万方数据 数 进 学 展 which arises in special Lagrangian geometry:ifⅡis in C3 is This a a 33卷 solution graph of Du of(2),the oVer R3 special Lagran舀an submanifold in C3,i.e.,its mean curvature vanishes everywhere[引. special case has received much attention.The existence theorem of the Dirichlet problem in【4].In【10]and【17],Bernstein theorem for the minimal sunmanifold (z,Du(z))were independently proved.Recently,Bao and chen【1 J obtian the regularity for strong solutions of(2),and show 3 is the optimal sobolev exponent.It was shown in【16】that c2,dmorm of solution to the equation(2),not necessarily convex,can be bounded by its c1,1-norm. to(2)haⅣe ob七ained been a using urbas’s ideas Theorem with in【15】on reglularity of the Hessian equations,we have Let几≥3,u be 1.1 convex a p>堕竺≠坐.Then t上∈C1,1(Q)and Q the above s01utions Remark 1.2 equation(1)in W答(Q) ID2仳f≤C, 7 on礼,南,c,p,Q7,dist(Q7,aQ)and are of the for any compact sub—domains Q7 of Q sup where C depends only strong solution the local Lp・norm of D2u.In particular, smooth. There is an ex砌ple show that Theorem 1.1 is false if to p<n(cf. [2]), which implies that this regularity result is optimal for n=3. If礼>2七or礼=3,Theorem 1.1 improves Theorem 1.1 with with in[2】,w王1ich is the analogous result theorem will be proVed by showing that if p>(n一1)max(礼一庇,2).The u∈I矿2,p(Q) p>竺墨半,then we have乱∈w’2,;(Q)for some芦>(扎一1)max(札一惫,2)(谊fact,for any above F<。。),and therefore the conclusion follows In order to proVe Theorem 1.1,we the m01lmcation u£of u,which allows use us to Another approXimation is using the second from[2】. twD kinds of apprcodmations of the solution u.One is apply Reilly’s forHlula to obtain integr越estimates. di艉rence quptient△是¨to dealing directly w王th the fomth order Weak derivatives of The rest of the paper is diVided into part replace D2”,which avoids t上. in the next section tw.o sections: up u appro)(imations.The last section is devoted to the theⅣ2,p solutions to the 2 local彬2,芦⑦<∞)regularity of and its equation(1)with p>兰%型. Preliminary Est imates we always ass啪e equation(1),and Q’is that a non-negatiVe function in u∈皖?(Q)with p>巫专丑iS 0c。nvex compact suKdomaill of Q in Rn.Let妒be c。o(R竹)vani号hjng outside the uni七ball a str。ng Fbr£>0,the regularization of u is solutio|1。f the mouifier,that is,妒is Bl(o)and satisfying 妒(z)dz=l de王lned by the conV01ution 姒小£一正妒(半)岫№=k咖M…州s, 万方数据 we set notations and estabUsh preliInjnary uniform estimates for Various quantities inVolving a 万方数据 学 数 To get(o?)