graph] 24. x > 4 and y ≤ x − 4 [graph] [graph] [graph] [graph] 26. x > 1, y ≤ 2 and x − y ≥ 4 [graph] [graph] 28. x ≤ −2, y > 1 and x + 2y ≥ 2 [graph] 30. x − 3y < 0 and y ≥ −x + 4 [graph] 31. y ≤ −x and 2x − 5y > −15 [graph] 32. 5y < 2x and 2x + y ≥ 10 33. 2x + 3y < 12 and y ≥ x − 6 [graph] 34. 4y − 7x ≤ 8 and 2x + y < 2 35. 3x + y > −4 and x − 3y > 4 41. 6x + 5y ≤ 35 and 3x − y > 14 45. y < −2x and y > −2x + 3 47. 3x + y > 4 and y ≤ −3x [graph] [graph] [graph] 44. 5x − 3y < 21 and 2x + y ≤ 7 [graph] 46. y ≥ x and y < x − 5 [graph] 51. y ≥ 0, x + 6y − 5 < 0 and x − 4y + 5 > 0 [graph] [graph] [graph] [graph] [graph] Ø 48. 4x − 2y ≤ 0 and 2x − y > 2 Ø 49. x < 5, 10y − x ≤ 25 and 3x + 2y ≥ 5 [graph] 42. 2x + y + 5 > 0 and x − 2y + 10 > 0 Ø 55. x < 2, 3 ≤ y < 7 and y ≤ 2x + 9 [graph] 40. 2x + y + 1 ≤ 0 and 2x + y − 2 < 0 [graph] 53. −3 ≥ x < 3, y > −2 and x + y ≤ 4 [graph] 38. 3y ≤ −2x and 2x + 3y > −12 [graph] [graph] 43. 4x − y ≤ −6 and 3x + 2y ≥ −10 [graph] 36. 2y − x ≤ 12 and x + 4y < −12 [graph] 37. x − 2y − 10 < 0 and x − 2y + 4 ≥ 0 39. y − x ≥ 0 and x − y + 3 < 0 [graph] [graph] 22. x ≤ 0 and y > 23 x + 1 [graph] 29. y ≤ 2x and 2y − x > −12 8. [graph] 12. x > 5 and x ≤ 0 20. y ≤ 0 and y ≥ −3x [graph] 27. y ≥ −1, x ≥ 0 and x + y < 3 1<y≤6 16. −4 < x ≤ 0 and −1 ≥ y < 2 [graph] 25. y < 3, x ≥ −2 and y > 4x − 1 4. [graph] 14. y ≥ 0 and −5 < x ≤ 1 15. 1 < x < 5 and −2 ≤ y ≤ 0 23. y < −2 and y ≤ −4x + 2 3. Ø [graph] 21. y ≤ 2 and y < −x − 1 89—Graph the intersection. [graph] 10. y > 5 and y ≤ −1 Ø 19. x ≤ −3 and y > x [graph] [graph] x ≥ 4 and x < −2 17. x > 0 and y ≤ − 12 x 88—Graph the solution. Ø 50. x ≥ 0, x + y ≤ 7 and 4x − 5y < 10 [graph] 52. y < 2, 3x − 2y < 4 and 3x + 2y > −4 [graph] 54. −4 < x ≤ 0, 2y ≥ x and x + 2y < 4 [graph] 56. x > −3, y > 2x − 4 and −4 < y ≤ 2 [graph] ALG catalog ver. 2.6 – page 331 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. Ø PK Topic: Other equations and graphs. Directions: 85—Graph. 31—Solve by graphing. 86—Graph on the same coordinate system. 87—Graph on separate coordinate systems. 88—Graph the solution. 1. y = |x| 5. y = |x| + 5 9. x = |y + 2| 2. x = |y | [graph] 6. y = − |x| − 2 [graph] 10. y = |x − 4| [graph] 13. x = |y − 1| − 4 17. x = − |y + 6| 21. x = −5 |y | [graph] [graph] 25. y = 4 |x + 2| x 29. y = − 6 33. y = [graph] [graph] [graph] |5 − x| 10 [graph] 37. x = 4 |y + 2| + 3 [graph] [graph] [graph] [graph] 14. y = |x + 8| + 3 18. y = − |1 − x| 22. y = 6 |x| [graph] [graph] y 30. x = 3 34. x = [graph] [graph] |y + 3| −2 [graph] 38. y = −2 |x − 5| − 7 [graph] 41. y = −x2 [graph] 45. x = y 2 − 4 [graph] 49. x = (y + 2)2 53. y = 3x2 [graph] [graph] 1 57. x = − (y − 6)2 3 7. x = |y | − 3 11. x = |5 − y | 4. x = − |y | [graph] 8. x = − |y | + 6 [graph] 12. y = |x + 3| [graph] 15. y = |x + 7| − 1 19. y = − |x + 8| [graph] [graph] 27. y = |5x + 2| 31. y = |x| −2 35. y = |5 − x| 4 [graph] [graph] [graph] [graph] 39. y = 3 |x − 1| + 6 46. x = y 2 + 6 [graph] 50. y = (x − 1)2 −x2 4 [graph] [graph] 58. x = 5(y + 2)2 [graph] [graph] 16. x = |y − 4| + 2 20. x = − |5 − y | 24. y = |2x| [graph] [graph] [graph] 28. x = |3 − 4y | 32. x = |y | 10 36. x = |y + 6| −3 [graph] [graph] 44. x = y 2 [graph] 47. y = x2 + 1 [graph] 51. x = −(y − 5)2 55. x = [graph] [graph] [graph] 43. y = x2 [graph] [graph] 40. x = − |y + 2| − 4 [graph] 42. x = −y 2 54. y = y = − |x| 23. x = |−3y | [graph] 26. x = −2 |1 − y | 3. y2 2 [graph] [graph] 48. y = x2 − 10 52. y = −(x + 3)2 56. x = −5y 2 [graph] 59. y = −3(x + 1)2 [graph] [graph] 60. y = [graph] [graph] 1 (x − 4)2 2 [graph] [graph] 61. y = 4(x − 1)2 − 3 [graph] 65. y = [graph] 1 x 66. x = [graph] [graph] 70. y = − 1 |x| [graph] 74. x = 77. y = x3 81. x = −y 3 − 4 [graph] 67. y = − [graph] 10 x 1 |y | 78. y = −x3 [graph] 63. x = 2(y + 6)2 + 1 [graph] 1 y 4 y 69. x = − 73. y = 62. x = −3(y − 5)2 + 8 [graph] [graph] 82. x = y 3 + 2 [graph] 1 x 71. x = 8 y 75. y = −1 |x| 79. x = y 3 [graph] [graph] 64. y = −5(x + 2)2 − 4 68. x = − [graph] [graph] [graph] 72. y = 5 x 76. x = −1 |x| [graph] [graph] 80. x = −y 3 [graph] 83. y = −x3 + 5 1 y [graph] [graph] [graph] 84. y = x3 − 1 [graph] 85. x = (y + 2)3 [graph] √ 89. y = x [graph] 86. y = (x − 1)3 [graph] √ 90. y = − x [graph] 87. y = (x + 1)3 [graph] √ 91. x = y [graph] 88. x = (y − 3)3 [graph] √ 92. x = − y [graph] 93. x2 + y 2 = 25 94. x2 + y 2 = 100 95. x2 + y 2 = 16 96. x2 + y 2 = 1 [graph] 97. 4x2 + y 2 = 4 [graph] √ 101. y = x [graph] √ 105. y = 9 − x2 [graph] [graph] 98. x2 + 9y 2 = 9 [graph] √ 102. y = − x [graph] p 106. x = 16 − y 2 [graph] [graph] 99. 25x2 + y 2 = 25 √ 103. x = y [graph] √ 107. y = 100 − x2 ALG catalog ver. 2.6 – page 332 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. [graph] [graph] [graph] 100. x2 + 16y 2 = 16 [graph] √ 104. x = − y [graph] p 108. x = 25 − y 2 [graph] PL Topic: Ordered pairs and equations of lines. See also categories PD (points on a line) and PF (writing equations of lines). Directions: 175—Tell whether the points listed in the table are collinear. If so, write the equation of the line that passes through them. 176—Tell whether the points listed in the table are collinear. If so, determine the slope of the line that passes through them. 177—Graph the points whose coordinates are shown in the table. 178—Write a rule of correspondence for the set of ordered pairs. 179—State whether the ordered pairs belong to linear function. 1. x −3 −3 −3 −3 −3 y −5 0 1 5 2. 10 x = −3 4. x −6 −3 0 3 6 5. 10. x −4 −2 0 y 0 −3 2 1 8. 6 x −11 −3 1 y 11 0 −11 3 3 11. x −2 4 6 y −8 −4 −2 2 0 14. x −9 −5 0 2 y −1 8 10 3 17. x −8 −4 0 12 y 4 7 2 3 20. 2 −2 2 −2 y 4 8 6 23. 10 x −2 −1 4 1 non-colinear, y = 28. x −1 1 3 5 y −4 4 12 20 6. 1 2 0 1 4 x2 26. −2 −1 y 10 5 0 y −3 −1 0 −1 −3 1 8 8 8 y −2 −1 0 1 2 x 0 3 6 12 0 1 2 4 1 2 9. x −4 −1 0 2 −5 −10 y 1 4 x 1 3 6 8 y 2 4 5 7 x −5 −3 6 12. 