Forum Math. 24 (2012), 973 – 1011 DOI 10.1515 / FORM.2011.093 Forum Mathematicum © de Gruyter 2012 Fundamental solutions for sum of squares of vector fields operators with C 1;˛ coefficients Maria Manfredini Communicated by Christopher D. Sogge Abstract. We adapt Levi’sP parametrix method to construct local fundamental solutions 2 for operators of the form m i D1 Xi , where X1 ; : : : ; Xm are Hörmander vector fields of step 2 having non-smooth coefficients. We also provide estimates of and of its derivatives. Keywords. Sub-elliptic operators, fundamental solutions. 2010 Mathematics Subject Classification. Primary 35A08, 35H20, 43A80; secondary 35A17, 35J70. 1 Introduction We consider operators on Rn given by LD m X Xi2 ; (1.1) i D1 where 1 m n, and X1 ; : : : ; Xm are locally Euclidean Lipschitz continuous vector fields in Rn of the form Xj D @j C n X aj;k .x/@k .j D 1; : : : ; m/: (1.2) .j D m C 1; : : : ; n/; (1.3) kDmC1 Suppose also that @j D X ji;k .x/ŒXi ; Xk .x/ 1i<km n for every x 2 Rn , where ji;k 2 L1 loc .R / for j D m C 1; : : : ; n, 1 i < k m. Hörmander’s result in [18] was the starting point of an extensive research aiming to investigate the regularity properties of operators which are sum of squares of C 1 vector fields. The existence of a fundamental solution and of a control Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 974 M. Manfredini distance made it possible to develop a general theory of the regularity in Sobolev and Hölder spaces (related to the vector fields). However, for the application to the quasilinear case we need to consider operators with less regular coefficients. We stress that a general theory for operators with non-smooth coefficients is not available. In [17], the authors prove a first regularity result for solutions of a linear equation with continuous vector fields. We also quote [6], where Kolmogorov type operator, with coefficients that may be discontinuous, is studied. The paper [4] considers operators which are linear combination of smooth vector fields and non-smooth functions. In [23], the authors study Hörmander Lipschitz continuous vector fields of step 2, plus some other regularity conditions on the commutators. In the context of non-linear equations, which can be written as sum of squares of non-linear vector fields, we refer to the Levi type equations and the papers [9] and [11], and references therein. In [9], a modification of the freezing method of [26] is developed and is based on the notion of an intrinsic Taylor expansion of the coefficients of the vector fields, which depend on the first-order derivatives of the solutions. In [14], a non-linear Kolmogorov type equation, which arises in some recent problems of mathematical finance, is studied. In [8] and [7], the authors consider the regularity of the Lipschitz intrinsic minimal graphs in the Heisenberg groups Hn , with n > 1 and n D 1 respectively. In [7, 8, 14], a technique similar to the one in [9] is used. The regularity of solution is obtained through a boostrap argument in suitable intrinsic spaces of Hölder continuous functions. Based on these considerations, if we study operators sum of squares of nonsmooth vector fields, then it seems natural to suppose that the coefficients belong to a class of Hölder continuous functions (intrinsically defined), modeled on the fields. In this paper, we contribute a study of operators (1.1) when the coefficients aj;k are intrinsic Cd1;˛ .Rn / continuous, according to Definition 2.3. This means that c ;loc the derivatives of aj;k along the vector fields are Hölder continuous with respect to a distance dc , defined in (2.10). We construct a local fundamental solution for L by adapting the classical Levi parametrix method, see [21]. Levi’s method allows us to construct a fundamental solution for an elliptic operator starting from a fundamental solution of the operator which results from freezing all coefficients at some point. For any 2 Rn we consider the operator L whose coefficients are the first order Taylor expansions of coefficients aj;k of L in the directions X1 ; : : : ; Xm with initial point . Our freezing method has been first introduced in [9]. The frozen vector fields obtained in this way are smooth and generate a Lie algebra which has the same structure at every point. Besides, there exists a canonical change of Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 975 Fundamental solutions variables which transforms the family of frozen vector fields into a nilpotent family of vector fields independent of , whose corresponding sub-Laplacian admits a fundamental solution. We use this fundamental solution to construct a parametrix for the original operator L. For more details about Levi’s parametrix method we refer to [22] and [20], where fundamental solutions are constructed for classical elliptic operators. In [2], the authors consider the P smooth case and construct a fundamental solution for operator of the form m i;j D1 ai;j Xi Xj and for its parabolic version, where X1 ; : : : ; Xm are smooth Hörmander vector fields generating a stratified Lie algebra and .ai;j /i;j m is a positive definite matrix having Hölder continuous entries. See also [5], where more general smooth vector fields have been considered. We also quote [25], where Levi’s method is applied to ultraparabolic operators of Kolmogorov type. Note that, in the smooth case, hypotheses (1.2) and (1.3) ensure Hörmander’s condition of step 2. Let us remark that hypothesis (1.2) is not restrictive. Inn deed, if a family X1 ; : : : ; Xm of Lipschitz continuous vector fields Pm in R is linearly independent at a point x, we can find a new family Yj D kD1 cj;k Xk for j D 1; : : : ; m of the form (1.2), where .cj;k /j;k is a non-singular matrix having Lipschitz P continuous entries in a neighborhood of x. In other words, suppose that Xj D nkD1 bj;k @k for j D 1; : : : ; m and consider the matrix of the vector fields .X1 ; : : : ; Xm /. Without loss of generality, we can suppose thatPthe determinant of the first m lines and m columns is non-singular. Let Xj0 WD m kD1 bj;k @k for 0 ;e j D 1; : : : ; m and consider the family X10 ; : : : ; Xm ; : : : ; e , where e1 ; : : : ; e n mC1 n n is the standard basis in R . There is a change of variables ' such that '.Xj0 / D ej for j D 1; : : : ; m, '.ej / D ej for j D m C 1; : : : ; n, and the matrix associated to ' has Lipschitz continuous entries in a neighborhood of x. Finally '.Xj / D '.Xj0 / C n X bj;k '.ek / D @j C kDmC1 n X bj;k @k .j D 1; : : : ; m/: kDmC1 In our case, X1 ; : : : ; Xm are of step 2, in the sense of (1.3). This ensures that the total number m.m 1/=2 of commutators ŒXi ; Xj for 1 i < j satisfies m.m 1/=2 n m. We set Q D m C 2.n m/: (1.4) Let 0 < ˛ 1 and assume the following intrinsic condition: aj;k 2 Cd1;˛ .Rn / \ Liploc .Rn / c ;loc .j D 1; : : : ; m; k D m C 1; : : : ; n/: (1.5) Our main result is the following theorem. