Sqrt(tanx) integral - University of Pittsburgh

David Skrovanek
University of Pittsburgh
Evaluating ∫ βˆšπ‘‘π‘Žπ‘›π‘₯ 𝑑π‘₯
This intimidating integral can be solved by three distinct techniques. The first method I will describe is the most
elegant, but requires more β€œtrickery”. The second method is more straightforward, but again demands some clever
manipulation. The third method is characterized by pure brute force.
Method 1:
Let T= ∫ βˆšπ‘‘π‘Žπ‘›π‘₯ 𝑑π‘₯ and
C=∫ βˆšπ‘π‘œπ‘‘π‘₯ 𝑑π‘₯
𝑠𝑖𝑛π‘₯
π‘π‘œπ‘ π‘₯
T + C = ∫ βˆšπ‘‘π‘Žπ‘›π‘₯ 𝑑π‘₯ + βˆšπ‘π‘œπ‘‘π‘₯ 𝑑π‘₯ = ∫ βˆšπ‘π‘œπ‘ π‘₯ + √ 𝑠𝑖𝑛π‘₯ 𝑑π‘₯
Now obtain a common denominator, and use sin 2π‘₯ = 2π‘π‘œπ‘ π‘₯𝑠𝑖𝑛π‘₯:
𝑠𝑖𝑛π‘₯
𝑠𝑖𝑛π‘₯
π‘π‘œπ‘ π‘₯
π‘π‘œπ‘ π‘₯
𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯
𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯
𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯
√
βˆ—βˆš
+ √
βˆ—βˆš
=
=
= √2 (
)
π‘π‘œπ‘ π‘₯
𝑠𝑖𝑛π‘₯
𝑠𝑖𝑛π‘₯
π‘π‘œπ‘ π‘₯ βˆšπ‘π‘œπ‘ π‘₯ βˆ— 𝑠𝑖𝑛π‘₯
βˆšπ‘ π‘–π‘›2π‘₯
βˆšπ‘ π‘–π‘›2π‘₯
2
T + C = √2 ∫
𝑠𝑖𝑛π‘₯+π‘π‘œπ‘ π‘₯
βˆšπ‘ π‘–π‘›2π‘₯
𝑑π‘₯
Recognize that (𝑠𝑖𝑛π‘₯ βˆ’ π‘π‘œπ‘ π‘₯ )2 = 1 βˆ’ 𝑠𝑖𝑛2π‘₯
Let 𝑒 = 𝑠𝑖𝑛π‘₯ βˆ’ π‘π‘œπ‘ π‘₯
𝑑𝑒 = (𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯ )𝑑π‘₯
T + C =√2 ∫
𝑠𝑖𝑛π‘₯+π‘π‘œπ‘ π‘₯
√1βˆ’(𝑠𝑖𝑛π‘₯βˆ’π‘π‘œπ‘ π‘₯)
𝑑π‘₯ = √2 ∫
2
𝑑𝑒
√1βˆ’π‘’2
= √2 sinβˆ’1 𝑒 = √2 sinβˆ’1 (𝑠𝑖𝑛π‘₯ βˆ’ π‘π‘œπ‘ π‘₯ )
Now we evaluate T - C= ∫ βˆšπ‘‘π‘Žπ‘›π‘₯ βˆ’ βˆšπ‘π‘œπ‘‘π‘₯ 𝑑π‘₯
Using similar techniques as done for T + C, we obtain
√2 ∫
𝑠𝑖𝑛π‘₯ βˆ’ π‘π‘œπ‘ π‘₯
βˆšπ‘ π‘–π‘›2π‘₯
𝑑π‘₯ = √2 ∫
𝑠𝑖𝑛π‘₯ βˆ’ π‘π‘œπ‘ π‘₯
√(𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯)2 βˆ’ 1
𝑑π‘₯
Let 𝑒 = 𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯
𝑑𝑒 = (π‘π‘œπ‘ π‘₯ βˆ’ 𝑠𝑖𝑛π‘₯ )𝑑π‘₯ = βˆ’(𝑠𝑖𝑛π‘₯ βˆ’ π‘π‘œπ‘ π‘₯ )𝑑π‘₯
T + C = βˆ’βˆš2 ∫
𝑑𝑒
βˆšπ‘’2 βˆ’1
= βˆ’βˆš2 coshβˆ’1 𝑒 = βˆ’βˆš2 coshβˆ’1 (𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯)
Now to isolate T with a little algebra,
David Skrovanek