8 2 2 x −1 0 1 2 y −2 2 3 4 non-colinear, no simple rule of correspondence 15. 4 4 −1 −3 x −4 −2 y 2 3 5 0 −5 −7 y = −x − 2 x −4 −1 0 y 1 −5 13 1 3x non-colinear, no simple rule of correspondence 4 18. 2 x −1 1 2 3 y −7 3 8 13 0 −5 5 0 0 5 y = 5x − 2 x −4 −2 2 4 y −9 −6 0 3 21. x y −5 0 not a function 1 −3 −3 x 0 1 y 0 1 −1 24. 9 −9 x −1 3 5 −1 y 5 7 −3 1 not a function x −2 −1 0 y −4 −1 0 −1 −4 non-colinear, y = x −3 −1 8 y= x 8 y not a function 0 x x=8 y = 32 x − 3 x y 5 y = −3x + 1 not a function 25. 5 y = −x + 1 y = 41 x + 4 22. 5 y y =x+8 19. 5 5 non-colinear, no simple rule of correspondence y =x−6 16. y 3. y = −5x − 12 x non-colinear, no simple rule of correspondence 13. 4 y = 4x y = −2 (not a function) y= 2 y = 5 (not a function) y −2 −2 −2 −2 −2 7. x −8 −4 −2 1 −x2 3 non-colinear, y = − |x| ALG catalog ver. 2.6 – page 333 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 2 27. x −4 −2 0 2 4 y 0 2 4 4 2 non-colinear, y = |x| PM Topic: Writing systems of inequalities. See also category PI (graphing inequalities in two variables). Directions: 174—Write a set of equations that describes the shaded region. 1. 2. SHDREG02.PCX SHDREG01.PCX x ≥ −5 and y < 4 x ≥ 3 and y ≥ 2 5. 6. SHDREG05.PCX SHDREG03.PCX SHDREG04.PCX x > 6 and y ≤ −3 x ≤ 2 and y < 1 7. 8. SHDREG06.PCX x ≤ −10 and y ≥ 35 x y ≤ 8 and y ≥ 43 x 10. 9. SHDREG07.PCX SHDREG08.PCX y > − 32 x and y ≥ x + 5 y ≤ − 34 x and y < 34 x − 6 12. 11. SHDREG10.PCX SHDREG09.PCX y≥ y ≥ 32 x + 4 and y < − 12 x + 4 13. − 12 x − 4 SHDREG13.PCX 17. 15. 16. SHDREG15.PCX SHDREG16.PCX x ≤ 3, y > −6 and y ≤ 23 x − 4 x ≤ −3, y ≥ 0 and y < x + 7 18. y ≤ x + 2 and y ≤ − 12 x − 1 y > x − 3 and y > −x + 3 SHDREG14.PCX − 43 x + 16 SHDREG12.PCX SHDREG11.PCX and y < x − 4 14. x > 6, y ≥ 0 and y ≤ 4. 3. 19. x > −9, y ≤ 5 and y ≥ 23 x + 7 20. SHDREG17.PCX y < −2, y ≥ y ≥ −x − 6 4 3x − 6 and SHDREG18.PCX y ≥ 3, y < −x + 7 and y <x+7 SHDREG19.PCX y > −7, y ≤ 2x − 5 and y ≤ −2x − 1 ALG catalog ver. 2.6 – page 334 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. SHDREG20.PCX x ≤ 5, y ≥ −x + 3 and y < 12 x + 32 PN Topic: Word problems involving graphing. See also category QE (word problems involving two variables). Directions: 0—(No explicit directions.) 1. Mr. La Fleur pays $130 to rent a car for one week. He also pays $5 for every 100 miles that he drives. Write an equation and draw a graph which shows the relationship between the total cost of renting the car and the number of miles that are driven. 2. y = 5x + 130, (y is cost, x is hundreds of miles) An artist spends $80 on brushes and paint. For canvas and frames, she has to spend an additional $20 per painting. Write an equation and draw a graph which shows the relationship between the artist’s total expenses and the number of paintings that she makes. y = 20x + 80 (y is cost, x is number of paintings) 3. An author sells his latest book to a publisher for $5000, plus $300 for every thousand books that are sold. Write an equation and draw a graph which shows the relationship between the author’s income and the number of books that are sold. 4. y = 300x + 5000 (y is income, x is thousands of books) 5. A car from U-Save Rentals costs $22 per day and 5 cents per mile. The same car from Xpress Rentals costs $28 per day and 3.5 cents per mile. For what number of miles is the cost of the two cars the same? y = 50x + 3000 (y is income, x is number of items) 6. A moving van from Loc-n-Stor costs $40 per day and 12 12 cents per mile. The same vehicle from TravelTime costs $32 per day and 15 cents per mile. For what number of miles is the cost of the two vehicles the same? 320 8. Photo World charges $4.00 for the first 5 × 7 enlargement and $2.50 for each additional. Camera Center charges $3.30 for the first enlargement and $2.60 for each additional. For how many enlargements will the cost at each place be the same? 400 7. Speedy Print Shop charges $1.50 for the first color copy and $0.60 for each additional. Quality Print Shop charges $0.90 for the first copy and $0.75 for each additional. For how many copies will the cost at each place be the same? 5 At an electronics store, a salesperson gets a monthly salary of $3000, plus $50 for every stereo system that she sells. Write an equation and draw a graph which shows the relationship between the saleperson’s income and the number of stereos that she sells. 8 9. A checking account at Northern Bank costs $5 per month and 20/c per check. At County Bank, the cost is $2 per month and 50/c per check. Write equations and draw a graph which shows the cost of each account in relation to the number of checks that are written. For what number of checks would the cost of the two accounts be the same? 10 11. Ms. Swanson drove 300 miles one week in a rental car. The total cost of renting the car was $120, which included the weekly rate plus a mileage charge. Another week she drove 560 miles in the same rental car, and the total cost was $133. 