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 976 M. Manfredini Theorem 1.1. Let 2 Rn . There exist a subset T of Rn which contains and a function D .z; /, defined for z 2 T n ¹º, such that Lz .z; / D ı .z/: Here ı is the Dirac measure supported at ¹º. has the properties listed below: 2;ˇ (i) . ; / 2 Cdc ;loc .T n ¹º/ for every 0 < ˇ < ˛ (see Definition 2.3) and Lz .z; / D 0 for z ¤ , in classical sense; (ii) for every compact subset K of T there exists a positive constant c such that j.z; /j c d2 Q .z; /; and jXiz .z; /j c d1 Q .z; / .i D 1; : : : ; m/; (1.6) for every z 2 K n ¹º. (The superscript z means that Xi is acting on that variable). We infer that there exists a local fundamental solution satisfying Lz .z; / D ı .z/ in a neighborhood of the pole . In the setting of Carnot groups, global result can be inferred from the local result by using the homogeneity of . Since we are interested in local regularity results, global fundamental solutions are out of our scope. The paper is organized as follows. In Section 2, we introduce a control distance associated to X1 ; : : : ; Xm and define the Hölder classes associated to this distance and prove some properties of their elements. In Section 3, we define the frozen vector fields and describe properties of relevant distances. Section 4 is devoted to the construction of a fundamental solution for L and to the proof of Theorem 1.1. In the Appendix, we prove some lemmas which are used throughout. 2 Connectivity and Hölder spaces We recall the definition of derivative along an Euclidean Lipschitz continuous vector field. Let i 2 ¹1; : : : ; mº, and let be the integral curve of Xi such that .0/ D x. Let u W Rn ! R. If d .u ı / jhD0 dh exists, it is called the derivative of u in the direction Xi at the point x, and is denoted by Xi u.x/. We will denote by CX1 .Rn / the set of functions u such that X1 u; : : : ; Xm u exist and are continuous functions. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 977 Fundamental solutions In the following, we will adopt the notation: I will be the identity map on Rn ; Pn if X equals j D1 bj @j ; then XI will be the column vector of the components of X and X 2 I will be the column vector of components Xb1 ; : : : ; Xbn . The following theorem holds: Theorem 2.1. Suppose that aj;k 2 CX1 .Rn / for j D 1; : : : ; m, k D m C 1; : : : ; n. For every x; x0 2 Rn there exists a function W Œ0; T ! Rn , connecting x0 and x, which is a piecewise continuous integral curve of X1 ; : : : ; Xm . Proof. We denote by exp.tXi /.y/ the integral curve of Xi which starts from y at t D 0. We set x1 D exp..x x0 /1 X1 /.x0 /; x2 D exp..x :: : x0 /2 X2 /.x1 /; xm D exp..x x0 /m Xm /.xm (2.1) 1 /; where .x x0 /k denotes the k-th component of x x0 . The point xm has the first m components respectively equal to the first m components of x. Let j D m C 1, 1 i < k m, let ji;k be the function in (1.3) and d 2 R. We set ! m X i;k xmC1 D exp d j .xm /Xk .xm /; kD1 xmC2 D exp d m X ! ji;k .xm /Xi .xmC1 /; i D1 xmC3 D exp d m X (2.2) ! ji;k .xm /Xk .xmC2 /; kD1 xmC4 D exp d m X ! ji;k .xm /Xi .xmC3 /: iD1 We claim that xmC4 D xm C d 2 ji;k .xm /ŒXi ; Xk I.xm / C o.d 2 /: X (2.3) 1i<km If we define .t/ WD exp t d m X ! ji;k .xm /Xk .xm /; .0/ D xm ; .1/ D xmC1 ; kD1 Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 978 M. Manfredini then, by the definition of the exponential map, P .t/ D d m X ji;k .xm /.Xk I /..t //; .t/ R Dd kD1 2 m X .ji;k .xm //2 .Xk2 I /..t//: kD1 By the Euclidean Taylor formula, xmC1 D xm C d m X ji;k .xm /.Xk I /.xm / kD1 m 1 X i;k C d2 .j .xm //2 .Xk2 I /.xm / C o.d 2 /; 2 (2.4) kD1 xmC2 D xmC1 C d m X ji;k .xm /.Xi I /.xmC1 / i D1 m 1 X i;k .j .xm //2 .Xi2 I /.xmC1 / C o.d 2 /: C d2 2 (2.5) i D1 By the mean value theorem, we have .Xi I /.xmC1 / D .Xi I /..1// D .Xi I /..0// C .Xi I ı /0 .c/ D .Xi I /.xm / C d m X ji;k Xi Xk I..c// i;kD1 D .Xi I /.xm / C d m X (2.6) ji;k Xi Xk I.xm / C o.d /; i;kD1 for suitable c 2 0; 1Œ. Inserting (2.4) in (2.5) and using (2.6), one has X i;k xmC2 D xm C d j .xm /.Xk I /.xm / k X i;k 1 X i;k .j .xm //2 .Xk2 I /.xm / C d j .xm /.Xi I /.xm / C d2 2 i k X i;k C d2 .j .xm //2 .Xi Xk I /.xm / i;k 1 X i;k C d2 .j .xm //2 .Xi2 I /.xmC1 / C o.d 2 / 2 i Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 979 Fundamental solutions D xm C d X ji;k .xm /.Xk I /.xm / k X i;k 1 X i;k .j .xm //2 .Xk2 I /.xm / C d C d2 j .xm /.Xi I /.xm / 2 i k X i;k 2 2 Cd .j .xm // .Xi Xk I /.xm / i;k 1 X i;k .j .xm //2 .Xi2 I /.xm / C o.d 2 /: C d2 2 (2.7) i Arguing as before and using (2.7), we obtain xmC3 D xmC2 d X ji;k .xm /.Xk I /.xmC2 / i 1 X i;k C d2 .j .xm //2 .Xk2 I /.xmC2 / C o.d 2 / 2 i X i;k j .xm /.Xk I /.xm / D xmC2 d i d 2 X .ji;k .xm //2 .Xk Xi I /.xm / k X i;k d2 .j .xm //2 .Xk2 I /.xm / k 1 X i;k .j .xm //2 .Xk2 I /.xmC2 / C o.d 2 / C d2 2 i 1 X i;k ji;k .xm /.Xi I /.xm / C d 2 .j .xm //2 .Xi2 I /.xm / 2 k k X i;k C d2 .j .xm //2 .Xi Xk I Xk Xi I /.xm / C o.d 2 /: (2.8) D xm C d X i;k Hence xmC4 D xmC3 d X ji;k .xm /.Xi I /.xmC3 / i 1 X i;k C d2 .j .xm //2 .Xi2 I /.xmC3 / C o.d 2 / 2 i Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 980 M. Manfredini (by the mean value theorem and (2.8)) X i;k D xmC3 d j .xm /.Xi I /.xm / i 1 2 X i;k d .j .xm //2 .Xi2 I /.xm / C o.d 2 / 2 i X i;k D xm C d 2 .j .xm //2 ŒXi ; Xk I.xm / C o.d 2 /: (2.9) i;k This proves (2.3). Next, by (1.3), xmC4 D xm C d 2 .@mC1 I /.xm / C o.d 2 /: In particular, the points xmC4 and xm differ in the j -th component. Analogously, we can reach the points of type xmC4 D xm d 2 .@mC1 I /.xm / C o.d 2 / by replacing Xk with Xk and Xi with Xi . The connectivity of R allows us to apply (2.2) a finite number of times, and we can assume that the .m C 1/-th component of the new xmC4 , obtained by this iteration, equals the .m C 1/-th component of x. Finally, applying this procedure for every j D m C 2; : : : ; n, we can reach the final point x and find the required path. The previous result allows us to define a control distance associated to the vector fields (see [24] for the definition in the smooth case). Definition 2.2. For all x; x0 2 Rn we call P .x; x0 / the set of the piecewise continuous integral curves of X1 ; : : : ; Xm connecting x0 and x. We define ® dc .x0 ; x/ D inf T > 0 j 9 W Œ0; T ! Rn ; 2 P .x; x0 /; ¯ (2.10) .0/ D x0 ; .T / D x : We define spaces of Hölder continuous functions related to the distance dc : Definition 2.3. Let 0 < ˛ 1 and let Rn . We say that u W ! R is of class Cd˛c ./ if there exists a positive constant M such that ju.x/ u.x0 /j Mdc˛ .x; x0 /; for every x; x0 2 . Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 981 Fundamental solutions We say that u 2 Cd1;˛ ./ if u 2 CX1 ./ and Xi u 2 Cd˛c ./ for i D 1; : : : ; m c 2;˛ and that u 2 Cdc ./ if Xi Xj u 2 Cd˛c ./ for i; j D 1; : : : ; m. Finally, u 2 Cd˛c ;loc ./ if u 2 Cd˛c .0 / for every compact subset 0 of . Several versions of the Taylor formula for smooth functions on homogeneous Carnot groups have been proved in Chapter 20 of [3] (see also [1]). In our case, a function belonging to Cd1;˛ has the following natural Taylor expansion, which is c deeply related to Theorem 2.1. Theorem 2.4. Let be a open subset of Rn . For any u 2 Cd1;˛ ./ and x0 2 c we have u.x/ D u.x0 / C m X Xi u.x0 /.x x0 /i C O dc .x0 ; x/1C˛ (2.11) i D1 as x ! x0 . Hence, we will call the function Px10 u.x/ WD u.x0 / C m X Xi u.x0 /.x x0 /i (2.12) i D1 the Taylor polynomial of order one of u with initial point x0 . Proof. Let x; x0 be fixed. We choose x1 ; x2 ; : : : ; xm ; xmC1 ; : : : ; xmC4 as in Theorem 2.1 and assume, for simplicity, that x D xmC4 . Furthermore, suppose that .t/ D exp.t.x x0 /1 X1 /.x0 / is the integral curve of .x x0 /1 X1 connecting x0 and x1 given by (2.1). Then u ı is of class C 1;˛ in the Euclidean sense, and by the classical Taylor formula, we have u.x1 / D u.x0 / C X1 u.x0 /.x x0 /1 C O dc .x0 ; x/1C˛ as x ! x0 : (2.13) Analogously, u.x2 / D u.x1 / C X2 u.x1 /.x D u.x0 / C X1 u.x0 /.x x0 /2 C O dc .x0 ; x/1C˛ x0 /1 C X2 u.x0 /.x x0 /2 C O dc1C˛ .x0 ; x/ : Using repeatedly that u 2 Cd1;˛ ./ and the definition of x3 ; : : : ; xm in (2.1), we c get u.xm / D u.x0 / C m X i D1 Xi u.x0 /.x x0 /i C O dc1C˛ .x0 ; x/ as x ! x0 : (2.14) Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 982 M. Manfredini Note that we have dc .x0 ; xm / dc .x0 ; x/ and dc .xm ; xmC4 / D dc .xm ; x/ c.dc .xm ; x0 / C dc .x0 ; x// 2c dc .x0 ; x/. Set d D dc .xm ; xmC4 /. Now, by the definition of xmC4 in (2.2) and by the classical Taylor formula, we obtain X i;k u.x/ D u.xmC4 / D u.xmC3 / d mC1 .xm /Xi u.xmC3 / C O.d 1C˛ / i (by the definitions of xmC3 , xmC2 and xmC1 in (2.2)) X i;k D u.xmC2 / d mC1 .xm /Xk u.xmC2 / k X d i;k mC1 .xm /Xi u.xmC3 / C O.d 1C˛ / i D u.xm / C d X i;k mC1 .xm /Xk u.xm / k Cd X X i;k .x /X u.x / mC2 k mC1 m k i;k mC1 .xm /Xi u.xmC1 / i X i;k .x /X u.x / C O.d 1C˛ /: i mC3 mC1 m i The conclusion results from inserting in the last identity the expression of u.xm / given by (2.14), and using the regularity of u. 3 Frozen vector fields Assume the intrinsic condition (1.5). Because of Theorem 2.4, it seems natural to call n X Xj; WD @j C P1 aj;k .x/ @k .j D 1; : : : ; m/ (3.1) kDmC1 the freezing of X1 ; : : : ; Xm at 2 Rn . Remark 3.1. We have Xj; D Xj C n X .P1 aj;k .x/ aj;k .x//@k .j D 1; : : : ; m/: (3.2) kDmC1 Since the derivatives @k , for k D m C 1; : : : ; n, act as second-order derivative, the operator .P1 aj;k .x/ aj;k .x//@k is a differential operator of degree 1 ˛, according to a definition in [26], while Xi and Xi; have degree 1. This means that the intrinsic derivative equals the frozen derivative, plus a lower order term. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 983 Fundamental solutions Note that, for every 2 Rn the following relations hold: ŒXl; ; Xj; D ŒXl ; Xj ./ D n X .Xl aj;k ./ Xj alk .//@k .l; j D 1; : : : ; m/: kDmC1 Then the Lie algebra generated by X1; ; : : : ; Xm; has the same structure as the Lie algebra generated by X1 ; : : : ; Xm , at least up to the step 2. 3.1 Distances As in [24], we consider two natural distances associated to the given vector fields X1 ; : : : ; Xm and X1; ; : : : ; Xm; . Remark 3.2. If x1 2 Rn , then the map Ex1 W u ! exp m X ui Xi C i D1 n X ! ui @i .x1 / (3.3) i DmC1 is a diffeomorphism of a neighborhood of the origin of Rn into a neighborhood Ux1 of x1 in Rn . Its inverse defines the canonical change of variables associated to the vector fields X1 ; : : : ; Xm , @mC1 ; : : : ; @n and center x1 . By the local invertibility theorem, the open set Ux1 continuously depends on x1 . Hence, in the sequel we will assume that U b Rn is a fixed open set such that Ex11 .x2 / exists for any x1 ; x2 2 U . We are now in a position to give the following definition. Definition 3.3. Let U be as above and let x1 ; x2 2 U . Let us denote the canonical coordinates of x2 around x1 , with respect to X1 ; : : : ; Xm , by u1 ; : : : ; un , i.e. ! m n X X ui Xi C ui @i .x1 /: x2 D exp i D1 i DmC1 We define Q by (1.4) and d.x1 ; x2 / m X i D1 Q jui j C n X jui j Q 2 !1=Q : i DmC1 It has been proved in [23] that d is locally equivalent to the control distance dc defined in (2.10). Analogously, we can define a distance with respect to the frozen vector fields. In this case, it is well known that the exponential map is a global diffeomorphism. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 984 M. Manfredini Definition 3.4. Let 2 Rn . For every x1 ; x2 2 Rn we denote the canonical coordinates of x2 around x1 , with respect to X1; ; : : : ; Xm; , by u1 ; : : : ; un , i.e. ! m n X X x2 D exp ui Xi; C ui @i .x1 /: i D1 i DmC1 We define d .x1 ; x2 / m X n X Q jui j C i D1 jui j Q 2 !1=Q : i DmC1 We generalize a result from [12] and prove that the distances in Definition 3.3 and in Definition 3.4 are locally equivalent. Lemma 3.5. Let U be as in Remark 3.2 and let K be a compact subset of U . There are positive constants c1 and c2 such that c1 d.x; x0 / dx0 .x; x0 / c2 d.x; x0 /; for every x; x0 2 K. Proof. Let vi be the canonical coordinates of x around xP 0 w.r.t. X1;x0 ; : : : ; Xm;x0 . P n If is the integral curve .t P /D m v X ..t// C i D1 i i;x0 iDmC1 vi @i ..t// such that .0/ D x0 , we have 001 001 0 1 0 1 0 0 1 0 Px1 a1;n Px1 am;n B C B C B 00 C B 00 C 1 0 C B C B:C B C B :: :: B C B C B:C B C .t/ P D v1 B 1 : CC Cvm B 1 : CCvmC1 B :: CC Cvn B :: C : B Px0 a1;mC1 C B Px0 am;mC1 C B1C B0C :: :: @ A @ A @ :: A @ :: A : : : : 0 0 0 1 If i , x0i and xi are the components of , x0 and x respectively, then vi D xi x0i .i D 1; : : : ; m/: Let us consider the last components. We have Pi .t/ D m X vk Px10 ak;i ..t // C vi .i D m C 1; : : : ; n/: kD1 Integrating between 0 and 1, the above identity gives Z 1 m X xi x0i D vk Px10 ak;i ..//d C vi .i D m C 1; : : : ; n/: kD1 (3.4) 0 Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 985 Fundamental solutions Analogously, let ui be the canonical coordinates of the point xP around the point x0 P .t/ D m with respect to X ; : : : ; X . If e is the integral curve e .t// C 1 m i D1 ui Xi .e Pn u @ ..t // such that e .0/ D x , then 0 i DmC1 i i vi D ui .i D 1; : : : ; m/: Arguing as before yields x0i D xi m X 1 Z ak;i .e .//d C ui uk 0 kD1 .i D m C 1; : : : ; n/: (3.5) Subtracting (3.4) and (3.5), and using the regularity of ak;i , we get Z 1 m X 1 vi ui D uk ak;i .e .