>o,we have 进 展 from the e11ipticy of the 33卷 equation(5)at t正£ 0<(一(嘲)=(渊 ≤(渊 )扣1再篙网 、点-1 s碧(D2u。)s≈(D2u。)一sk(D2u。)s?(D2u。) // Here we haLve used the first inequality Lemma Let p>n~1 2.2 estimates in Q (佗一凫)s2(D2u。) in(7). and£<dist(Q’,aQ),then AE,A£and兀satisfy 壶≤入。s(跳)一l, △u£ C △u, C where C is Let入1,入2,…,入n Proof is omitted for (9) ≤兀≤n(△u。)“一1, on n,南and (10) c. be the eigenvalues of D2u£,here the s・dependence of the入j’s simplicity.Without 10sing aIly generaUty、Ve may and D2uE is in diagonaLl form at (s?(D2t‘c))are (8) 茎A。≤(△u。)”一 positiVe consta皿t depending oIlly a the following 7 assu】me入l≥入2≥…≥入n>0, the point under co璐ideration. Therefore,(砖(D2t正E))and in diagonal forms as、Veu,and ao飞、 c。耻aiag(瓮一c舞, 瓦叫瓦’…’瓦叫瓦J 。aAn/ a盯n a盯七 a入2 。aA2’ a仃n ’aA竹 Moreover,it follows矗om(7)a11d(6)that 入筹; 糕≥瑞狐 入1…入k一盯&(入)一’ A,≥.一≥A*+,≥占, △u≥丢, (11) and A1…入kA嚣一。≤盯。(入)=盯k(入)丘≤cAl…Ak^, in turn A。≤C(丘)^ Therefore we have by (7)and(11) M。=入-(瓷一c舞)=仃。一cA・舞 ≥c(一A-舞)…羽M..^) 狲。…k。≥丢, 万方数据 (12) 万方数据 万方数据 万方数据 3期 杨传富,黄振友,杨孝平:丽个四阶微分算子积的臼伴性z9 7 设口l,92,p3,钆是22(y)=o的四个实函数解,且满足 40(o=8) o(以E4)1, 矿,)o(如盯,)o(29矿,)o(lp盯( )6-4( 嚣!举一辇耋l髦~装iliK;5;蓄薯瑚a耋i|!攀・l垂一骛diii妻¥;;;至i薹一薹冀i:螽薹兰蠢薹薹薹鬟旃;葡雾羹 !aj霉i薹 这里矿吼(o):f巩(o),p:1’(o),…,9:7’(o)1,i=1,2 3,4 由引理8知日1,82,e3,日4∈L2(工). l若季_;冀!;坚孝}f冀ii伊再|!∥ii菏再;;蓖;!女一l雾、p蓁『Ji鬓ii5i 又z(妒1)=f(妒2)=f(妒3):f(妒4)=o,因而、妒1,妒ij瑗{薹e霾霎12l弱;一娄薹萎;冀li蓦!l“ y ) :/ u;口? q÷雾} /q—zdx巧D xu:一19。dz ≤:;i丘: ・zdIk91一s;口)v(,:丘+∞£c7;u)掣(, o mpletethe we co of f o part rp thelemma.o Theremai ning f o of theproof of thefbuowing result. Propos tllis∞ction consists n≥3,p>二!g;F盐and u∈I再《等(Q)be hve u∈V矿翟(Q)for any F<oo,and for any conlpact n 3.3 Let oitia of(1). there Then e xists a we positiVe constant C,dependiI培only on coIl、rex solution strong subdoma妇Q’of n,南,c,p,芦,Q7,dist(Q’,aQ)and Q the loc越 工p norm of△u in Q。sudl that D2t上IILF (n,)≤D Proof where p∈ L et上hR(∥)c 僻,2R】.Applying Q7.wb begin with the sob。lev (k)(u产 )格ds)署 阬㈣+("≯)黜)ds)勰,c(t,( s 万方数据 soⅡle integral e8timat∞on the sphere ineql】蛳【10'Theorem2.11 0n aBp(可)for t,于乒 aBp(可), 3期 保继光, 李美生: Smoothness for Strong Solutions of a Hessian 3ll Quotient Equatlon that is. (L,u∥ds)攀ck,(胁≯l端+u掣铲)崛 where C is a constant depending only Take It is on n and R q=锱 clear that q>p一礼+l≥1 since p>坐≯.By YouIlg’s inequality and(10),we u:兀≤u掣+兀尚s口∥+n群(△t上。)p—n+1兀 u:兀≤%“一2 +兀“一1 S%“~2 wb combine(21),(26)and(25)to (25) +n’茳f。(△t上。)p一“十1兀 obt越n integral estimates on the b越l have (26) Bp@) (k唧)一s c(k,一叱,旷%州z)一 c(k,(u掣m¨一+1兀)蚪L矿1舭)一 c(k,秽攀ds)谢 +c(k,c蚶一1椰+L咿1叫如)一 s 5 ≤ck,(1。