University of Pittsburgh
𝑇=
(π‘‡βˆ’πΆ )+(𝑇+𝐢)
2
=
√2
[sinβˆ’1(𝑠𝑖𝑛π‘₯
2
βˆ’ π‘π‘œπ‘ π‘₯) βˆ’ coshβˆ’1(𝑠𝑖𝑛π‘₯ + π‘π‘œπ‘ π‘₯)]
Method 2:
∫ βˆšπ‘‘π‘Žπ‘›π‘₯ 𝑑π‘₯
𝑒2 = π‘‘π‘Žπ‘›π‘₯
2𝑒 𝑑𝑒 = 𝑠𝑒𝑐2π‘₯ 𝑑π‘₯
2𝑒 𝑑𝑒 = 1 + π‘‘π‘Žπ‘›2π‘₯ 𝑑π‘₯
2𝑒 𝑑𝑒 = 1 + (𝑒2 )2 𝑑π‘₯
2𝑒 𝑑𝑒 = 1 + 𝑒4 𝑑π‘₯
∫
2𝑒2
𝑑𝑒
1 + 𝑒4
You can either use partial fractions (method 3), or be a little sneaky.
Here is the sneaky way:
∫
(𝑒2 + 1) + (𝑒2 βˆ’ 1)
𝑑𝑒
1 + 𝑒4
Now we can break this up into two separate integrals. I’ll call them I1 and I2.
I1:
𝑒2 + 1
∫ 4
𝑑𝑒
𝑒 +1
Now let’s divide everything by u2.
1
1+ 2
𝑒
𝐼1 = ∫
𝑑𝑒
1
𝑒2 + 2
𝑒
Unlike normal u-substitution where one declares u, I am doing to define the differential dz first and then make my
z.
1
du
𝑒2
1
βˆ’
𝑒
dz=1 +
z=𝑒
If we square z we get something very nice…
1
βˆ’2
𝑒2
1
𝑧 2 + 2 = 𝑒2 + 2
𝑒
𝑧 2 = 𝑒2 +
Now we can integrate this.
David Skrovanek
University of Pittsburgh
𝐼1 = ∫
1
𝑑𝑧
𝑧2 + 2
This is an easy trig-sub problem (use tangent substitution).
1
𝐼1 =
tanβˆ’1
√2
𝑧
√2
Plugging in z and then u:
1
𝐼1 =
tanβˆ’1
π‘‘π‘Žπ‘›π‘₯ βˆ’ 1
√2
√2π‘‘π‘Žπ‘›π‘₯
Now let’s integrate I2.
We will do the same steps we did for I1, by dividing by u2 and then defining dz. Here’s what it looks like in terms
of z.
1
𝐼2 = ∫ 2
𝑑𝑧
𝑧 βˆ’2
You can either factor this into (𝑧 + √2)(𝑧 βˆ’ √2) and use partial fractions, or you can use trig-substitution (using
secant substitution). Both are tedious, but I would personally use partial fractions, as it was easy to factor.
𝐼2 =
1
2√2
ln
𝑧 βˆ’ √2
𝑧 + √2
Plug in z and u to get I2.
𝐼2 =
1
2√2
ln
tan π‘₯ βˆ’ √2 tan π‘₯ + 1
tan π‘₯ + √2 tan π‘₯ + 1
Finally, I1+I2 gives the answer.
1
√2
tanβˆ’1
π‘‘π‘Žπ‘›π‘₯ βˆ’ 1
√2π‘‘π‘Žπ‘›π‘₯
+
1
2√2
ln
tan π‘₯ βˆ’ √2 tan π‘₯ + 1
tan π‘₯ + √2 tan π‘₯ + 1
Method 3:
In the same manner as method 2, obtain the following:
∫
2𝑒2
𝑒2
𝑑𝑒
π‘œπ‘Ÿ
2
∫
𝑑𝑒
1 + 𝑒4
1 + 𝑒4
First factor the u4+1 into (𝑒2 + √2𝑒 + 1)(𝑒2 βˆ’ √2𝑒 + 1). This becomes a tedious partial fractions problem.