10. StarCom advertises a cellular phone at a basic rate of $12 a month, plus 14/ c per minute of usage. The same phone from ProTel costs $15 a month plus 8/ c per minute. Write equations and draw a graph which shows the cost of each account in relation to the number of minutes of usage. After how many minutes would the cost of the two phones be the same? 50 12. In January, Edward spent 320 minutes on the telephone. His phone bill for the month was $75, which included a monthly charge plus a “per minute” charge. The next month he spent 250 minutes on the phone and was billed $61. a) Determine the charge per mile and the weekly rate for the car. a) Determine the “per minute” charge and the monthly charge for the telephone. b) Write an equation which relates the total cost of the rental to the number of miles that are driven. b) Write an equation which relates the total cost of the telephone to the number of minutes of usage. c) Graph the equation, then determine the cost of renting a car if it is driven 800 miles in a week. c) Graph the equation, then determine the cost of the telephone if it is used for 90 minutes in a month. y = 0.05x + 105 (y is total cost, $0.05 is charge per mile, x is number of miles, $105 is weekly rate); $145 y = 0.2x + 11 (y is total cost, $0.20 is charge per minute, x is number of minutes, $11 is monthly rate); $29 ALG catalog ver. 2.6 – page 335 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. PN 13. Assume there is a linear relationship between the cost of building a house and its size (the number of square feet of living space). If a 1700 sq ft house costs $60,000 to build, and a 2300 sq ft house costs $75,000, write an equation that relates cost to the square footage. Then graph the equation and determine the cost of building a 2500 sq ft house. y = 25x + 17500 (y is cost, x is square feet); $80,000 14. Assume there is a linear relationship between the cost of running a widget factory and the number of widgets that are produced each year. If it costs $30,000 to produce 700 widgets and $40,000 to produce 1500 widgets, write an equation that relates cost to the number of widgets. Then graph the equation and determine the cost of producing 2000 widgets. y = 12.5x + 21250 (y is cost, x is number of widgets); $46,250 15. In an experiment, various objects are suspended from the ceiling by a spring (see figure). There turns out to be a linear relationship between the length s of the spring and the weight w of the object. SPRING01.PCX The relationship is given by the equation s = 0.05w + 14, where s is measured in centimeters and w in grams. Graph the equation and find the length of the spring when it holds a 150 gram object. What is the length of the spring when it is not suspending any objects? 21.5 cm; 14 cm 17. Tina’s TV & Appliance Store charges a flat rate of $70 for up to 2 hours of repair work. After that, the charge is $28 per hour. Fred’s Fixit charges $40 for the first hour of repair work, and then $23 for each additional hour. (At both stores, fractions of an hour count as a whole hour.) For what number of hours would the repair cost at the two stores be the same? Draw a graph which illustrates the problem and explain your answer. 16. In an experiment, various objects are held up by a spring (see figure). There turns out to be a linear relationship between the length s of the spring SPRING02.PCX and the weight w of the object. The relationship is given by the equation s = −0.02w + 8, where s is measured in centimeters and w in kilograms. Graph the equation and find the length of the spring when it holds a 40 kg object. What is the length of the spring when it is not suspending any objects? 7.2 cm; 8 cm 18. Shiny Auto Body charges a flat rate of $240 for up to 6 hours of repair work. After that, the charge is $35 per hour. NuBody’s Business charges $180 for up to 4 hours of repair work and then $40 for each additional hour. (At both stores, fractions of an hour count as a whole hour.) For what number of hours would the repair cost at the two stores be the same? Draw a graph which illustrates the problem and explain your answer. Never the same. Fred’s Fixit always costs less, because of the minimum charges. Never the same. For 5 hours or less work, NuBody’s offers a better deal; otherwise, Shiny is better. 20. The relationship between degrees Celsius and degrees Fahrenheit is given by the formula: C = 59 (F − 32). 19. The relationship between degrees Fahrenheit and degrees Celsius is given by the formula: F = 95 C + 32. a) Draw a graph which illustrates the relationship. a) Draw a graph which illustrates the relationship. ◦ b) How many degrees Celsius is 32 ◦ F? 68 ◦ F? 320 ◦ F? ◦ b) How many degrees Fahrenheit is −5 C? 20 C? 100 ◦ C? c) 100 ◦ C is equivalent to how many degrees Fahrenheit? 0, 20, 160; 212 ◦ c) 32 F is equivalent to how many degrees Celsius? 23, 68, 212; 0 17. 18. ALG-P001.PCX 19. 20. ALG-P002.PCX ALG-P003.PCX ALG catalog ver. 2.6 – page 336 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. ALG-P004.PCX QA Topic: Solving systems by substitution, graphing. See also categories QB and QC. Directions: 15—Solve. 16—Solve and check. 26—Solve by any method. 28—Solve by transitivity. 31—Solve by graphing. 77—Find the intersection. 90—Graph each system. 1. 2x = 10 y = −1 (5, −1) 2. 3y − 6 = 0 x+2=0 5. y = −x x = −5 (−5, 5) 6. 4y = 4x y=6 9. 5x + 5y = 0 x−y =0 10. x − 4y = 0 2y = −2x 13. x+5=0 2x − 6 = 0 14. 2y − 12 = 0 y−4=0 17. y = 4x 4x = 8 18. 3y = −6x y−6=0 21. 3y − 12 = 0 2x + y = 10 22. − 3y = −15 x − 2y = −1 25. 2x = 6 6x = −2y 26. − 3x − 12 = 0 2x = −2y (0, 0) Ø (2, 8) (3, 4) (3, −9) 4. − 2y = −8 x=0 8. x+y =0 3x = 9 12. y = −2x 2y = −x (0, 0) Ø 16. x+4=1 x+1=4 Ø (−1, −3) 20. 5x + y = 0 2y = 20 2x = 8 x + 3y = 25 (4, 7) 24. − 2x + 10 = 0 2x − 2y = 6 27. 5y + 30 = 0 − 4x = 2y (3, −6) 28. 2y = 12 − 4x = −6y 31. y = 2x + 2 y+3=0 (− 52 , −3) 32. y = 6x − 3 x − 12 = 0 35. y = −4x − 3 y=5 (−2, 5) 36. y = −2x − 9 x = −7 (−7, 5) 39. x = −3 3x − 2y = −17 40. x−4=0 2y + 3x = 16 (4, 2) 44. 2y = 0.8 − 2x + y = −1 3. x+6=0 4y + 12 = 0 7. y−x=0 y = −1 (0, 0) 11. y = −x 2y − 6x = 0 Ø 15. y−1=7 y + 3 = −4 (−3, 6) 19. 3x − y = 0 5x + 5 = 0 23. (−2, 2) (6, 6) (9, 5) (−6, −3) (−1, −1) (0, 0) (0, 4) (3, −3) (−2, 10) (5, 2) (9, 6) (−4, 4) 29. y = −x + 2 x = 23 33. y =x+3 x−7=0 37. y+3=0 4x − 5y = −9 ( 23 , 43 ) (7, 10) 30. y = −x − 2 y = − 12 34. y =x−5 y+3=0 38. y=1 3x + 5y = 20 (− 32 , − 12 ) (2, −3) (5, 1) (−6, −3) 41. (−3, 4) − 2x = 1.2 x + 6y = 1.8 42. (−0.6, 0.4) 3x = 0.3 2x − 5y = −1.3 43. y − 3x = 0 2y − 6x = 0 49. y = 13 x y = 3x 53. y = −5x 2x − 3y + 17 = 0 coincide (0, 0) (−10, 8) (0.7, 0.4) 46. 