Solve the integral 1 I= 2 Z dx = π/4 sec x − 0 ! 1 2 2 (cos x + sin x) dx 1. Solution 1: Note that sec2 x Z (1 + tan x) 2 Z 1 du u2 Z u−2 du = = with u = 1 + tan x, du = sec2 x dx u−1 1 1 +c=− +c=− + c. −1 u 1 + tan x Our integral is I = = = = Z π/4 1 2 ! ! Z 1 1 π/4 sec x − sec2 x − dx = 2 2 0 (cos x + sin x) 0 cos2 x 1 + ! Z π/4 π/4 1 1 sec2 x 1 tan x + sec2 x − dx = 2 2 0 2 1 + tan x 0 (1 + tan x) 1 1 π 1 − tan 0 + tan + 2 4 1 + tan π4 1 + tan 0 1 1 1 1+ − [0 + 1] = . 2 1+1 4 1 2 sin x 2 cos x dx 2. Solution 2: Rewrite the integral as Z I π/4 = 0 Z = 0 π/4 1 2 1 (sec x) − cos x + sin x 1 2 2 (f (θ)) − (g(θ)) dθ 2 2 2 ! Z π/4 dx = 0 1 2 If r = f (θ) = sec x, then r = sec x 1 ⇒ r= cos x ⇒ r cos θ = 1 ⇒ x=1 If r = g(θ) = 1 , then cos x + sin x 1 cos x + sin x ⇒ r (cos x + sin x) = 1 r= ⇒ r cos x + r sin x = 1 ⇒ x+y =1 1 2 (sec θ) − 1 cos θ + sin θ 2 ! dθ Note that θ = π is the line y = x. This gives the picture 4 The triangle on the right is the area we want. This is given by the integral Z 1 Z (x − (1 − x)) dx = 1/2 1 2 1 1 1 1 − (2x − 1) dx = x − x 1/2 = [1 − 1] − = . 4 2 4 1/2 3. Solution 3: The area of the triangle in Solution 3 is 1 1 bh = (1) 2 2 2 1 1 = . 2 4
© Copyright 2025 Paperzz