Most people would then use classical methods to decompose the fraction in the following manner:
𝐴𝑒 + 𝐡
𝑒2 + √2𝑒 + 1
+
𝐢𝑒 + 𝐷
𝑒2 βˆ’ √2𝑒 + 1
=
2𝑒2
1 + 𝑒4
Doing it this way leads to a nasty system of equations that perhaps cannot be solved without the aid of linear
algebra. This yields the following system of equations:
David Skrovanek
University of Pittsburgh
1
0
βˆ’βˆš2 1
[
1 βˆ’βˆš2
0
1
1
√2
1
0
0
𝐴
0
1
𝐡
] βˆ— [ ] = (2)
𝐢
0
√2
0
𝐷
1
Using [π‘₯] = π΄βˆ’1 𝐡, (I will leave finding the inverse matrix to the reader)
𝐴=
βˆ’βˆš2
√2
, 𝐡 = 0, 𝐢 =
,𝐷 = 0
2
2
However, this can be solved more elegantly with the aid of complex analysis. We will decompose the fraction in
the same manner one would compute residues.
First, we must further factor the denominator.
𝑒2 + √2𝑒 + 1 = (𝑒 βˆ’
π‘–βˆš2 √2
π‘–βˆš2 √2
+ )(𝑒 +
+ )
2
2
2
2
𝑒2 βˆ’ √2𝑒 + 1 = (𝑒 βˆ’
π‘–βˆš2 √2
π‘–βˆš2 √2
βˆ’ )(𝑒 +
βˆ’ )
2
2
2
2
The expression can now be written as
(1)
(2)
(3)
(4)
𝑒2
𝐴0
𝐴0
𝐴0
𝐴0
=
+
+
+
1 + 𝑒4
π‘–βˆš2 √2
π‘–βˆš2 √2
π‘–βˆš2 √2
π‘–βˆš2 √2
π‘’βˆ’
+
𝑒+
+
π‘’βˆ’
βˆ’
𝑒+
βˆ’
2
2
2
2
2
2
2
2
To compute each 𝐴𝑛0 , simply employ the technique to compute residues of simple poles. One can either use the
𝑃(π‘₯)
shortcut 𝑅𝑒𝑠(𝐴𝑛0 ) =
or simply take the limit as x approaches the respective pole. To illustrate:
𝑄′(π‘₯)
(1)
𝐴0 =
𝑒2
lim
π‘–βˆš2 √2
𝑒→ 2 βˆ’ 2
(𝑒2 βˆ’ √2𝑒 + 1) (𝑒 +
(2)
𝐴0 =
βˆ’βˆš2 π‘–βˆš2
βˆ’
8
8
βˆ’βˆš2 π‘–βˆš2
+
8
8
(3)
𝐴0 =
(4)
π‘–βˆš2 √2
+ )
2
2
=
𝐴0 =
√2 π‘–βˆš2
βˆ’
8
8
√2 π‘–βˆš2
+
8
8
(𝑛)
Now comes the most tedious partβ€”adding together each 𝐴0 .
√2
√2
√2
√2
(βˆ’1 βˆ’ 𝑖)
(βˆ’1 + 𝑖)
(1 βˆ’ 𝑖)
(1 + 𝑖)
𝑒2
8
8
8
8
=
+
+
+
1 + 𝑒4
π‘–βˆš2 √2
π‘–βˆš2 √2
π‘–βˆš2 √2
π‘–βˆš2 √2
π‘’βˆ’
+
𝑒+
+
π‘’βˆ’
βˆ’
𝑒+
βˆ’
2
2
2
2
2
2
2
2
David Skrovanek
University of Pittsburgh
𝑒2
𝑒
𝑒
√2
√2
=
(
)βˆ’
(
)
4
1+𝑒
4 𝑒2 βˆ’ √2𝑒 + 1
4 𝑒2 + √2𝑒 + 1
Doing the correct algebra and multiplying by two yields:
√2𝑒
√2𝑒
∫
𝑑𝑒 βˆ’ ∫
𝑑𝑒
2(𝑒2 βˆ’ √2𝑒 + 1)
2(𝑒2 + √2𝑒 + 1)
After getting this, you have to use trig substitution on both integrals, but this becomes tricky as you must first
complete the square on both. For the first integral, the denominator becomes (π‘₯ βˆ’
integral has (π‘₯ +
√2 2
)
2
√2
π‘‘π‘Žπ‘›πœƒ = 𝑒 βˆ’
+
1
2
and the second
1
2
+ .