2y = x − 4y = −2x coincide 47. 2x + 2y = 0 x+y =0 50. x + 4y = 0 −x+y =0 (0, 0) 51. y = − 25 x y = −5x 54. y = 4x x + 2y = 18 (2, 8) 55. y = 3x − 9x − y − 4 = 0 coincide (0, 0) 48. 3x − 3y = 0 5x − 5y = 0 52. 2x + y = 0 x − 2y = 0 56. y = −4x 6x + 2y = −3 60. y = 27 x − 9x + 2y + 12 = 0 coincide (0, 0) ( 32 , −6) (− 13 , −1) (−1, 5) y = − 45 x 7x + 10y = 10 3y = −0.9 3x + 4y = 0 (0.4, −0.3) (0.1, 0.3) 45. 57. ( 12 , 0) 58. y = 14 x 3x − 8y = −16 (−16, −4) 59. y = − 13 x x + 6y + 9 = 0 (9, −3) ALG catalog ver. 2.6 – page 337 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (6, 21) QA 61. y = − 32 x + 14 2x + 4y − 11 = 0 62. (− 52 , 4) 65. y = 6x − 32 7x − 2y − 3 = 0 63. y = 94 x + 9 9x + 4y = 36 67. y = − 12 x − 92 3x − 5y = 17 (0, 9) 64. y = − 23 x + 13 4x + 3y = 11 68. y = 57 x − 9 2x − 3y − 16 = 0 (5, −3) (0, − 32 ) y = 13 x + 17 8x − y − 6 = 0 (3, 18) 66. y = 32 x − 9 x − 5y − 6 = 0 (6, 0) (−1, −4) (5, −2) Slope-intercept form 69. y = −x + 5 y=x 73. y = −3x + 6 y = −3x 77. y =x+3 y = −x + 3 81. y = 5x y = 2x − 1 85. y =x+2 y = −x + 4 89. y = −6x + 1 y = −6x − 3 93. y = −x + 6 y = 5x − 2 ( 52 , 52 ) 70. y = −x y =x−6 Ø 74. y = 4x y = 4x − 1 (0, 3) 78. y =x−4 y = −2x − 4 82. y = 2x + 6 y = −4x (1, 3) 86. Ø (− 13 , − 53 ) ( 43 , 14 3 ) 71. y =x+4 y = 5x (1, 5) 72. y = 2x y = −x − 2 (− 23 , − 43 ) 75. y =x−1 y=x Ø 76. y = −x y = −x + 3 Ø 79. y = −x + 2 y = 5x + 2 (0, 2) 80. y = 3x − 5 y =x−5 (−1, 4) 83. y = −x y = 3x + 8 (−2, 2) 84. y = −5x + 3 y=x y =x−3 y = 2x − 1 (−2, −5) 87. y = −x − 2 y = −3x + 4 88. y = 2x + 6 y =x+4 90. y = 5x − 5 y = 5x − 1 Ø 91. y = 2x − 2 y = 2x + 2 92. y = −3x + 1 y = −3x + 7 94. y = −4x + 5 y = 2x − 4 95. y =x−4 y = −3x + 10 96. y = 8x − 7 y = 4x − 2 (3, −3) Ø (0, −4) ( 32 , −1) (3, −5) Ø (0, −5) ( 21 , 12 ) (−2, 2) Ø ( 45 , 3) ( 27 , − 12 ) 97. y = 2x − 1 y = 3x + 4 (−5, −11) 101. y = −3x y = − 12 x + 5 105. y = 43 x + 5 y = 2x + 7 (−3, 1) 109. y = x − 13 y = 3x + 3 113. y = 12 x − (−2, 6) (− 53 , −2) (4, − 13 ) 2 3 117. y = 0.2x − 0.5 y = −0.3x (1, −0.3) y = 2x − 4 y = −3x + 6 102. y = x − 3 y = 23 x (2, 0) (9, 6) 106. y = 12 x + 10 y = −4x + 1 110. y = 15 x − 6 (−2, 9) (10, −4) y = − 65 x + 8 7 3 y = − 14 x + 98. 114. y = − 23 x + 1 6 y = − 12 x + 1 118. y = −x + 1.3 y = 2x − 0.2 (0.5, 0.8) y = 4x + 1 y = −5x − 8 (−1, −3) 100. y = −3x + 2 y = −6x + 8 103. y = − 52 x y = −4x + 6 (4, −10) 104. y = 43 x − 5 y = 2x 99. 107. y = 15 x − 2 y =x−6 111. y = 2x − 1 2 (5, −1) (1, 32 ) 115. y = 2x − 6 y = 25 x + 65 (−4, −8) (−3, 2) 112. y = − 23 x − 7 (−6, −3) y = 31 x − 1 y = − 12 x + 2 (−5, 72 ) 108. y = 32 x + 4 y =x+5 (2, −4) ( 29 , 3) 116. y = x + 1 4 y = 43 x − (−2, − 74 ) 1 4 119. y = 0.25x − 1 y = 0.75x 120. y = x + 1 y = −2x − 0.2 (−2, −1.5) (−0.4, 0.6) ALG catalog ver. 2.6 – page 338 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. QA General form 121. x + y = 0 x−y =4 122. x − y = −12 4x + 4y = 0 (2, −2) (−6, 6) 123. − 2x + 2y = 0 x+y+8=0 124. x + y − 10 = 0 x−y =0 (5, 5) 128. − x + y = −6 2x + 2y = 0 (3, −3) (−4, −4) 125. − 5x − 5y = 0 2x + y + 8 = 0 126. − x + y − 2 = 0 3x − y = 0 (−8, 8) 127. x + 3y = 0 x+y =4 (1, 3) 129. 6x + 2y = 0 4x − y = −7 (−1, 3) 130. − x − y = 9 14x − 4y = 0 133. 5x − 4y = 0 x − 4y − 16 = 0 (−5, 5) 134. − 2x + 3y + 22 = 0 x + 4y = 0 (−4, −5) 132. x + 7y − 12 = 0 x + 3y = 0 131. x + y = 0 4x + 3y + 5 = 0 (−2, −7) 137. 2x − 6y = 0 3y − x = 0 (6, −2) (−9, 3) 135. − 4x + 2y = 0 5x − 2y = 3 (3, 6) (8, −2) coincide (5, −1) 138. 3x − 9y = 12 − x + 3y + 4 = 0 145. − x + y = −6 3x + y = 2 coincide Ø 142. 12x + 2y − 2 = 0 − 6x − y = 0 (2, −4) 146. − 5x − y + 7 = 0 2x + 2y = 22 Ø (−1, 12) 149. x + y − 9 = 0 − 10x + 6y − 6 = 0 154. − 2x + 2y = 6 3x − y = 3 Ø 147. x − y + 4 = 0 − 2x + y − 8 = 0 (3, 6) 158. 2x − 2y + 1 = 0 x+y+1=0 ( 31 , 23 ) 148. 2x − 8y + 8 = 0 3x − 8y + 4 = 0 (−3, 28) 155. 5x − 7y − 4 = 0 x − 3y − 4 = 0 159. 6x + 2y = 5 x − 2y = −5 Ø 152. − 10x − y = 2 9x + y = 1 (−2, −2) 157. x + y − 1 = 0 9x − 3y − 1 = 0 144. 3x + 3y = −15 x + y = −4 (4, 2) (2, −7) (−8, 0) 161. x − y = 3 − 3x + 3y = −21 143. − 5x + y = −6 5x − y = −6 151. − 6x − 2y = 2 4x + y = 1 (−2, −5) 153. − x + 4y = 8 2x − 3y = −16 coincide (−4, 0) 150. x + 2y + 12 = 0 4x − y + 3 = 0 (3, 6) 140. − 10x + 2y = 0 5x − y = 0 139. x + y + 1 = 0 − 4x − 4y = 4 coincide 141. x − 5y − 1 = 0 − 2x + 10y = 0 136. − 2x + y = −11 2x + 10y = 0 156. 3x + 2y − 6 = 0 x + 2y + 6 = 0 (6, −6) (0, 52 ) 160. x + 6y = −9 x − 3y = 6 (1, − 53 ) (− 34 , − 14 ) Ø 162. − 3x + y = 12 6x − 2y = 8 Ø 163. − 2x + 10y − 2 = 0 x − 5y + 2 = 0 164. x + y + 4 = 0 4x + 4y + 8 = 0 Ø 165. 10x + 2y + 2 = 0 5x + y + 1 = 0 coincide 166. x + y + 1 = 0 − 2x − 2y − 2 = 0 coincide 167. 6x − 3y = −6 − 2x + y = 2 coincide ALG catalog ver. 2.6 – page 339 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 168. − 2x − 12y = −6 x + 6y = 3 coincide Ø QB Topic: Solving systems by elimination, determinants. See also categories QA and QC. Directions: 15—Solve. 16—Solve and check. 26—Solve by any method. 27—Solve by substitution. 30—Solve by elimination. 32—Solve using determinants. 1. x+y =0 x − y = −14 5. x − 3y = 7 x + 3y = 7 (−7, 7) (7, 0) 2. y − x = −3 y + x = −3 6. x − y = −2 − 2x + y = 7 (0, −3) 3. y − x = −4 y+x=0 7. − x − 6y = −3 x − 2y = 11 (−5, −3) 9. − 3x − 9y + 6 − 0 3x + 5y − 14 = 0 10. (8, −2) 13. (5, 1) 14. − x + 2y − 17 = 0 x − 3y + 28 = 0 11. 10x − y + 24 = 0 − x + 3y + 15 = 0 18. (−3, −6) 4x + 6y = 0 − x + 2y = −14 15. 19. Ø 22. − x − 3y = 2 x + 3y = −4 25. x+y =4 3x + 3y = 12 coincide 26. 2x − 4y = 6 x − 2y = 3 4x − 5y = −28 − 4x + y = −4 5x − 3y − 2 = 0 − 4x + 3y − 2 = 0 12. 4x + 5y − 7 = 0 − 3x − 5y + 14 = 0 − 3x + y = −3 5x − 2y = 10 16. 