CEGEP CHAMPLAIN - ST. LAWRENCE 201-NYA-05: Differential Calculus Patrice Camiré Higher Derivatives 1. (a) Find y (5) if y = (b) Find y (3) if y = 6x3 − 5x + 1 x2 (c) Find y (6) if y = 3x2 − 11x − 12 x+1 5 2x − 3 (d) Find y (5) if y = x5 − 2x3 + x + 3 x−1 √ 2. (a) Find y (6) if y = ln(x x + 3) √ 4 (b) Find y (4) if y = ln x3 2x + 1 ex 3. (a) Find y (2) if y = x sin(x). (b) Find y (3) if y = cos2 (x). (c) Find y (4) if y = x2 − 1 . x (d) Find y (3) if y = sin(x2 ). 4. (a) Find y (1) if y = x. (c) Find y (5) if y = ln xesin(2x) √ 3 x−1 ! (d) Find y (3) if y = ln(sin3 (2x) cos2 (3x)) p π x2 + 1 − . 3 π if y = x . (e) Find y (2) if y = (f) Find y (5) 4x3 − x2 + 3x − 1 . x if y = (3x2 − x + 1)5 . (g) Find y (3) if y = (h) Find y (2) (d) Find y (4) if y = x4 . (b) Find y (2) if y = x2 . (e) Find y (5) if y = x5 . (c) Find y (3) if y = x3 . (f) Find y (n) if y = xn , where n ∈ Z+ . 5. Find y (2) using implicit differentiation. (a) x3 + y 3 = 1 (f) x1/3 − y 1/4 = 5 (b) x4 + y 4 = 3 (g) x2 + sin(y) = 3 1 √ (c) 3x + 2 y = 2 (h) x + tan(y) = −1 (d) sin(x) + sin(y) = −1 (e) tan(x/y) = π (i) x2 + y = 1 − sin(y) √ (j) cot(y) + sin(x) = 2 6. Complete the following statements about the graph of the function y = f (x). (a) If dy > 0, then the graph of y = f (x) is ... dx (b) If dy < 0, then the graph of y = f (x) is ... dx (c) If dy = 0, then the graph of y = f (x) is ... dx (d) If d 2y > 0, then the graph of y = f (x) is ... dx2 (e) If d 2y < 0, then the graph of y = f (x) is ... dx2 7. If y = sin(x), find y (n) (0) for any n ≥ 0. 8. If y = cos(x), find y (n) (0) for any n ≥ 0. 9. (Additional Problems) (a) Find y (4) if y = x5 . (h) Find y (3) if y = sin(2x). (b) Find y (2) if y = cos(x3 ). (i) Find y (2) if y = tan(3x). x2 . x+1 p if y = x2 + 1. √ if y = ln(x2 3 3x + 4). (c) Find y (5) if y = (d) Find y (3) (e) Find y (4) (f) Find y (2) if y = 2x6 − 3x4 + x2 − 5. √ (g) Find y (3) if y = x. (j) Find y (3) if y = arctan(−x). 2 (k) Find y (2) if y = ex . (l) Find y (3) if y = log3 (2x − 1). (m) Find y (3) if y = 2−x . (n) Find y (2) if y = x sin(x). Answers 1. (a) y = 6x − 5x−1 + x−2 and y (5) = (b) y = 5(2x − 3)−1 and y (3) = − (c) y = 3x − 14 + 120(5x − 6) x7 240 (2x − 3)4 2 1440 and y (6) = x+1 (x + 1)7 (d) y = x4 + x3 − x2 − x + 3 360 and y (5) = − x−1 (x − 1)6 2 1 + x6 (x + 3)6 3 8 1 4 (4) + −4 (b) y = 3 ln(x) + ln(2x + 1) + x and y = −6 2 x4 (2x + 1)4 1 3 1 (c) y = ln(x) + sin(2x) − ln(x − 1) and y (5) = 8 + 4 cos(2x) − 3 x5 (x − 1)5 1 2. (a) y = ln(x) + ln(x + 3) and y (6) = −60 2 (d) y = 3 ln(sin(2x)) + 2 ln(cos(3x)) and y (3) = 12 4 csc2 (2x) cot(2x) − 9 sec2 (3x) tan(3x) 3. (a) y (2) = 2 cos(x) − x sin(x) (b) y (3) = 8 sin(x) cos(x) (c) y (4) = − 24 x5 (d) y (3) = −12x sin(x2 ) − 8x3 cos(x2 ) 4. (a) 1 (b) 1 · 2 (c) 1 · 2 · 3 (d) 1 · 2 · 3 · 4 (e) 1 · 2 · 3 · 4 · 5 (f) 1 · 2 · · · (n − 1) · (n) = n! We call n! n factorial. (e) y (2) = (x2 + 1)−3/2 (f) y (5) = π(π − 1)(π − 2)(π − 3)(π − 4)xπ−5 (g) y (3) = 6 x4 (h) y (2) = 10(3x2 − x + 1)3 (81x2 − 27x + 5) 5. (a) − (b) − (c) 2x 2x4 − 5 y2 y (f) √ 4 y 8y 3/4 − 3x4/3 9x5/3 3x2 3x6 − 7 y3 y (g) 4x2 tan(y) − 2 cos(y) cos2 (y) 9 2 (h) −2 sin(y) cos3 (y) sin(x) sin(y) cos2 (x) (d) + cos(y) cos3 (y) (e) 0 −2 4x2 sin(y) + 1 + cos(y) (1 + cos(y))3 h i (j) sin2 (y) 2 cos2 (x) cos(y) sin(y) − sin(x) (i) 6. (a) increasing. (b) decreasing. (c) flat. (d) concave up. (e) concave down. 7. y (n) (0) = 8. y (n) 0 , if n = 2k , k ∈ N 1 , if n = 1 + 4k , k ∈ N −1 , if n = 3 + 4k , k ∈ N 0 , if n = 2k + 1 , k ∈ N 1 , if n = 4k , k ∈ N (0) = −1 , if n = 2 + 4k , k ∈ N 9. (a) 120x (b) −3x[2 sin(x3 ) + 3x3 cos(x3 )] (c) (d) −120 (x + 1)6 (x2 (e) − −3x + 1)5/2 12 162 − 4 x (3x + 4)4 (f) 60x4 − 36x2 + 2 (g) 3 8x5/2 (h) −8 cos(2x) (i) 18 tan(3x) sec2 (3x) (j) 2(1 − 3x2 ) (x2 + 1)3 2 (k) 2ex (2x2 + 1) (l) 16 ln(3)(2x − 1)3 (m) − ln3 (2)2−x (n) 2 cos(x) − x sin(x)
© Copyright 2025 Paperzz