// Px0 ak;i ..// d 0 kD1 m X (3.6) juk j.dx0 .x; x0 / C d.x; x0 // .i D m C 1; : : : ; n/ kD1 by the definitions of Px10 ak;i , dx0 .x; x0 / and d.x; x0 /. From the definition of d.x; x0 / we have 0 !1=2 1 m n X X 2 A d Q .x; x0 / c @ jui j C jui j i D1 2 Q x0 cd i DmC1 .x; x0 / C n X (3.7) !1=2 juk vk j : kDmC1 Then, by (3.6), we have n X 2 Q x0 jui vi j c d .x; x0 /Cc i DmC1 m X !1=2 juk j.dx0 .x; x0 /Cd.x; x0 // ; (3.8) kD1 hence d 2 Q 2 Q x0 .x; x0 / c d .x; x0 / C c !1=2 m 1X 2 2 jui j C "d .x; x0 / " i D1 for every " > 0. Then, for d.x; x0 / and " sufficiently small, we obtain d.x; x0 / C dx0 .x; x0 /: The inequality dx0 .x; x0 / c2 d.x; x0 / follows analogously. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 986 3.2 M. Manfredini The frozen fundamental solution Let 2 Rn . Consider the frozen vector fields X1; ; : : : ; Xm; defined in (3.1). We call m X 2 (3.9) L WD Xj; j D1 the freezing of L at . L is a sub-Laplacian on a homogeneous Carnot group up to a change of variables, in particular it admits a fundamental solution. Indeed, the family X1; ; : : : ; Xm; has the same structure at every point, then it can be transformed, by the canonical change of variables W Rn ! Rn associated to it, into a family Y1 ; : : : ; Ym which does not depend on , see Section 5.3.1 in [3]. More precisely, the exponential map E; E; W u ! exp m X i D1 ui Xi; C n X ! ui @i ./ i DmC1 is a diffeomorphism. Its inverse is called the canonical change of variables associated to Xi; and center . We denote by the canonical change of variables with D . In our case, the exponential map E; can be explicitly written by solving the Cauchy problem 8 m n X X ˆ ˆ < .t P /D uj Xi; ..t // C uj @j ..t//; j D1 ˆ ˆ : j DmC1 .0/ D ; and letting E; .u/ D .1/. That is ! 8 m n n X X X ˆ ˆ 1 < .t/ P D uj ej C P aj;k ..t //ek C uj ej ..t//; j D1 ˆ ˆ : .0/ D ; kDmC1 j DmC1 (3.10) where e1 ; : : : ; en is the standard basis in Rn . Now, Pk .t/ D uk ek for k D 1; : : : ; m, so that k .t/ D uk t C k .k D 1; : : : ; m/: (3.11) Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 987 Fundamental solutions If k D m C 1; : : : ; n, by definition of and (3.11), we have m X Pk .t/ D uj P1 aj;k ..t // C uk j D1 m X D uj aj;k ./ C m X j D1 sD1 m X m X D uj aj;k ./ C ! /s C uk Xs aj;k ./..t/ ! Xs aj;k ./us t C uk : sD1 j D1 Thus integrating over the interval Œ0; 1, the above identity gives k .1/ D k C m X aj;k ./uj C uk C m 1 X Xs aj;k ./uj us : 2 j;sD1 j D1 Then E; .u/ D .1/ m n X X 1 D i C Ai ./u C ui C XAi ./u u ei ; .ui C i /ei C 2 i D1 i DmC1 where m X Ai ./u D ak;i ./uk ; XAi ./u u D m X Xs aj;i ./uj us ; j;sD1 kD1 for i D m C 1; : : : ; n. Finally m X .zi .z/ D i D1 i /ei C n X i DmC1 zi i Ai ./ .z 1 XAi ./.z 2 / / .z / : Notice that since the family X1; ; : : : ; Xm; has the form (3.1), the determinant of the Jacobian matrix of , det J , depends only on . Besides, it is locally bounded by the regularity assumption on coefficients ai;j , i.e., for every compact set K Rn there are positive constants c1 ; c2 such that c1 det J c2 for every 2 K, and the function ! det J is Cd˛c ;loc continuous. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 988 M. Manfredini We indicate by Y1 ; : : : ; Ym the vector fields which are the image of X1; ; : : : ; Xm; with respect to the canonical change of variables, that is, for every sufficiently smooth function u Xi; u D Yi uY .i D 1; : : : ; m/; (3.12) where uY D u ı 1 . We note that the family Y1 ; : : : ; Ym generates a Lie algebra whose Lie group G D .Rn ; ˚; ı / is a homogeneous Carnot group of step two, with group law ˚ and dilation group ı .x/ D .x1 ; : : : ; xm ; 2 xmC1 ; : : : ; 2 xn /, > 0. A homogeneous norm with respect to the dilation ı is given by m X kykY n X Q jyi j C i D1 jyi j Q 2 !1=Q ; i DmC1 and the associated distance is dY .x; y/ D ky 1 ˚ xkY : Then the following equation holds: d .z; / D dY . .z/; .//: Besides, L u D LY uY ; Pm where LY D i D1 Yi2 is a sub-Laplacian on G, according to a definition in [3]. Then there exists a fundamental solution Y for LY (Theorem 5.3.2 in [3]), which is invariant with respect to the left ˚-translation and is homogeneous of degree 2 Q. Hence .z; / D .det J / Y . .z/; .// (3.13) is a fundamental solution for L . The function Y and its derivatives are homogeneous with respect to the dilations, and satisfy the following standard inequalities: 2 Q .x; y/; 1 Q .x; y/; jY .x; y/j c dY jYix .x; y/j c dY Q jYjx Yix .x; y/j c dY .x; y/ .x ¤ y; i; j D 1; : : : ; m/: Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 989 Fundamental solutions Hence j .z; /j cjY . .z/; .//j 2 Q c dY . .z/; .// D c d2 Q .z; / and jXi; .z; /j D jYi Y . .z/; .//j c d1 Q .z; /: Analogous inequalities hold also for the second-order derivatives. We can estimate .z; / .z 0 ; / and the difference of the frozen derivatives similarly. Then the following result holds. e be a compact subset of Rn and let 2 K. e There exists a Theorem 3.6. Let K fundamental solution D .z; / of L such that is smooth away from the diagonal of Rn Rn and Lz .z; / D ı .z/: For every compact subset K of Rn Rn and p 2 ¹0; 1; 2º there exists c > 0 such that jXiz1 ; Xizp ; .z; /j c d2 p Q .z; / .i1 ; ip 2 ¹1; : : : ; mº/; (3.14) for every z; 2 K satisfying z ¤ . If p D 0, no derivative is applied on . For i; j 2 ¹1; : : : ; mº there exist positive constants c and C such that 1 Q 1 Q 0 .z; / C d .z ; / ; (3.15) j .z; / .z 0 ; /j c d .z; z 0 / d Q Q z z jXi; .z; / Xi; .z 0 ; /j c d .z; z 0 / d .z; / C d .z 0 ; / (3.16) and z z jXi; Xi; .z; / z z Xi; Xi; .z 0 ; /j 1 Q c d .z; z 0 / d .z; / C d 1 Q .z 0 ; / ; (3.17) for every z; ; z 0 such that d .z; z 0 / C d .z; /, z; z 0 ¤ . The constants c; C e are independent of 2 K. We close this section by estimating the derivatives of with respect to the initial vector fields X1 ; : : : ; Xm . For convenience, in the following proofs we shall denote by c and C constants that will not be always the same. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 990 M. Manfredini e be compact subsets of Rn and let 2 K. e Let p 2 ¹1; 2º. Proposition 3.7. Let K,K Then there exists a positive constant c such that jXiz1 Xizp .z; /j c d2 p Q .z; / .i1 ; ip 2 ¹1; : : : ; mº/; (3.18) e for every z 2 K, z ¤ . The constant c is independent of 2 K. Proof. Let p D 1 and i 2 ¹1; : : : ; mº. By (3.2), Taylor’s formula (2.11) and (3.14), we obtain z z jXiz .z; /j D j.Xiz Xi; / .z; / C Xi; .z; /j ˇ m ˇ ˇX ˇ 1 z z ˇ Dˇ .ai;k .z/ P ai;k .z//@k .z; / C Xi; .z; /ˇˇ kD1 c d1C˛ .z; /d Q .z; / C d1 Q .z; / c d1 Q .z; /: Let p D 2 and i; j 2 ¹1; : : : ; mº. We write Xiz Xjz .z; / D Xiz .Xjz D .Xiz z z Xj; / .z; / C Xiz .Xj; / .z; / z Xi; /..Xjz z C Xi; .Xjz C .Xiz z Xj; / .z; // (3.19) z Xj; / .z; / z z z z Xi; /Xj; .z; / C Xi; Xj; .z; / and evaluate each term separately. By (3.2) and arguing as before, one has j.Xiz z z Xi; /..Xjz Xj; / .z; //j ˇX X m ˇ m .ai;k .z/ P1 ai;k .z//@zk .aj;l .z/ D ˇˇ kD1 lD1 ˇ m ˇX .ai;k .z/ D ˇˇ P1 ai;k .z// kD1 C m X .ai;k .z/ m X ˇ ˇ P1 aj;l .z//@zl .z; / ˇˇ @k aj;l .z/@zk .z; / lD1 P1 ai;k .z//.aj;l .z/ k;lD1 c.d1C˛ .z; /d Q .z; / C d2C2˛ .z; /d 2 ˇ ˇ P1 aj;l .z//@2kl .z; /ˇˇ Q .z; // (3.20) Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 991 Fundamental solutions since @2kl acts as a derivative of order 4. Similarly, z jXi; .Xjz z Xj; / .z; /j ˇ X m ˇ z .aj;k .z/ D ˇˇXi; ˇ ˇ ˇ ˇ P1 aj;k .z//@zk .z; / kD1 ˇX ˇ m z D ˇˇ Xi; .aj;k .z/ (3.21) P1 aj;k .z//@zk .z; / kD1 C m X ˇ ˇ z z P1 aj;k .z//Xi; @k .z; /ˇˇ: .aj;k .z/ kD1 z We first evaluate the term Xi; .aj;k .z/ we have P1 aj;k .z//. By the definition of P1 aj;k , z Xi; .aj;k .z/ P1 aj;k .z// z aj;k .z/ aj;k ./ D Xi; m X Xl aj;k ./.z /l lD1 D Xi; aj;k .z/ m X Xl aj;k ./Xi; .z /l lD1 D Xi; aj;k .z/ Xi aj;k ./ D Xi; aj;k .z/ Xi; aj;k ./ C Xi; aj;k ./ Xi aj;k ./: Hence, by Remark 3.1, we get z jXi; .aj;k .z/ P1 aj;k .z//j c d˛ .z; /: By (3.21), (3.22), (3.2), (2.11) and (3.14), we obtain z z jXi; .Xjz Xj; / .z; /j c d˛ Q .z; / C d1C˛ 1 Q (3.22) .z; / : (3.23) Analogously, j.Xiz z z Xi; /Xj; .z; /j c d1C˛ Q .z; /: (3.24) Finally, from (3.19), (3.20), (3.23), (3.24) and (3.14), we get the desired estimates. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 992 M. Manfredini Under the same assumptions as in the previous proposition we have: Proposition 3.8. Let i; j 2 ¹1; : : : ; mº. There exist positive constants c and C such that jXiz .z; / Xiz .z 0 ; /j c d .z; z 0 / d Q .z; / C d Q .z 0 ; / (3.25) and jXiz Xjz .z; / Xiz Xjz .z 0 ; /j c d .z; z 0 / d 1 Q .z; / C d 1 Q (3.26) .z 0 ; / ; for every z; z 0 2 K such that d .z; z 0 / C d .z; /, z; z 0 ¤ . The constants c e and C are independent of 2 K. Proof. We write Xiz .z; / Using (3.2), we have Xiz .z 0 ; / in terms of the frozen vector fields. jXiz .z; / Xiz .z 0 ; /j ˇX ˇ m D ˇˇ .ai;k .z/ P1 ai;k .z//@zk .z; / kD1 m X .ai;k .z 0 / P1 ai;k .z 0 //@zk .z 0 ; / kD1 z C Xi; .z; / m X ˇ ˇ z Xi; .z 0 ; /ˇˇ P1 ai;k .z/ jai;k .z/ ai;k .z 0 / C P1 ai;k .z 0 /jj@zk .z; /j kD1 C C m X jai;k .z 0 / kD1 z jXi; .z; / P1 ai;k .z 0 /jj@zk .z; / @zk .z 0 ; /j z Xi; .z 0 ; /j: (3.27) Theorem 2.4 gives P1 ai;k .z/ jai;k .z/ ai;k .z 0 / C P1 ai;k .z 0 /j D jai;k .z/ ˙ Pz10 ai;k .z/ jai;k .z/ Pz10 ai;k .z/j C ai;k .z 0 / m X P1 ai;k .z/ C P1 ai;k .z 0 /j jXs ai;k .z 0 / Xs ai;k .//.z z 0 /i j sD1 c.d1C˛ .z; z 0 / C d˛ .z 0 ; /d .z; z 0 //: (3.28) Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 993 Fundamental solutions Then m X jai;k .z/ P1 ai;k .z/ ai;k .z 0 / C P1 ai;k .z 0 /jj@zk .z; /j kD1 c.d1C˛ .z; z 0 / C d˛ .z 0 ; /d .z; z 0 //d Q .z; / (3.29) c d .z; z 0 /.d Q .z; / C d Q .z 0 ; //; provided d .z; z 0 / C d .z; /. Since @k acts as a second-order derivative, the mean value theorem (see for example [3]) yields j@zk .z; / @zk .z 0 ; /j c d .z; z 0 / d 1 Q .z; / C d 1 Q .z 0 ; / ; for suitable constants c; C and for every z; ; z 0 such that d .z; z 0 / C d .z; /, z; z 0 ¤ . Hence, by Theorem 2.4, we have m X jai;k .z 0 / P1 ai;k .z 0 /jj@zk .z; / @zk .z 0 ; /j kD1 c d1C˛ .z; z 0 /d .z; z 0 / d 1 Q .z; / C d 1 Q .z 0 ; / (3.30) c d .z; z 0 / d Q .z; / C d Q .z 0 ; / ; provided d .z; z 0 / C d .z; /. Finally, by (3.27), (3.29), (3.30), and (3.16), we obtain (3.25). The proof of (3.26) is essentially analogous and is omitted. Remark 3.9. Thanks to Proposition 3.7, the inequalities in Proposition 3.8 hold also for any z; z 0 such that d .z; z 0 / C d .z; /. We will use this fact systematically. 4 Parametrix method In this section, we describe the Levi parametrix method to construct a fundamental solution for the operator L. We recall that denotes a fundamental solution for the frozen operator L . According to Levi’s method, we look for a fundamental solution in the form .z; / D .z; / C J.z; /: Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 994 M. Manfredini The function J.z; / is unknown and supposed to have the form Z J.z; / D .z; /'.; /d ; where ' has to be determined via successive approximations. Let be fixed in Rn , U be as in Remark 3.2 and contain . Let T be a bounded subset of U which contains and will be chosen later. We set Z1 .z; / D L.z ! .z; // .z 2 T; z ¤ /; (4.1) and, for every j 2 N, put Z Zj C1 .z; / D Z1 .z; /Zj .; /d T .z 2 T; z ¤ /: (4.2) Remark 4.1. We have Z1 .z; / D .L L /.z ! .z; // D m X n X P1 ai;k .z//2 @2kk .z; / .ai;k .z/ i D1 kDmC1 C2 n X .ai;k .z/ kDmC1 n X C (4.3) z P1 ai;k .z//@zk Xi; .z; / ! Xi; ai;k .//@zk .z; / .Xi; ai;k .z/ ; kDmC1 for every z 2 T n ¹º. Then, by (2.11) and the equivalence of distances, we get jZ1 .z; /j c d2C2˛ .z; /d 2 Q C c d˛ .z; /d c d QC˛ .z; / C c d1C˛ .z; /d Q .z; / 1 Q .z; / (4.4) .z; /; for every z 2 T n ¹º, where c depends on the intrinsic Hölder norm of coefficients ai;k . Proposition 4.2. There exists a subset T of Rn which contains and such that equation (4.2) makes sense. There are j0 2 N, positive constants cT ; c1 , with c1 < 1, such that, for any z 2 T , z ¤ , one has jZj .z; /j cT d .z; / and QCj˛ j j0 1 jZj .z; /j cT c1 .j j0 / .j > j0 /: (4.5) (4.6) Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 995 Fundamental solutions Proof. Suppose 2˛ < Q. Let be fixed in Rn and let T Rn contain . The definition of Z2 , estimate (4.4) and the equivalence of distances give ˇZ ˇ ˇ ˇ ˇ jZ2 .z; /j D ˇ Z1 .z; /Z1 .; /dˇˇ T Z ˛ Q c d˛ Q .z; /d .; /d T Z cT d ˛ Q .z; /d ˛ Q .; /d T 2˛ Q cT d .z; /; by Lemma A.2 in the Appendix. We indicate by cT a positive constant which depends on T . Iterating these estimates we reach some j0 such that .j0 C 1/˛ > Q, and jZj0 .z; /j cT d QCj0 ˛ .z; / and jZj0 C1 .z; /j cT : Then, by the last inequality and (4.4), Z Z ˇ ˇ ˇZj C1 .z; /Z1 .; /dˇ cT jZ1 .; /jd cT c1 ; jZj0 C2 .z; /j 0 T T where c1 is smaller than 1, if the Lebesgue measure of T is sufficiently small. We have Z Z ˇ ˇ ˇ ˇ Zj0 C2 .z; /Z1 .; /d cT jZ1 .; /jd cT c12 ; jZj0 C3 .z; /j T T therefore an induction argument proves (4.6). We define '.z; / D 1 X Zj .z; /; (4.7) j D1 for every z 2 T , z ¤ . As a consequence of Proposition 4.2, we have Proposition 4.3. The series in (4.7) uniformly converges, and for every compact subset K of T there exists c > 0 such that j'.z; /j c d QC˛ .z; /; (4.8) for every z 2 T , z ¤ . Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 996 M. Manfredini Remark 4.4. In consequence of Proposition 4.3 we get Z 1 Z X Z1 .z; /'.; /d D Z1 .z; /Zj .; /d T j D1 T D 1 X Zj C1 .z; / j D1 D '.z; / Hence Z1 .z; /: Z '.z; / D Z1 .z; / C Z1 .z; /'.; /d ; (4.9) T for every z 2 T , z ¤ . Let us now estimate Z1 .z; / Z1 .z 0 ; /, and consequently deduce an estimate of '.z; / '.z 0 ; /. In what follows, will be fixed in Rn and T will be the set as in Proposition 4.2. Lemma 4.5. For every ˇ, 0 < ˇ < ˛, there exist positive constants c and C such that ˇ ˛ ˇ Q ˛ ˇ Q 0 .z; / C d .z ; / ; jZ1 .z; / Z1 .z 0 ; /j c d .z; z 0 / d for every z; ; z 0 such that d .z; z 0 / C d .z; /, z; z 0 2 T; z; z 0 ¤ . Proof. Using expression (4.3) of Z1 , we write Z1 .z; / Z1 .z 0 ; / D .f1 .z; / f1 .z 0 ; // C .f2 .z; / C .f3 .z; / 0 f2 .z 0 ; // f3 .z 0 ; // 0 (4.10) 0 I1 .z; ; z / C I2 .z; ; z / C I3 .z; ; z /; where f1 .z; / D m n X X .ai;k .z/ P1 ai;k .z//2 @2kk .z; /; (4.11) i D1 kDmC1 f2 .z; / D 2 m n X X .ai;k .z/ z P1 ai;k .z//@zk Xi; .z; /; (4.12) i D1 kDmC1 f3 .z; / D m n X X .Xi; ai;k .z/ Xi; ai;k .//@zk .z; /: (4.13) i D1 kDmC1 Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 997 Fundamental solutions We estimate each term in (4.10) separately. Let us start with I1 and write I1 .z; ; z 0 / D X .ai;k .z/ P1 ai;k .z//2 .ai;k .z 0 / i;k C X P1 ai;k .z 0 //2 .ai;k .z 0 / i;k P1 ai;k .z 0 //2 @2kk .z; / .@2kk .z; / (4.14) @2kk .z 0 ; //; where j.ai;k .z/ P1 ai;k .z//2 D jai;k .z/ .ai;k .z 0 / ai;k .z 0 / P1 ai;k .z 0 //2 j P1 ai;k .z/ C P1 ai;k .z 0 /j jai;k .z/ C ai;k .z 0 / P1 ai;k .z 0 / (4.15) P1 ai;k .z/j: Using (2.11), we have jai;k .z/ C ai;k .z 0 / P1 ai;k .z 0 / P1 ai;k .z/j c d1C˛ .z; / C d1C˛ .z 0 ; /: (4.16) If C is sufficiently small, (4.15), (4.16) and (3.28) tell us that the first term in (4.14) obeys P1 ai;k .z//2 .ai;k .z 0 / P1 ai;k .z 0 //2 j j@2kk .z; /j c d1C˛ .z; z 0 / C d˛ .z 0 ; /d .z; z 0 / 2 Q d1C˛ .z; / C d1C˛ .z 0 ; / d .z; / ˛ 1 Q ˛ 1 Q 0 c d .z; z 0 / d .z; / C d .z ; / ; j.ai;k .z/ (4.17) provided d .z; z 0 / C d .z; /. Moreover, by the mean value theorem and (2.11), there are c and C such that P1 ai;k .z//2 .@2kk .z; / @2kk .z 0 ; //j 3 Q 3 Q 0 c d2C2˛ .z; /d .z; z 0 / d .z; / C d .z ; / ˛ 1 Q ˛ 1 Q 0 c d .z; z 0 / d .z; / C d .z ; / ; j.ai;k .z/ (4.18) Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 998 M. Manfredini provided d .z; z 0 / C d .z; /. Then it follows that jI1 .z; ; z 0 /j D jf1 .z; / f1 .z 0 ; /j ˛ 1 Q ˛ 1 Q 0 c d .z; z 0 / d .z; / C d .z ; / ˇ ˛ ˇ Q ˛ ˇ Q 0 c d .z; z 0 / d .z; / C d .z ; / ; (4.19) for every ˇ, provided C is sufficiently small and d .z; z 0 / C d .z; /. Let us estimate I2 : X I2 .z; ; z 0 / D 2 ai;k .z/ P1 ai;k .z/ z i;k ai;k .z 0 / C P1 ai;k .z 0 / @zk Xi; .z; / X .ai;k .z 0 / P1 ai;k .z 0 // C2 i;k z .@zk Xi; .z; / z @zk Xi; .z 0 ; //: Hence, by (3.28) and the mean value theorem again, 1 Q jI2 .z; ; z 0 /j c d1C˛ .z; z 0 / C d˛ .z 0 ; /d .z; z 0 / d .z; / 2 Q 2 .z; / C d C c d1C˛ .z; z 0 /d .z; z 0 / d ˇ ˛ ˇ Q ˛ ˇ Q 0 c d .z; z 0 / d .z; / C d .z ; / ; Q .z 0 ; / (4.20) provided C is sufficiently small and d .z; z 0 / C d .z; /. We have X I3 .z; ; z 0 / D Xi; ai;k .z/ Xi; ai;k .z 0 / @zk .z; / i;k C X Xi; ai;k .z 0 / Xi; ai;k ./ @zk .z; / @zk .z 0 ; / : i;k Then jI3 .z; ; z 0 /j c d˛ .z; z 0 /d Q .z; / 1 Q 1 C c d˛ .z; /d .z; z 0 / d .z; / C d ˇ ˛ ˇ Q ˛ ˇ Q 0 c d .z; z 0 / d .z; / C d .z ; / Q .z 0 ; / (4.21) if ˇ < ˛, C is sufficiently small and d .z; z 0 / C d .z; /. By (4.10), (4.19), (4.20) and (4.21), we conclude the proof. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 999 Fundamental solutions Proposition 4.6. For every ˇ, 0 < ˇ < ˛, there exist c; C > 0 such that ˇ ˛ ˇ Q ˛ ˇ Q 0 j'.z; / '.z 0 ; /j c d .z; z 0 / d .z; / C d .z ; / ; (4.22) for every z; ; z 0 such that d .z; z 0 / C d .z; /, z; z 0 2 T , z; z 0 ¤ . Proof. The assertion can be demonstrated by arguing as in the proof of Proposition 4.2, using Lemma 4.5, the definition of ' and Lemma A.2 in the Appendix. Let be fixed. We set Z J.z; / D .z; /'.; /d (4.23) T and define .z; / D J.z; / C .z; /; (4.24) for every z 2 T , z ¤ . Proposition 4.7. Let K be a compact subset of T . There exist c; C > 0 such that 2C˛ Q jJ.z; /j c d .z; / (4.25) and jJ.z; / ˛C1 J.z 0 ; /j c d .z; z 0 / d Q ˛C1 Q .z; / C d .z 0 ; / ; (4.26) for every z; ; z 0 such that d .z; z 0 / C d .z; /, z; z 0 2 K, z; z 0 ¤ . Proof. By (4.8) and Theorem 3.6, we have ˇZ ˇ Z ˇ ˇ 2 ˇ ˇ d jJ.z; /j D ˇ .z; /'.; /d ˇ c T T Q ˛ Q .z; /d .; /d (by the locally equivalence of distances and Lemma A.2 in the Appendix) 2C˛ Q c d .z; /: By (3.15) and Lemma A.2 in the Appendix, Z 0 jJ.z; / J.z ; /j j .z; / .z 0 ; /j j'.; /jd T Z 1 Q 1 Q 0 ˛ c d .z; z 0 / d .z; / C d .z ; / d T ˛C1 Q ˛C1 Q 0 d .z; z 0 / d .z; / C d .z ; / : Q .; /d Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 1000 M. Manfredini As a consequence of Propositions 4.7 and 3.7 we have Proposition 4.8. Let K be a compact subset of T . There exists a positive constant c such that QC2 j.z; /j c d .z; /; (4.27) for every z 2 K, z ¤ . In the following, we estimate the first and the second-order derivatives of J. ; / and Lz J.z; /. Lemma 4.9. The function J. ; / is differentiable along X1 ; : : : ; Xm away from and Z z (4.28) Xjz .z; /'.; /d .j D 1; : : : ; m/; Xj J.z; / D T for every z 2 T , z ¤ . For every compact subset K of T there exists c > 0 such that 1C˛ Q .z; / .j D 1; : : : ; m/; (4.29) jXjz J.z; /j c d for every z 2 K, z ¤ . Proof. We write Xjz .z; /'.; / D Xjz .z; / D n X z z Xj; .z; / '.; / C Xj; .z; /'.; / P1 aj;k .z/ @zk .z; /'.; / aj;k .z/ kDmC1 z C Xj; .z; /'.; /: By (2.11), (4.8), Theorem 3.6, and the equivalence of distances, we have jXjz .z; /'.; /j c d1C˛ .z; /d 1 Q C c d ˛ Q c d Q ˛ Q .z; /d ˛ Q .z; /d 1 Q .z; /d .; / .; / .; /: By Lemma A.2 in the Appendix, for every compact subset K of T , we have Z 1C˛ Q jXjz .z; /'.; /jd c d .z; / .z 2 K; z ¤ /: T This proves that R Xjz .z; /'.; /d is well defined for z ¤ . Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 1001 Fundamental solutions Next we prove (4.28). Let us fix a function 2 C 1 .R/ satisfying 0 1, .t/ D 0 for t 1 and .t/ D 1 for t 2. Now, for every " > 0, we define Z J" .z; / D .z; /'.; / " .z; /d ; T d .z;/ " is such that jXiz " .z; /j c" for i D 1; : : : ; m, for k D m C 1; : : : ; n. Observe that Z Xjz J" .z; / D Xjz . .z; / " .z; //'.; /d where " .z; / WD and j@zk " .z; /j c "2 T and Z Xjz .z; /'.; /d Xjz J" .z; / T Z D Xjz . .z; /. " .z; / 1//'.; /d T Z z D .Xjz Xj; /. .z; /. " .z; / 1//'.; /d T Z z . .z; /. " .z; / 1//'.; /d : Xj; C (4.30) T We estimate the first integral on the right-hand side of (4.30): ˇ ˇZ ˇ ˇ ˇ .X z X z /. .z; /. " .z; / 1//'.; /d ˇ j j; ˇ ˇ T ˇZ n X ˇ D ˇˇ .aj;k .z/ P1 aj;k .z//@zk . .z; /. " .z; / T kDmC1 Z ¹Wd .z;/2"º ˇ X ˇ n ˇ .aj;k .z/ ˇ kDmC1 Z C ¹W"d .z;/2"º Z c ¹Wd .z;/2"º kDmC1 Z Cc 2˛ Q c " d P1 aj;k .z//@zk .z; / ˇ ˇ . " .z; / 1/'.; /ˇˇd ˇ X ˇ n ˇ .aj;k .z/ ˇ d1C˛ .z; /d Q P1 aj;k .z// .z; / @zk . " .z; / ˛ Q .z; /d 2 Q ¹W"d .z;/2"º ˇ ˇ 1//'.; /d ˇˇ d1C˛ .z; /d ˇ ˇ 