2x + 3y = 20 6x − y = 20 − 8x + y = 0 x + 2y + 17 = 0 20. − x − 7y − 11 = 0 4x + 11y − 7 = 0 2x − 7y = 6 2x − 3y = 14 (10, 2) 30. Ø coincide 23. x − 5y − 1 = 0 − x + 5y − 1 = 0 27. x + 3y − 5 = 0 2x + 6y − 10 = 0 − 11x + 2y = −8 − 11x − 3y = 12 31. (0, −4) 33. − 5x + 2y − 9 = 0 12x − 3y = 0 34. (3, 12) 37. Ø 24. − 3x + y + 5 = 0 6x − 2y = 0 28. −x+y−1=0 2x − 2y + 2 = 0 38. (14, −5) 41. 5x − 3y = 0 − 4x + 5y = 26 35. 42. 3x + 4y + 1 = 0 − 5x − 9y + 17 = 0 39. − 9x − 10y = −124 4x + 3y = 19 46. 6x + 5y = 12 9x + 11y = 39 (−3, 6) 43. 3x + 11y + 77 = 0 10x + 13y − 51 = 0 47. (22, −13) 2x − 3y − 1 = 0 − 8x + 12y − 4 = 0 8x − 3y − 12 = 0 5x − 3y − 21 = 0 (−3, −12) 2x − 3y − 35 = 0 9x + 4y = 0 36. 3x + 2y = 0 8x + 7y = 5 − 4x + 5y + 15 = 0 7x − 6y − 7 = 0 40. − 11x − 2y = −23 8x − 3y = −10 (−2, 3) (1, 6) 24x + 13y = −4 5x + 7y = −18 44. (2, −4) (−14, 25) 49. 32. (−5, −7) (0, 7) 45. 3x + 9y − 24 = 0 − 2x + 9y + 16 = 0 (4, −9) (−11, 8) 7x + 15y − 105 = 0 − 15x − 4y + 28 = 0 (−8, −5) 6x − 35y = 0 9x − 5y − 285 = 0 48. − 6x + 3y = −24 4x − 2y = 12 54. − 14x + 6y = −8 7x − 3y = 4 Ø 51. 2x + y + 5 = 0 4x + 2y + 2 = 0 55. 4x − 6y − 20 = 0 2x − 3y − 10 = 0 − 25x + 2y = 70 15x + 7y = −360 (−6, −40) (35, 6) 50. 5x − 11y − 15 = 0 − 12x + 5y − 71 = 0 Ø 52. 12x − 10y = 0 − 6x + 5y = 2 56. − 5x + 8y − 1 = 0 5x − 8y + 1 = 0 Ø Ø 53. 10x + 5y = 10 6x + 3y = 6 coincide 57. x+y =5 x−y =2 coincide ( 27 , 32 ) 58. 2x + 3y = 6 x − 3y = 0 Ø coincide (8, 0) (6, 10) − 2x − 7y = 7 3x + 10y = −8 (4, 4) (10, −3) coincide 29. (3, 8) (−7, 7) (−1, −8) (4, 7) 2x − y = 5 − 2x + y = 7 8. (4, 0) (−4, −15) 2x + y − 15 = 0 5x − 6y + 22 = 0 21. x+y =4 x−y =4 (4, 6) (6, −4) 17. 4. (9, −1) (5, 11) 2x + 4y = 14 3x − y = 14 (2, −2) coincide (2, 2 3) 59. − 4x − y = 0 4x − 3y − 8 = 0 ( 12 , −2) ALG catalog ver. 2.6 – page 340 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. coincide 60. 3x − 2y = −5 − 3x − y = −1 (− 13 , 2) QB 61. − 4x − 3y + 12 = 0 3x + y − 7 = 0 62. 2x + y = 9 6x + y = 14 ( 54 , 13 2 ) 63. ( 59 , 85 ) 65. 6x − 2y = 2 x + 8y = 2 ( 25 , 15 ) 66. 3x − 4y = −16 3x − 12y = −18 70. (−5, 14 ) 73. x + 2y − 5 = 0 2x − 3y + 7 = 0 67. 17 7 ) 71. − 5x + 8y + 22 = 0 5x + 4y + 5 = 0 74. 3x − 2y = −9 − 3x + 5y = 21 75. (− 13 , 4) 6x − 5y = −4 9x + 8y = −6 (− 23 , 0) − 4x + 7y = 3 7x + 4y = 6 6 ( 13 , 85. 78. 82. 9 13 ) 86. 21 22 ) − 3x + 6y − 2 = 0 7x − 4y − 7 = 0 4x − 5y = 4 8x − 5y = 11 ( 74 , 35 ) 72. 6x + 6y + 1 = 0 6x − 6y − 7 = 0 76. 31 7 ) 10x + 3y − 3 = 0 2x + 3y + 1 = 0 79. 83. 2x − 3y + 5 = 0 − 3x + 2y − 6 = 0 80. 2x − 7y + 8 = 0 3x + y − 8 = 0 87. 40 23 ) 1 10 ) 4x − 6y = −1 7x − 9y = −2 (− 12 , − 16 ) 5x + 8y + 2 = 0 3x + 2y + 8 = 0 (− 30 7 , 2x + 10y = −4 − 4x − 10y = 9 (− 52 , (− 85 , 35 ) 12x + 5y = 8 4x + 9y = 0 48 ( 23 , 2x − y + 7 = 0 3x + 2y − 5 = 0 (− 97 , ( 12 , − 23 ) 9 4 ( 11 , − 11 ) 3x − 5y + 6 = 0 2x + 4y − 3 = 0 9 (− 22 , 68. ( 21 , − 23 ) ( 35 , 76 ) 81. − 4x + 3y = −7 2x + 9y = 14 ( 52 , 1) 5x + 7y + 38 = 0 5x − 3y + 23 = 0 2x − 15y − 7 = 0 − x + 6y + 4 = 0 (6, 13 ) 3 (− 11 2 ,−2) ( 54 , − 94 ) 77. 64. ( 12 , 5) ( 71 , 69. 8x − y = −1 − 10x + 2y = 5 84. 17 7 ) 7x + 9y − 4 = 0 5x + 12y − 8 = 0 8 ( 13 , 11x − 2y = 8 8x + 3y = 0 88. 64 ( 24 49 , − 49 ) 12 13 ) − 3x + 5y = −7 2x + 3y = −5 4 (− 19 , − 29 19 ) Fraction and decimal coefficients 89. 1 2 x + 5y =0 6x + 4y = −14 90. (− 52 , 14 ) 93. 1 3 2x − 2y +4=0 x + 7y − 12 = 0 94. 3 4x − 1 2x + 92. x − 4y = −2 3 2 x − 8y = 0 (−8, − 32 ) 96. 3x + y = −1 9 3 2x − 4y = 3 ( 31 , −2) 100. 2 3x + 1 3x + 5 6y 4 3y =1 3 5x − 1 2x + 2 3y 1 3y =4 ( 32 , 34 ) − 17 x + 74 y = 1 x + 2y = 1 1 3 2x − 4y 95. = −1 5x + 12y = 29 1 3 2 x − 8 y = −2 − 32 x + 43 y = 9 (−10, −8) 99. − 13 x + 56 y = 14 1 1 5x + 4y = 0 − 12 x − 54 y = (10, −8) 103. − 35 x + 12 y = −5 (1, 2) (− 53 , 43 ) 5 8y 3 4y =1 (8, 8) 1 1 3x − 2y (12, 6) =1 2 3x − 1 2x + = − 65 4 5y 1 4y 98. = 10 101. − 12 x + 13 y = −4 105. − 3x + 38 y = 0 − 3x + 8y − 4 = 0 91. (− 12 , 6) (−2, 2) 97. 8x + y − 2 = 0 3x + 14 y = 0 = 102. (3, 4) 5 2 109. 0.5x + 2y = 13 4x − 3y = 9 (6, 5) 106. 1 3x + 1 2x − 1 6y 1 4y = 2 1 3x − 6y (18, 24) 3 1 2x + 4y 5 5 3 = 10 104. = −5 (15, 15 2 ) = 10 ( 25 2 , 5) ( 72 , 3) 1 3x − 5 3x + 107. =1 110. 6x + 5y = 7 1.5x − 5y = 8 =8 (9, −6) (2, −1) 5 3y 7 2y =8 = (9, −3) 9 2 111. 3x − 2.5y = −14 4x − y = 0 108. − 23 x − 12 y = 1 1 1 2x − 8y (−3, 2) = − 74 112. 7x + 4y = 24 0.5x − 3y = 5 (4, −1) (2, 8) 113. 0.4x + 5y = 12 0.8x − 3y = −2 (5, 2) 114. 5x − 0.5y = 31 2.5x + 3y = 9 (6, −2) 117. 0.2x − 0.6y = −5 0.1x + 0.2y = 0 (−10, 5) 118. 0.5x − 0.2y = 19 0.4x − 0.3y = 11 (50, 30) 115. 0.3x + 2y = −3 1.2x − 7y = 33 (10, −3) 119. 0.3x + 0.1y = 3 0.2x − 0.3y = 13 (20, −30) ALG catalog ver. 2.6 – page 341 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 116. 0.4x + y = 6 1.2x − 5y = 18 (15, 0) 120. 0.1x + 0.3y = 7 − 0.7x + 0.1y = −5 (10, 20) QB 121. 0.13x + 0.08y = 50 0.09x + 0.34y = 120 122. 0.12x + 0.09y = −21 0.01x + 0.05y = −40 (500, −900) (200, 300) 125. 1.5x − 2.3y = 4.6 1.5x − 3.4y = 6.8 128. 0.3x + 1.1y = −6.2 0.6x − 0.7y = −0.8 (−6, −4) (3, 2) 130. 1.2x − 0.6y = 4 0.4x + 0.2y = 2.4 20 11 ) (−50, 2000) 127. 0.8x + 0.3y = 3 1.3x + 0.5y = 4.9 (8, 4) 129. 0.3x − 0.5y = 1 0.2x + 0.4y = 2 124. x + 0.03y = 10 10.4x + 0.75y = −980 (−1200, 750) 126. 0.2x + 0.6y = 4 0.3x − 0.2y = 1.6 (0, −2) 70 ( 11 , 123. − 0.25x + 0.2y = 450 0.05x + 0.08y = 0 131. 0.4x + 1.5y = 1.5 0.8x + 0.5y = −3 8 ( 14 3 , 3) (− 21 4 , 132. 0.8x + 1.1y = 0 − 0.4x + 0.8y = 1.5 12 5 ) (− 55 36 , 10 9 ) Mixed order 133. 2x = 4 4y = 6x 134. y − 5x = 0 3x + 3 = 0 (2, 3) (−1, 5) 138. 5x = 70 − 2y x−y =0 137. x = y − 3y + 2x = 7 (10, 10) 135. − 3y = x y−2=0 (−6, 2) 139. 2y − 2x = 0 3y = 2x − 3 (−3, −3) 136. y = −4 2y + 4x = 0 140. 4y + 3x − 5 = 0 − 4x = 4y (−7, −7) (−5, 5) 141. 5x + 9 = 11y 2y = x (18, 9) 142. − x = 11y 15y − 21 = −2x 143. 17y − 3x + 4 = 0 5y − x = 0 (33, −3) 145. y + 4x = 0 x=9−y (−3, 12) 144. x = −6y y + 4x = 23 (2, 12) 146. y − 5x + 12 = 0 3y = 6x 147. − 3x = y 8x − 11 = y (1, −3) 148. x = 2y + 18 2y − 10x = 0 (−2, −10) 150. y − 2x + 3 = 0 4x = y − 11 151. − 5y − 6 = x 4y + 3 = −x (9, −3) 152. 