t,≯l渊+u掣掣)ds +c(Z引掣,(△‰)P¨1兀ds+五加,《ql吼l如), where c stands for constants depending ollly on佗,七,c,p a11d R,and we ha僧used(10)aIld(11) conchlde to (△u。)p—n+1兀≥丢. Integrating the above inequadity aver p∈【R,2嗣,we (27) arrive at (k似)帮 ≤cL,(1。秒≯I掣+"掣铲+(△¨一托删1乳f)兆 (28) 万方数据 万方数据 3期 Smoothness for Strong Solutions of 保继光,李美生: and C denote constants depending only on a Hessian Quotient Equation 313 n,后,c,p,R and △“%掣(B。。(Ⅳ)) By the sobolev imbedding theorem,、ve have de矗nition(1 7)of"£and %斗△&u, Letting£—'o uniformly in B4R(耖). in(30)for 6xed^<dist(B4R(可),aQ),using(4),(13),and(20)we obtain (k c如,a他)÷s k,(c啦广州小妒…-m, c (31) where n2一n+2 S= >1 (n—1)( n一2、 Now、Ve choose∈to be the coordina七e directions ef,f= l,2,…,n.By[6,Lemma 7.23】we ha怃 I}△兰。。钍II二,(风R(可))≤}Inf"llp(鼠R+.(Ⅳ)). By the weak compactness of bounded sets in to zero,such that(also cf. Lp(B4R(y)),there of【6,Lemma 7.24]) C he pro of △象。t上一D“u, using the weak 10wer semi-continuity weakly in exists a sequence Lp(B4R(耖)) {b)tending (32) in妒(B4R(可)),we get {B一 ㈨m№≤1骋警厶。础)峨一u№ ’’ (”) J—+o。‘,B4R(可) <~ l .Ⅱ.J n_ .盘∞ f / J鼠R+^,(可) lDffuIp如=/ lDfluIp如. -,B4凡(v) Consequently, 、……’ 土恐忪‰;u怯(风只(Ⅳ))=jIDffu怯(风R(y)). 一…… ’’ ,。—+。o Therefore,applying Radon-瞰esz Theorem【8l,we h制|e △‰lt正叶D“u It follows from Fatou in Lp(B4R(暑,)) Lemma,(30),(33)and(13)that (正R。。,I。“ul。7_。)÷≤・≥马娶r(正。R。v,l△‰,ul。7_z)。 <C —— <C 万方数据 (33) 1骋簪五。小)((△象。u)p—n+1+(△u)P一¨1)丁dz 正州√酬P叶1融 (34) 314 数 学 33卷 、{ /,r l/ \',口R(Ⅳ) a 展 the iteration formula on△u in the integral norm weighted by丁 Thus we arriVe at where C is 进 constant c五。舶,(酬P叶1丁d茁, 1 (△u)a丁dz / depending only on (35) n,南,c,p,R and △u忆鹄≯(B:R(p))。 Noting q>p一礼+1 and(35)holds fbr a11y p>!!i:≥墨立,it can be iterated finitely many times to yield乞he desired estimates.In fact,for aIly preassigI坨d nuIIl_ber F<。。,chooseⅣsuch that where F≥圪Ⅳ(p一佗+1), Let R<虫掣Ⅳfor K=南>1 p—n十l the c。mpact sub.d。main Q7。f Q.By iterating(35)Ⅳtimes,、ve。btain 丘舶,(酬吼z s厶础,m广(p-时1)他 ≤(cL√酬∥b…他)8 ∥(G正。:小,c酬扩2(p-州慨 52 一~叶sⅣ(Lo妒州他)∥ Therefore,we obt豳by(10)and(11) / (△u)p7讹 (△t‘)p如≤c/ JBR(!,) ',B只(掣) ≤c(Lo妒州做)。≤c(小妒如)”, where C depends only 3.3 We、阳uld on on n,岛,c,p,F and dist(Q’,aQ).This compkte the proof of Proposition by applying the flnite co、rering theorem. ln【e to point ou乞that the coIlstant C abdve,hence in Proposition 3.3,depends F therefore Loo estimates for△t‘does not fouow directly by lettiIlg F-+∞. References 【1】Bao Jigu她g孤d chen 【J】.7Ib appear in Jtn科i.opthal regul酣ity of special Lagrangi弛equation8 (2]Bao Jiguang,chen Jin酣i,Guan Bo and Ji Min.LiouVille pr叩erty equation【J】.Amer..,.M口忱.,2003,125:301—316. 