1/'.; /ˇˇd .; /d .z; / 1 ˛ d "2 Q .; /d .z; /; Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 1002 M. Manfredini by Lemma A.2 in the Appendix. This proves that the first integral on the right-hand side of (4.30) converges uniformly to zero on every compact subset of T n ¹º. Similarly, the second integral on the right-hand side of (4.30) converges uniformly to zero. Lemma 4.9 is proved. Lemma 4.10. The function J. ; / satisfies Z z Lz .z; /'.; /d L J.z; / D '.z; /; (4.31) T for every z 2 T , z ¤ . Proof. We first note that the integral on the right-hand side is convergent. Indeed, Lz .z; / D Z1 .z; / and Z1 .z; / satisfies (4.4). Let j 2 ¹1; : : : ; mº. We compute the derivative Xjz of Xjz J.z; / in the distributional sense. We denote by Xj the adjoint operator of Xj . If h 2 C01 .Rn /, we have ZZ Xjz .z; /'.; /d Xj h.z/ dz T Z Z D T Xjz .z; /Xj h.z/dz '.; /d Z Z D lim "!0 T ¹zW .z;/"2 Qº Xjz .z; /Xj h.z/dz '.; /d Z Z D lim "!0 T ¹zW .z;/"2 Qº .Xjz /2 .z; /h.z/dz '.; /d Xjz .z; /Xjz .z; / Z Z C lim "!0 T ¹zW .z;/D"2 Qº jr z .z; /j h.z/ dz '.; /d ; (4.32) where r denotes the Euclidean gradient and d the surface measure. Our first goal is to prove that Xjz .z; /Xjz .z; / Z Z T ¹zW .z;/D"2 jr z .z; /j Qº z z Xj; .z; /Xj; .z; / Z Z D T ¹zW .z;/D"2 h.z/ dz '.; /d Qº jr z .z; /j dz h./'.; /d C O."˛ / (4.33) Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 1003 Fundamental solutions as " ! 0. Now, Xjz .z; /Xjz .z; / jr z .z; /j D h.z/ z z Xj; .z; /Xj; .z; / jr z .z; /j h./ z z .z; / .z; /Xj; Xj; Xjz .z; /Xjz .z; / jr z .z; /j C z z Xj; .z; /Xj; .z; / jr z .z; /j .h.z/ h.z/ h.//; where ˇ z ˇ ˇ X .z; /X z .z; / X z .z; /X z .z; / ˇ j j ˇ ˇ j; j; ˇ ˇ ˇ ˇ jr z .z; /j ˇ ˇ Pn ˇ. P1 aj;k .z//@zk .z; //2 ˇˇ kDmC1 .aj;k .z/ ˇ Dˇ ˇ ˇ ˇ jr z .z; /j c d .z; /2C2˛ 2Q : jr z .z; /j It follows that Z ˇ z ˇ ˇ X .z; /X z .z; / X z .z; /X z .z; / ˇ j ˇ j ˇ j; j; ˇ ˇ h.z/dz z .z; /j ˇ ˇ 2 Q jr ¹zW .z;/D" º Z 1 1 c "1C2˛ Q Q 1 dz ; (4.34) z .z; /j 2 Q jr " ¹ .z;/D" º and, by means of Lemma A.3 in the Appendix, we conclude that the integral on the right-hand side of (4.34) equals O."2˛ / as " ! 0. Analogously, we obtain ˇ z ˇ 2 2QC˛ ˇ X .z; /X z .z; / ˇ d .z; / ˇ ˇ j; j; .h.z/ h.//ˇ c : ˇ z z ˇ ˇ jr .z; /j jr .z; /j By Lemma A.3 in the Appendix, we have ˇ z Z Z ˇ X .z; /X z .z; / ˇ j; j; .h.z/ ˇ jr z .z; /j T ¹zW .z;/D"2 Q º ˇ ˇ ˇ ˇ h.//ˇ dz D O."˛ /: ˇ (4.35) Then inequality (4.33) follows from (4.34) and (4.35). Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 1004 M. Manfredini By identity (4.32) and inequality (4.33), one has Z Z Xjz .z; /'.; /d Xj h.z/ dz T Z Z D lim .Xjz /2 .z; /h.z/ dz'.; /d "!0 T ¹zW .z;/"2 Qº z z .z; /Xj; .z; / Xj; Z Z C lim "!0 T ¹zW .z;/D"2 ZZ D T jr z .z; /j Qº dz h./'.; /d .Xjz /2 .z; /'.; /d h.z/ dz z z Xj; .z; /Xj; .z; / Z Z C lim "!0 T ¹zW .z;/D"2 Qº jr z .z; /j dz h./'.; /d : (4.36) Since is a fundamental solution of L , we have (see [10]) lim "!0 z z Xj; .z; /Xj; .z; / m Z X 2 j D1 ¹zW .z;/D" Qº jr z .z; /j dz D 1: (4.37) Then (4.36) and (4.37) complete the proof of the lemma. 4.1 Properties of Let T be the set as in Proposition 4.2. Proposition 4.11. We have Lz .z; / D ı .z/ on T; where ı is the Dirac measure supported at ¹º. Proof. By Lemma 4.10 and identity (4.9), we have Z ZZ Z z J.z; /L h.z/ dz D L .z; /'.; /d h.z/ dz '.z; /h.z/ dz T ZZ Z D Z1 .z; /'.; /d h.z/ dz '.z; /h.z/ dz T Z D Z1 .z; / h.z/ dz; (4.38) Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 1005 Fundamental solutions for every h 2 C01 .T /. Moreover, Z Z .z; /L h.z/ dz D Lz .z; /h.z/ dz h./ p:v: (4.39) Z D Z1 .z; /h.z/ dz h./: Hence, by (4.38) and (4.39), the conclusion follows. Proposition 4.12. The function J. ; / is twice differentiable along X1 ; : : : ; Xm away from , and for every i; j D 1; : : : ; m Xiz Xjz J.z; / D Z p:v: Xjz Xiz .z; /'.; /d 1 C cij .det J (4.40) 2 / '.z; / .z 2 T; z ¤ /; for a suitable constant cij which does not depend on . (The integral on the righthand side is a principal value integral.) Proof. We argue as in Lemma 4.10. For every i; j D 1; : : : ; m we compute the derivative Xiz of Xjz J.z; / in (4.28) in the distributional sense: if h 2 C01 .Rn /, we have ZZ Xjz .z; /'.; /d Xi h.z/ dz T ZZ D T Xiz Xjz .z; /'.; /d h.z/ dz z z Xi; .z; /Xj; .z; / Z Z C lim "!0 T ¹zW .z;/D"2 Qº jr z .z; /j dz h./'.; /d : In order to evaluate the term z z Xi; .z; /Xj; .z; / Z ¹zW .z;/D"2 Qº jr z .z; /j dz ; we argue as in Lemma A.2 in the Appendix. We recall that is defined as in (3.13). By Federer’s coarea formula (see Theorem 3.2.12 in [15]) and using Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 1006 M. Manfredini the canonical change of variables, we have " Z 1 tQ 0 z z .z; / .z; /Xj; Xi; Z 1 ¹zW .z;/Dt 2 jr z .z; /j Qº Z D .Q 2/ ¹zW .z;/>"2 Q º z z Xi; .z; /Xj; .z; / dz Z D .Q 2/ ¹zW.det J 2 .z/;0/>" /Y . Z D .Q 2/ ¹W.det J dz dt /Y .;0/>" 2 Qº Qº Yiz Y . z .z/; 0/Yj Y . .z/; 0/ dz Yiz Y .; 0/Yjz Y .; 0/ 1 det J d: (4.41) Using the homogeneity of Y and of its derivatives Yi Y , i D 1; : : : ; m, and 1 letting e D ıY .." det J / Q 2 /, we have Z Yi Y .; 0/Yj Y .; 0/ d ¹W.det J 2 Qº /Y .;0/>" 1 D det J " 2 Q (4.42) Z Yi Y .e ; 0/Yj Y .e ; 0/ de : ¹e WY .e ;0/>1º Differentiating (4.41) with respect to " and using (4.42), we get 1 "Q z z Xi; .z; /Xj; .z; / Z 1 ¹zW .z;/D"2 D .Q 2/.2 Qº Q/"1 dz jr z .z; /j Z 1 Q Yi Y .e ; 0/Yj Y .e ; 0/ de ; .det J /2 ¹e WY .e ;0/>1º which ends the proof if we put Z cij D .Q 2/.2 Q/ Yi Y .e ; 0/Yj Y .e ; 0/ de : ¹e WY .e ;0/>1º Proposition 4.13. For every 0 < ˇ < ˛ the function J. ; / belongs to the space 2;ˇ Cdc ;loc .T n ¹º/. Proof. By representation formula (4.28) of the first-order derivatives of J and by results on fractional integrals (see [4]), we obtain J. ; / 2 Cd˛c ;loc .T n ¹º/. By representation formula (4.40) of the second-order derivatives and the Schauder estimates proved in [4], we get the desired result. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM Fundamental solutions 1007 Proposition 4.14. We have Lz .z; / D 0; for every z 2 T , z ¤ . Proof. By (4.24) and Lemma 4.10, we have Lz .z; / D Lz .J.z; / C .z; // Z D Lz .z; /'.; / d '.z; / C Z1 .z; / T Z Z1 .z; /'.; / d '.z; / C Z1 .z; /; D T and the last term equals 0 according to (4.9). Proof of Theorem 1.1. By Proposition 4.11, we have Lz .z; / D ı .z/ on T , and by Proposition 4.14, we get Lz .z; / D 0 for z ¤ . QC2 .z; / locally, and (4.29), (3.18) give Estimate (4.27) gives j.z; /j c d 1 Q z .z; / locally. Finally, by Propositions 4.13 and 3.8, we have jXj .z; /j c d 2;ˇ . ; / 2 Cdc ;loc .T n ¹º/, for every ˇ < ˛. A Appendix Lemma A.1. Let ˛ 2 RC and let K be a compact subset of Rn . There exists a positive constant c such that Z ˛ Q d .z; / d c r ˛ ; ¹Wd .z;/rº for every r > 0 and for all z 2 K. Proof. The proof is a standard computation, see for example Proposition A.3 in [10]. Lemma A.2. Let ˛; ˇ 2 RC . Given a bounded subset T of Rn , there exists a positive constant cT such that Z d ˛ Q .z; /d ˇ Q .; / d cT d ˛Cˇ Q .z; / T if ˛ C ˇ < Q, and for every z; 2 T , z ¤ . If ˛ C ˇ > Q, then the integral on the left-hand side is bounded. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 1008 M. Manfredini Proof. Suppose that ˛ C ˇ < Q. The proof is similar to that of Proposition A.5 in [10] and is obtained by breaking the set T into T1 D ¹ W d.z; / " d.; /º; T2 D ¹ W d.; / " d.z; /º; T3 D ¹ W d.z; / " d.z; /º n .T1 [ T2 /; T4 D T n .T1 [ T2 [ T3 /; where " > 0 will be chosen later. We estimate the corresponding integral separately. Let us first consider the integral over T1 . If 2 T1 , then d.z; / c.d.z; / C d.; // c.1 C "/d.; /; d.; / c d.; z/ C c "d.; /: If " is small enough, there are c1 ; c2 > 0 such that c2 d.; / d.; z/ c1 d.; /: Then Z d˛ Q .z; /d ˇ Q .; / d T1 cd ˇ Q c dˇ Z .z; / d˛ Q .z; / d T1 Q Z d˛ .z; / c d ˇ C˛ Q .z; / d ¹W d.z;/c d.z;/º Q .z; /; by means of Lemma A.1. The estimates of the integrals over T2 and T3 are similar. In T4 , the distance d.; / is equivalent to d.z; /. Then Z d ˛ Q .z; /d ˇ Q .; / d T4 Z c d ˛Cˇ Q .z; / d T4 1 Z X kD1 c d ˛Cˇ Q .z; / d ¹2k d.z;/d.z;/2kC1 d.z;/º Z 1 X d ˛Cˇ .z; /2.˛Cˇ /.kC1/ d d 2Q .z; /22kQ ¹d.z;/2kC1 d.z;/º kD1 Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 1009 Fundamental solutions cd ˛Cˇ 2Q 1 X 2Q.kC1/ d Q .z; / .˛Cˇ /.kC1/ 2 .z; / 22kQ kD1 c d ˛Cˇ Q 1 X .z; / 2k.˛Cˇ Q/ ; kD1 where the series converges since ˛ C ˇ < Q. If ˛ C ˇ > Q, the integral over T4 is bounded. Lemma A.3. Let 2 Rn . Then for any " > 0 Z 1 1 dz D c "Q "Q 1 ¹zW .z;/D"2 Q º jr z .z; /j R where c D Q.Q 2/ .det J /1=.Q 2/ ¹WY .;0/>1º d. 1 ; Proof. By Federer’s coarea formula (Theorem 3.2.12 in [15]), we get Z " Z 1 1 dz dt z Q 1 ¹zW .z;/Dt 2 Q º jr .z; /j 0 t Z "Z 1 dz dt D .Q 2/ 1 z 0 ¹zW. .z;// 2 Q Dt º jr .z; /j Z dz: D .Q 2/ ¹zW .z;/> "2 (A.1) Qº We recall that .z; / D .det J /Y . .z/; .// D .det J /Y . .z/; 0/. Hence, by the change of variables D .z/ defined in Section 3.2, we have Z Z dz D dz ¹zW .z;/> "2 Qº ¹zW.det J D 1 det J D 1 det J / Y . 2 Qº .z/;0/> " Z d ¹W.det J "Q (A.2) 2 Qº / Y .;0/> " 1 .det J /Q=.2 Z Q/ d; ¹WY .;0/>1º by means of the homogeneity of Y . Hence, differentiating (A.1) with respect to " and using (A.2), we get the desired result. Acknowledgments. I would like to thank Professor G. Citti for many encouragements and useful conversations during the preparation of this work. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM 1010 M. Manfredini Bibliography [1] G. Arena, A. O. Caruso and A. Causa, Taylor formula for Carnot groups and applications, Le Matematiche 60 (2006), no. 2, 375–383. [2] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Fundamental solutions for nondivergence form operators on stratified groups, Trans. Amer. Math. Soc. 356 (2004), no. 7, 2709–2737. [3] , Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Monographs in Mathematics, Springer-Verlag, Berlin, 2007. [4] M. Bramanti and L. Brandolini, Schauder estimates for parabolic nondivergence operators of Hörmander type, J. Diff. Eq. 23 (2007), no. 1, 177–245. [5] M. Bramanti, L. Brandolini, E. Lanconelli and F. Uguzzoni, Heat kernels for nondivergence operators of Hörmander type, Comptes rendus – Mathematique 343 (2006), no. 7, 463–466. [6] M. Bramanti, M. C. Cerutti and M. Manfredini, Lp estimates for some ultraparabolic operators with discontinuous coefficients, J. Math. Anal. Appl. 200 (1996), no. 2, 332–354. [7] L. Capogna, G. Citti and M. Manfredini, Regularity of non-characteristic minimal graphs in the Heisenberg group H 1 , Indiana Univ. Math. J. 58 (2009), no. 5, 2115–2160. [8] , Smoothness of Lipschitz intrinsic minimal graphs in the Heisenberg group H n , n > 1, to appear in J. Reine Angew. Math. [9] G. Citti, C 1 regularity of solutions of a quasilinear equation related to the Levi operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 483–529. [10] G. Citti, N. Garofalo and E. Lanconelli, Harnack’s inequality for sum of squares of vector fields plus a potential, Amer. J. Math. 115 (1993), no. 3, 699–734. [11] G. Citti, E. Lanconelli and A. Montanari, Smoothness of Lipschitz-continuous graphs with nonvanishing Levi curvature, Acta Math. 18 (2002), no. 1, 87–128. [12] G. Citti and M. Manfredini, Implicit function theorem in Carnot–Carathéodory spaces, Commun. Contemp. Math. 8 (2006), no. 5, 657–680. [13] G. Citti and A. Montanari, Regularity properties of solutions of a class of ellipticparabolic nonlinear Levi type equations, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2819–2848. [14] G. Citti, A. Pascucci and S. Polidoro, On the regularity of solutions to a nonlinear ultraparabolic equation arising in mathematical finance, Diff. Integral Eq. 14 (2001), no. 6, 701–738. [15] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1969. Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM Fundamental solutions 1011 [16] C. L. Fefferman and A. Sánchez-Calle, Fundamental solutions for second order subelliptic operators, Ann. Math. (2) 124 (1986), 247–272. [17] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 4, 523–541. [18] H. Hörmander, Hypoelliptic second-order differential equations, Acta Math. 119 (1967), 147–171. [19] D. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), 835–854. [20] H. Kalf, On E. E. Levi’s method of constructing a fundamental solution for secondorder elliptic equations, Rend. Circ. Mat. Palermo 41 (1992), 251–294. [21] E. E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali, Rend. Circ. Mat. Palermo 24 (1907), 312–313. [22] C. Miranda, Partial Differential Equations of Elliptic Type, Ergebnisse der Mathematik und ihrer Grenzgebiete 2, Springer-Verlag, New York, Berlin, 1970. [23] A. Montanari and D. Morbidelli, Balls defined by nonsmooth vector fields and the Poincaré inequality, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 2, 431–452. [24] A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103–147. [25] S. Polidoro, On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type, Le Matematiche 49 (1994), 53–105. [26] L. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent Lie groups, Acta Math. 137 (1977), 247–320. [27] A. Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143–160. Received September 15, 2008; revised September 27, 2010. Author information Maria Manfredini, Dipartimento di Matematica, Universitá di Bologna, Piazza Porta S. Donato 5, 40126 Bologna, Italy. E-mail: manfredi@dm.unibo.it Brought to you by | Universita di Bologna Authenticated | 137.204.1.40 Download Date | 1/16/13 6:38 PM
© Copyright 2024 Paperzz