5y + x − 14 = 0 − x + 2 = 3y (−7, −17) (−2, 11) 158. 9x + 2y + 2 = 0 − 3y = x − 22 (1, −2) (−4, −3) 156. 7x = 3y x+8=y 159. 3x − 2y = 9 y − 7x = 12 (−3, −9) 160. y + 4x = 31 x + 17 = 2y 162. 3x + 7y = −23 − 3x + 2y − 5 = 0 163. 8y + 19 = 5x 3y = 5x − 29 165. − 3x + 13y = 12 7y − 5x − 20 = 0 (5, 11) 164. − 10x − 3y = 25 3y + 7x + 22 = 0 (−1, −5) 166. 2x = 5y − 15 5x − 6y + 5 = 0 (−4, 0) 167. 11x + 4y − 20 = 0 8x = 5y − 25 (5, 5) 169. 6x = 3y + 45 8y + 5x − 6 = 0 2y + 23 x − 4 = 0 (−3, −3) 171. 3x − 2y + 2 = 0 5y + 4x = 51 (3, −2) = −x − 4 168. 2x − 3y − 3 = 0 11y − 8x = −9 (0, 5) 170. 3y + 5x = 9 − 2y = 13 − 3x (6, −3) 172. 5x = 7y − 19 4x + 3y + 41 = 0 (−8, −3) (4, 7) 174. 6x = 3y − 8 3 1 3y + 5x = 3 ( 53 , 6) 175. 3 5x = 21 y + 11 3x + 8y + 13 = 0 176. 2y − 4x = −19 3 1 2y = −4x + 2 (5, 12 ) (15, −4) (−3, 3) 2 1 5x + 2y + 5 = 6 1 2 y + 5 x = −1 (5, −14) (7, 2) (−3, −2) (−3, 9) 177. (6, 14) (−2, 8) 161. 7x + 2y + 3 = 0 7x − 2y = −39 1 3y 155. 4y − 3x = 0 x = 2y + 2 (−16, 10) 157. − 3x + 1 = y 5y + 2x + 8 = 0 173. (−16, 6) 154. − 5x = 8y 2x + y = −22 153. 2y + 11x = 0 7x + y + 3 = 0 (6, −1) (−10, −2) (4, 8) 149. 8x = 4 + y y = 7x − 2 (2, −4) 0 178. 3 4y 1 2x = 4 − 23 x =8− 7 8y (−12, 16) 179. 1 2x = 3 4y − (12, 8) ALG catalog ver. 2.6 – page 342 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. 7 4y − 8 2 3x + 2 = 180. 0 1 1 5y − 3x + 1 = 7 3 2y = 9 + 5x (15, 20) 0 QC Topic: Solving systems by various methods. See also categories QA and QB. Directions: 15—Solve. 16—Solve and check. 26—Solve by any method. 27—Solve by substitution. 30—Solve by elimination. 1. x + 5 = 3y − 2 2x + 7 = y + 3 2. − 11y + 4 = 4x + 5y 4y − (x − 9) = 2x 6. ( 25 , − 12 ) 9. 4(x + y) + 5 = −15 3 − (x − y) = 2 − x 10. 14. y + 1 = 12 (x + 3) y − 8 = 73 (x − 1) y−1= 18. 7 3 (x + 2) x y + =6 2 3 3x − 2y = 12 (8, 6) 22. 4. 26 − 5y = 2(x − 3) 2x − (y + 1) = x + 1 11. − 3x + 6y = −7 − 6x 11x + 4y = −5(6 + y) 8. 15. 5x − 6(y + 2) = 31 6(x + 7) = 4 − 4y 12. 19. y + 4 = 12 (x − 4) y − 4 = −7(x − 5) 16. y − 4 = 43 (x − 4) y + 5 = −(x + 1) (−4, −2) y − 3 = 15 (x + 1) y−2= − 3(y − x) = 14 − 4y 2x + 26 = 4(x + y) (3, 5) (6, −3) y + 4 = −2(x − 9) y + 4 = −2(x − 6) x + 39 = 4(x + 2y) y − 5x = 3y + 3 (−3, 6) (−1, −8) y − 2 = 5(x + 2) y + 2 = 3(x + 4) − 3x + 4 = 4 − 3y − x + 3y = 12 (6, 6) (−3, 13 ) Ø coincide 21. 7. (−1, 7) (3, 2) 17. 2(x + y) = −2 − 4x 7x + 27 = 3x + y (6, 4) y − 6 = 2(x − 5) y − 2x = 3y + 10 x+2=y−3 (−5, 0) (−2, 5) (−4, −1) 13. 3. (3, −4) (−1, 2) 5. 3x − 8 = 2y + 9 x − y + 3 = 10 20. y − 7 = 4(x − 3) y + 3 = 4(x − 1) 24. 5x + 4y = 0 x y + =2 4 10 1 5 (x + 6) Ø coincide −5x + 3y = −14 x y − = −2 5 3 23. x y + =0 3 2 x + 2y = 4 (−12, 8) (16, −20) (10, 12) 25. x y + = −5 3 2 x y + =0 3 7 (6, −14) 26. x y + =2 6 2 x y − − =0 5 3 33. 37. x y + =1 2 3 x y − − =1 2 3 − y−x = −4 3 1 3 4x + 2y = 9 (−2, 0) (12, 0) x 2 = y 3 x+8 3y − 2 = 3 4 30. 34. 38. 45. y+3 =4 x+6 y + 11 = −2 x−1 y−1 =3 x+5 y+1 =3 x−5 Ø (4, 23 ) 1 3y = 31 x + 6 x+y =3 2 (−6, 12) x−4 y+7 = 5 4 y =3 x (−5, 1) 42. 46. y−2 = − 23 x y 1 = x − 10 2 y−3 1 = x − 10 2 y 1 = x−4 2 x y + =1 4 9 x y − − =1 4 3 31. x − 4y = −1 4 1 2 3x + 4y = 9 35. (8, −9) 32. (12, 4) 36. x−y x+y = 4 20 x 3 = y 2 39. (−1, −3) (4, 6) 41. x y + =1 6 2 x y − =1 3 2 28. x y − = −1 2 3 x y + =7 4 3 (8, 15) (10, −4) (−15, 9) 29. x y + = −4 5 2 x y − =6 2 4 − 27. 40. 43. coincide 47. ALG catalog ver. 2.6 – page 343 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. y+1 = −1 x−1 y−6 =1 x+2 y+3 5 =− x 2 y−3 5 =− x−3 2 x = 20 + 54 y 4x + y =7 8 (7, 0) (15, −4) y =2 x x + 2y 2x + y = 4 5 (5, 10) (−6, −4) (6, −2) x y − =1 7 5 x y + =1 7 5 (−4, 4) Ø 44. 48. y+4 7 = x−4 3 y−4 1 =− x 7 y+1 = −4 x+2 y+5 = −4 x+1 (7, 3) coincide QC 49. x+y 1 x−y − = 2 2 3 x+2 y+4 = +4 2 3 50. (8, −1) 53. 57. 61. 1 1 1 + = x y 12 1 1 7 = + x y 12 (3, −4) 1 1 − =2 x y 3 2 + = 21 x y ( 15 , 13 ) 2x − y = 0 √ x + 3y = −7 3 54. 58. 62. √ √ x+y 3=4 2 √ √ x 3+y =2 6 √ √ ( 2, 6) 69. 70. √ √ ( 5, 2 10) 73. y = x2 + 3 x = −2 77. y = x2 y = 16 1 1 5 − = x y 3 1 1 7 + = x y 3 ( 12 , 3) 2 1 − =6 x y 3 4 − =4 x y (− 12 , − 14 ) x = 3y √ x−y =2 5 63. (−2, 43 ) 56. ( 12 , 15 ) 60. √ x − y = −3 2 √ x+y =5 2 64. √ √ ( 2, 4 2) √ √ x 2−y+3 5=0 √ x+y 2=0 67. 71. 74. y = −x2 − 1 x=4 78. y = −x2 y=9 (4, −17) Ø √ √ −x+y 2+2 6=0 √ √ x 2+y = 3 68. y = (x − 4)2 y = −1 √ √ x 5+y 7=0 √ √ √ x 7 + y 5 = −2 2 72. √ √ (− 14, 10) y = (x − 3)2 x=3 (3, 0) 76. y = (x + 5)2 x = −6 79. y = −x2 + 8 y=8 (0, 8) 80. y = x2 − 11 y = −2 Ø 82. y = (x + 1)2 y=4 83. 86. y = x2 y = 6x − 9 y = (x + 3)2 − 5 y = −4 84. (−4, −4) and (−2, −4) (3, 9) 87. y = 2x2 − 4 y = x2 + 5 (−6, 1) y = x2 y = 2x − 3 (2, 3) 88. Ø y = (x − 2)2 + 3 y=3 y = −x2 y = x − 12 (−4, −16) and (3, −9) (2, 1) 90. y = x2 + 2 y = −3x + 2 91. (0, 2) and (−3, 11) 93. √ √ x 6 − y 15 = 9 √ √ √ x 2 + y 5 = −7 3 (3, −2) and (−3, −2) y = −x2 y = 2x y = (x − 3)2 y = −2x + 5 √ √ − x 7 + y = 2 14 √ √ x − y 7 = −8 2 √ √ (− 6, − 15) (0, 0) and (−2, −4) 89. ( 31 , 12 ) √ 3x − y = 6 √ x−y =3 6 75. (1, 4) and (−3, 4) 85. 2 3 + = 12 x y 1 1 − =1 x y (6, 9) √ √ (− 2, 14) (4, 16) and (−4, 16) 81. 1 1 5 + = x y 18 1 1 1 − = x y 18 √ √ (− 6, −4 6) √ √ ( 6, − 3) √ √ √ x 7−y 2=5 3 √ √ x 2−y 7=0 x−y 3 5y − = 2 2 4 2x y − +4=0 3 2 (−3, 4) 1 1 + =7 x y 2 3 + = 19 x y 59. √ √ ( 21, 6) (−2, 7) 1 1 1 + = x y 4 1 1 5 = − x y 4 55. √ √ (− 10, 5) √ √ −x+y 2=3 5 √ √ x 5 + y 10 = 25 52. (1, 5) √ √ (3 5, 5) 66. x+2 y−1 − =0 6 8 y−x y+1 + =4 2 3 51. (2, 3) √ √ (− 3, −2 3) 65. x−1 y−1 x + = 3 3 2 x+y x 3y + = 4 2 4 94. y = −3x2 y = x2 + 4 Ø y = x2 + 3 y = 4x 92. y = (x + 2)2 y = 4x − 5 96. y = −x2 y = x2 − 8 Ø (1, 4) and (3, 12) 95. y = x2 + 3 y = −x2 + 3 (3, 14) and (−3, 14) ALG catalog ver. 2.6 – page 344 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. (0, 3) (−2, −4) and (2, −4) QD Topic: Systems of 3 variables. Directions: 15—Solve. 