万方数据 in dimen8ional three Jnd‘口n口c,nit,.^f口t^.JDt‘r.. and regularity of a Hessian quotient 3期 李美生: 保继光, 【31 caffarelli L Smoothness for Strong Solutions of M,Kocan M.and A,crandall swiech A.On a Hessian Quotient Equation viscosity solutions of 315 nonlinear equations fully measurable with 【4l ca鼢relll L ingredients【J】.GDmm.Pt‘re Ap州.M口忱.,1996,49:365.397. A,Nlrenberg L and spruck J.Th Dirichlet problem for nonlinear equations,III.Functions Bo and 【5】Guan of the eigenvalues of the 8econd.order ellip乞ic Hessian【J】.Ac£n Mot^.,1985,155:261.301. Guan Pengfei.conVex hypersurf;屺es of prescribed curvature【J1.Annol5 o,Mo£hemo“c3, 2002.156:655・674. 【6】Gilbarg D and‘IYudinger N [7】HarVey R and 181 Hewitt of E s.Euiptic der Mathematischen Grundlehren and Lawson H B.calibrated stromber K.Real Differential Equations Partial of second order【M].second edition, Wissenschaften,224,Berlin:Springer—V色rlag,1998. and geometry【J】.Ac£口Mnt^.,1982,148:47-157. Analysis,A Modern Treatment of the Theory Abstract of Functions a Real variable【M1.New York:springer_verlag,1965. 【9l Ivochkiua N M,Lin Mi and孓udinger N s.The Dirichlet probkm equations with general boundary values.Geometric analysis for the prescribed and the calculus curvature quotient of v材iations[q,cambridge: Internat.Press,MA,1996,125.141. [10】Jost and xin Yunlong. J Di肌rentiof [1l】Lin Mi A BernStein theorem for graphs【J】.仇fc. %r. special Lagrangian p口ni口j Equn“Dn,2002,15:299—312. and 7I'rudinger N s.The Dirichlet problem for the equations p】. gener越ized submanifDlds of兄n f硼. pre8cribed Z’Dp.Met^Dd3 inⅣonfineor Anof!,5i5,1994,3:307-323. 【12)Michael J H and slmon L M.sobolev and mean_value inequalities on curva土ure quotient Go竹lm.Pur℃Appf.^彳口t^.,1973,26:36l一379. 【131 R.emy R c.Variational property of functions of the mean curvature fDr hypersurfaces in space£Drms【J】. ,。Di历GeDm.,1973,8:465-477. 【14】7nudinger 【15】urbas N J.An s.On the Dirichlet problem for He8sian interior second derivativebound for equatiolls【J】.Act口Ma抽.,1995,175:151.164. Hessian equation8[J】.仇fc. %r. P口rti口z solutions of D派ren£i引Egt‘口“ons,2001,12:417-431, f16】Yuan Yu.A priori estimates of fully nonlinear special Lagrangian equ8tio璐(J】.A,ln.m“.鼠尸b讯c口俺 Anof.^ron Li竹∈a打℃,2001,18:261—270. 【17]Yuan Yu.A Bernstein problem for special Lagrangian equations【J】.mt,ent.讹地.,2002,150:117.125. 一个Hessian商方程强解的光滑性 保继光-,李美生z (1.北京师范大学数学系,北京, 100875;2.北京航空航天大学应用数学系,北京, 100083) 摘要:我们获得了一个H蝴ian商方程w2,强解当p>掣时的c-,-局部估计,并证明 了这些解是光滑的.有反例表明这个正贝lj性结果在n=3时是最优的. 关键词:G1,1局部估计; Ⅳ2r强解;He∞ian商方程;光滑性 万方数据
© Copyright 2025 Paperzz