∫
1
√2 2
)
2
1
√2
,
2
√2
√2𝑒
2(𝑒2 βˆ’ √2𝑒 + 1)
π‘ π‘’π‘πœƒ = βˆšπ‘’2 βˆ’ √2𝑒 + 1,
𝑑𝑒
𝑑𝑒 =
1
√2
π‘ π‘’π‘πœƒ 2 π‘‘πœƒ,
π‘‘π‘Žπ‘›πœƒ = √2𝑒 βˆ’ 1
1
1
√2
π‘ π‘’π‘πœƒ 2 βˆ— ( π‘‘π‘Žπ‘›πœƒ + ) π‘‘πœƒ
2
√2 √2
√2
√2
√2
√2
√2
∫
=∫
π‘‘π‘Žπ‘›πœƒ π‘‘πœƒ + ∫
π‘‘πœƒ =
ln π‘ π‘’π‘πœƒ +
πœƒ
1
2
2
2
2
2
π‘ π‘’π‘πœƒ 2
2
=
βˆšπ‘’2 βˆ’ √2𝑒 + 1
√2
√2
ln |
|+
tanβˆ’1(√2𝑒 βˆ’ 1)
2
2
√2
π‘₯
ln(2)
√2
2
Use the fact that 𝑙𝑛 ( ) = ln(π‘₯) βˆ’
=
and the power identity of logarithms
√2
√2
( ln|𝑒2 βˆ’ √2𝑒 + 1| βˆ’ 𝑙𝑛2) +
tanβˆ’1 (√2𝑒 βˆ’ 1)
4
2
Doing similar techniques for the other integral yields:
βˆ’βˆ«
√2𝑒
2(𝑒2 + √2𝑒 + 1)
𝑑𝑒 = βˆ’
√2
√2
( ln|𝑒2 + √2𝑒 + 1| βˆ’ 𝑙𝑛2) +
tanβˆ’1 (√2𝑒 + 1)
4
2
Combining, using the subtractive property of logarithms, we obtain
𝑒2 βˆ’ √2𝑒 + 1
√2
√2
ln |
|+
[tanβˆ’1(√2𝑒 βˆ’ 1) + tanβˆ’1 (√2𝑒 + 1)]
2
4
2
𝑒 + √2𝑒 + 1
In order to make this in the form of method 2’s answer, we must employ some trig identities for arctan.
tanβˆ’1 (βˆ’π‘₯) = βˆ’ tanβˆ’1 (π‘₯)
David Skrovanek
University of Pittsburgh
1
πœ‹
tanβˆ’1 ( ) = βˆ’ tanβˆ’1 (π‘₯) ±
π‘₯
2
𝑒
+
𝑣
tanβˆ’1 𝑒 + tanβˆ’1 𝑣 = tanβˆ’1 (
)
1 βˆ’ 𝑒𝑣
√2
[tanβˆ’1(√2𝑒 βˆ’ 1) + tanβˆ’1(√2𝑒 + 1)]
2
2√2𝑒
𝑒2 βˆ’ 1
√2
√2
βˆ’1 ( √2𝑒 ) = √2 tanβˆ’1 (
=
tanβˆ’1 (
)
=
βˆ’
tan
)
2
2 βˆ’ 2𝑒2
2
𝑒2 βˆ’ 1
2
√2𝑒
Finally plugging in our substitution, 𝑒 = βˆšπ‘‘π‘Žπ‘›π‘₯ and using the fact that
1
√2
tanβˆ’1
π‘‘π‘Žπ‘›π‘₯ βˆ’ 1
√2π‘‘π‘Žπ‘›π‘₯
+
1
2√2
ln
√2
4
tan π‘₯ βˆ’ √2 tan π‘₯ + 1
tan π‘₯ + √2 tan π‘₯ + 1
just as method 2 proved. Phew!
=
1
2√2
π‘Žπ‘›π‘‘
√2
2
=
1
√2
,