1. x+3=0 − 3y + z = 1 2x + y + z = 7 26—Solve by any method. 2. y = −5 x+y+z =1 x − y − 5z = 5 6. (5, −5, 1) 9. − 3y = z 3x + z = 3 2x − y + z = 0 2x − y = 0 3y − 2z = 0 x+y−z =0 z=2 x−y+z =2 x + y − 3z = 0 10. 2x = y 3x − y = −1 x + 2y + z = −5 7. 11. (2, 4, 6) 14. x + y + z = −2 2x − y + z = −1 x − 4y + z = 3 18. 2x + y + 3z = 4 − 4x − y + 6z = −2 4x − y − 3z = −1 22. y + 4z = −1 2x − y = 1 x−y+z =4 15. x + 3y + z = 3 2x + 5y − 2z = −4 x + 6y + 2z = 0 2x − 3y + 6z = 1 − 4x + y + 4z = −1 x+y+z =1 ( 21 , 13 , 16 ) 4x − y + z = 6 x + y − z = −1 − x − 2y + z = −2 x + 4y + z = 1 2x − 4y + z = −5 x + 8y − z = 8 26. 5x − y − 2z = 1 − 3x + 2y + 3z = 2 x − 2y − z = −10 19. (2, 3, −3) (3, 3, 3) 12. − 2x + 6y + z = 8 8x − y + 2z = 1 6x + 3y − z = 7 ( 83 , 32 , − 14 ) − 2x + z = −2 y+z =1 4x + y − z = 5 x+z =0 2x + z = −4 x + y − z = −8 16. x − 3y = 4 x + z = 12 x−y−z =1 x+y−z =1 − x + y − 4z = 0 2x + y + z = 1 20. 2x − y + z = 5 x−y+z =1 x + y + 3z = 7 (2, −2, −1) 23. (7, 1, 5) − 2x + 5y − z = −4 4x − 5y + z = 9 2x + 10y + 3z = 12 (4, 3, 0) 24. ( 52 , 25 , 1) 27. (0, 7, −4) 30. y−3=0 x − 2y − z = −1 2x + y + z = 4 (0, 3, −2) (0, 34 , −2) (6, −2, 3) 29. 8. (−4, 0, 4) (1, 3, 5) ( 21 , 2, 13 ) 25. x+1=0 2x + y + z = 5 3x − y + z = 2 y−z =0 y + 4z = 15 x+y+z =9 z = −3 x + 3y = −7 −x−y+z =0 (−1, −2, −3) (−1, −2, 0) (−1, −1, 0) 21. 4. (−1, 1, 6) (−2, −5, 1) 17. y=8 − 2x + y = 0 x − y + 2z = 0 (4, 8, 2) (3, 3, 2) (2, 1, −3) 13. 3. (2, −6, 4) (−3, 3, 10) 5. y+6=0 2x − z = 0 x + y + 3z = 8 30—Solve by elimination. − 3x − 2y + z = −3 2x + 3y + 2z = 7 x+y+z =0 (−3, 16 , 83 ) 28. (−3, 5, −2) 31. x + y + 3z = 10 2x − 2y + z = 11 − 4x − 2y + 3z = 2 ( 25 , − 32 , 3) ALG catalog ver. 2.6 – page 345 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. x + 2y + z = 0 − x − 4y + z = 5 2x − 2y + 2z = −1 5x + y + 2z = 7 − 2x + 2y + 3z = −2 2x + 3y + 2 = −12 (1, −6, 4) 32. x + 2y + 5z = −3 3x + 6y + z = −9 − x − 2y + 2z = 3 (− 23 , − 76 , 0) QE Topic: Word problems involving two variables. See also categories HA–HJ (first degree equations) and PN (word problems involving graphing). Directions: 0—(No explicit directions.) 16—Solve and check. 21—Solve using two variables. 39—Translate and solve. 41—Write a system of equations and solve. 1. One number is 8 more than 3 times another number. Their sum is 68. What are the numbers? 15, 53 2. One number is 10 less than 4 times another number. Their sum is 20. What are the numbers? 6, 14 3. A number is 1 more than half another number. Their sum is 25. What are the numbers? 9, 16 4. A number is 12 less than a third of another number. Their sum is 56. What are the numbers? 5, 51 5. The difference of two numbers is 19. Their sum is 27. Find the numbers. 23, 4 6. The difference of two numbers is 18. Their sum is 42. Find the numbers. 30, 12 7. Find two numbers whose sum is 66 and whose difference is 40. 53, 13 8. Find two numbers whose sum is 71 and whose difference is 21. 46, 25 9. The sum of the digits of a two-digit number is 10. Five times the tens digit plus six times the units digit is 57. Find the number. 37 10. The sum of the digits of a two-digit number is 4. Two times the tens digit plus three times the units digit is 10. Find the number. 22 11. The sum of the digits of a two-digit number is 11. The ones digit is 5 more than twice the tens digit. What is the number? 29 12. The sum of the digits of a two-digit number is 13. The tens digit is 2 less than twice the ones digit. What is the number? 85 13. The sum of the digits of a two-digit number is 14. If the digits are reversed, the number is increased by 18. What is the number? 68 14. The sum of the digits of a two-digit number is 9. If the digits are reversed, the number is increased by 63. What is the number? 18 15. The sum of the digits of a two-digit number is 12. If the digits are reversed, the number is decreased by 54. Find the number. 93 16. The sum of the digits of a two-digit number is 7. If the digits are reversed, the number is decreased by 27. Find the number. 52 17. Separate 90 into two parts such that the second part is 30 less than twice the first part. 40, 50 18. Separate 80 into two parts such that the first part is 5 more than twice the second part. 55, 25 19. Separate 100 into two parts such that the larger part is 5 less than 6 times the smaller part. 85, 15 20. Separate 35 into two parts such that the second part is 3 more than 7 times the first part. 4, 31 21. Separate 64 into two parts so that 1/9 of the larger part added to 1/4 of the smaller part is 11. 36, 28 22. Separate 40 into two parts so that 3/5 of the larger part added to 1/2 of the smaller part is 29. 40, 10 23. Separate 81 into two parts so that 2/3 of the larger part added to 1/6 of the smaller part is 39. 51, 30 24. Separate 50 into two parts so that 1/9 of the larger part added to 1/5 of the smaller part is 6. 45, 5 Perimeter 25. The perimeter of a rectangle is 44 in. If the length is increased by twice the width, the result is 31 in. Find the length and width of the rectangle. 13, 9 in. 26. The perimeter of a rectangle is 56 m. If the width is increased by half the length, the result is 18 m. Find the length and width of the rectangle. 20, 8 m 27. The perimeter of a rectangle is 74 cm. If the width is doubled and the length is halved, the new rectangle will have a perimeter of 76 cm. Find the dimensions of the original rectangle. 13 × 24 cm 28. The perimeter of a rectangle is 76 ft. If the width is doubled and the length is halved, the new rectangle will have a perimeter of 62 ft. Find the dimensions of the original rectangle. 8 × 30 ft ALG catalog ver. 2.6 – page 346 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. QE 29. The width of a rectangle is half the length. If the width is increased by 2 cm and the length is decreased by 3 cm, the new perimeter is 58 cm. What are the dimensions of the original rectangle? 30. The length of a rectangle is twice its width. If the length is increased by 4 ft and the width is decreased by 1 ft, the new perimeter is 42 ft. What are the dimensions of the original rectangle? 12 × 6 ft 20 × 10 cm 31. The perimeter of a rectangle is 156 meters. When the length is decreased by 13 meters and the width is increased by 13 meters, the resulting figure is a square. Find the length and width of the rectangle. 52, 26 m 32. The perimeter of a rectangle is 88 inches. When the length is decreased by 10 inches and the width is increased by 10 inches, the resulting figure is a square. Find the length and width of the rectangle. 32, 12 in. 33. A square and an equilateral triangle have the same perimeter. Each side of the triangle is 5 m less than twice the length of each side of the square. How long is each side of the square? 7.5 m 34. A square and an equilateral triangle have the same perimeter. Each side of the triangle is 7 in. less than twice the length of each side of the square. How long is each side of the square? 10.5 m 35. The sides of a square are half as long as the sides of an equilateral triangle. The sum of their perimeters is 45 ft. How long is each side of the triangle? 9 ft 36. The sides of a square are one-third as long as the sides of an equilateral triangle. The difference between their perimeters is 20 cm. How long is each side of the triangle? 12 cm Time, distance, rate 37. An airplane flies 500 km against the wind in 2 hours. It flies the same distance with the wind in 1 hour. What is the airplane’s speed in still air? 375 km/hr 38. A canoe goes 8 miles down the river in 2 hours and the same distance up the river in 4 hours. What is the speed of the canoe in stillwater? 3 mph 39. A boat travels 4 miles downstream in half an hour, and the same distance upstream in 2 hours. What is the speed of the boat in stillwater? 5 mph 40. With a tail wind, a helicopter flies 30 kilometers in half an hour. When the helicopter flies in the opposite direction, it takes 1 hour to go the same distance. What is the speed of the helicopter in still air? 45 km/hr 41. A motorboat can travel 48 mi down the river in 3 hours. It takes the boat 4 hours to travel the same distance up the river. Find the speed of the boat in stillwater. 14 mph 42. A steamboat traveling against a current took 3 hours to go 36 kilometers. Returning the same distance with the current took 2 hours. Find the rate of the steamboat in still water. 15 km/h 43. An airplane flew 570 kilometers in 3 hours with a tailwind. It took 5 hours for the return trip against the wind. Find the rate of the wind and the rate of the airplane in still air. airplane, 152 km/hr; wind, 38 km/hr 44. A jet flies 1400 miles in 4 hours against the wind. The return trip with the wind takes 5 hours. Find the wind speed and the jet’s speed in still air. 45. A barge went 18 miles down river in 1 12 hours. The return trip up the river took 45 minutes longer. Find the barge’s speed in still water and the speed of the current. barge, 10 mph; current, 2 mph 46. A motor boat went 14 kilometers downstream in 30 minutes. The return trip upstream took 6 minutes longer. Find the rate of the boat in still water and the rate of the current. boat, 24 km/hr; current, 4 km/hr 47. A boat takes half an hour to go 7 12 miles downstream. The return trip upstream takes 34 hour. Find the rate of the boat in still water. 12.5 mph 48. Traveling down river, a fishing boat goes 45 km in 2 hours and 30 minutes. The return trip up the river takes 3 hours and 45 minutes. Find the boat’s speed in still water. 25 km/hr 49. A bicyclist travels 1 kilometer uphill and 2 kilometers downhill in 24 minutes. The same trip in the opposite direction takes 30 minutes. Find the bicyclist’s rates uphill and downhill. 50. A backpacker walks 2 miles uphill and 5 miles downhill in 3 hours. The same trip in the opposite direction takes 4 hours. Find the person’s rates uphill and downhill. up, 1.5 mph; down, 3 mph jet, 315 mph; wind, 35 mph up, 5 km/hr; down, 10 km/hr ALG catalog ver. 2.6 – page 347 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved. QE 51. Andy can ride his bicycle over a route in 4 hours, and Betsy can ride her bike over the same route in 3.5 hours. If they started riding toward each other at the same time, from oppposite ends of the route, how long would it take them to meet? (Give answer in hours and minutes, and assume all speeds are constant.) 1 hr 52 min 52. Frances can walk a certain distance in 1.5 hours, and Enrique can walk the same distance in 1 hour. If they started walking toward each other at the same time, from oppposite ends of the route, how long would it take them to meet? (Give answer in hours and minutes, and assume all speeds are constant.) 53. Two cars, initially 153 miles apart, head toward each other and meet in 1 21 hours. Three hours and 20 minutes later, they are 340 miles apart. How fast is each car traveling? not enough info. 54. Two cars pass each other on the highway, traveling in opposite directions. One hour later, they are 120 km apart. Three and a half hours later, they are 420 km apart. How fast is each car traveling? 36 min not enough info. 55. The sum of two numbers is 20. Five more than twice the sum of the numbers is 45. What are the numbers? not enough info. 56. The sum of two numbers is 32. Ten more than half of the sum of the numbers is 26. What are the numbers? not enough info. ALG catalog ver. 2.6 – page 348 Catalog copyright (c) 1989–1994 by EAS EducAide Software, Inc. All rights reserved.
© Copyright 2025 Paperzz