David Skrovanek University of Pittsburgh Evaluating β« βπ‘πππ₯ ππ₯ This intimidating integral can be solved by three distinct techniques. The first method I will describe is the most elegant, but requires more βtrickeryβ. The second method is more straightforward, but again demands some clever manipulation. The third method is characterized by pure brute force. Method 1: Let T= β« βπ‘πππ₯ ππ₯ and C=β« βπππ‘π₯ ππ₯ π πππ₯ πππ π₯ T + C = β« βπ‘πππ₯ ππ₯ + βπππ‘π₯ ππ₯ = β« βπππ π₯ + β π πππ₯ ππ₯ Now obtain a common denominator, and use sin 2π₯ = 2πππ π₯π πππ₯: π πππ₯ π πππ₯ πππ π₯ πππ π₯ π πππ₯ + πππ π₯ π πππ₯ + πππ π₯ π πππ₯ + πππ π₯ β ββ + β ββ = = = β2 ( ) πππ π₯ π πππ₯ π πππ₯ πππ π₯ βπππ π₯ β π πππ₯ βπ ππ2π₯ βπ ππ2π₯ 2 T + C = β2 β« π πππ₯+πππ π₯ βπ ππ2π₯ ππ₯ Recognize that (π πππ₯ β πππ π₯ )2 = 1 β π ππ2π₯ Let π’ = π πππ₯ β πππ π₯ ππ’ = (π πππ₯ + πππ π₯ )ππ₯ T + C =β2 β« π πππ₯+πππ π₯ β1β(π πππ₯βπππ π₯) ππ₯ = β2 β« 2 ππ’ β1βπ’2 = β2 sinβ1 π’ = β2 sinβ1 (π πππ₯ β πππ π₯ ) Now we evaluate T - C= β« βπ‘πππ₯ β βπππ‘π₯ ππ₯ Using similar techniques as done for T + C, we obtain β2 β« π πππ₯ β πππ π₯ βπ ππ2π₯ ππ₯ = β2 β« π πππ₯ β πππ π₯ β(π πππ₯ + πππ π₯)2 β 1 ππ₯ Let π’ = π πππ₯ + πππ π₯ ππ’ = (πππ π₯ β π πππ₯ )ππ₯ = β(π πππ₯ β πππ π₯ )ππ₯ T + C = ββ2 β« ππ’ βπ’2 β1 = ββ2 coshβ1 π’ = ββ2 coshβ1 (π πππ₯ + πππ π₯) Now to isolate T with a little algebra, David Skrovanek University of Pittsburgh π= (πβπΆ )+(π+πΆ) 2 = β2 [sinβ1(π πππ₯ 2 β πππ π₯) β coshβ1(π πππ₯ + πππ π₯)] Method 2: β« βπ‘πππ₯ ππ₯ π’2 = π‘πππ₯ 2π’ ππ’ = π ππ2π₯ ππ₯ 2π’ ππ’ = 1 + π‘ππ2π₯ ππ₯ 2π’ ππ’ = 1 + (π’2 )2 ππ₯ 2π’ ππ’ = 1 + π’4 ππ₯ β« 2π’2 ππ’ 1 + π’4 You can either use partial fractions (method 3), or be a little sneaky. Here is the sneaky way: β« (π’2 + 1) + (π’2 β 1) ππ’ 1 + π’4 Now we can break this up into two separate integrals. Iβll call them I1 and I2. I1: π’2 + 1 β« 4 ππ’ π’ +1 Now letβs divide everything by u2. 1 1+ 2 π’ πΌ1 = β« ππ’ 1 π’2 + 2 π’ Unlike normal u-substitution where one declares u, I am doing to define the differential dz first and then make my z. 1 du π’2 1 β π’ dz=1 + z=π’ If we square z we get something very niceβ¦ 1 β2 π’2 1 π§ 2 + 2 = π’2 + 2 π’ π§ 2 = π’2 + Now we can integrate this. David Skrovanek University of Pittsburgh πΌ1 = β« 1 ππ§ π§2 + 2 This is an easy trig-sub problem (use tangent substitution). 1 πΌ1 = tanβ1 β2 π§ β2 Plugging in z and then u: 1 πΌ1 = tanβ1 π‘πππ₯ β 1 β2 β2π‘πππ₯ Now letβs integrate I2. We will do the same steps we did for I1, by dividing by u2 and then defining dz. Hereβs what it looks like in terms of z. 1 πΌ2 = β« 2 ππ§ π§ β2 You can either factor this into (π§ + β2)(π§ β β2) and use partial fractions, or you can use trig-substitution (using secant substitution). Both are tedious, but I would personally use partial fractions, as it was easy to factor. πΌ2 = 1 2β2 ln π§ β β2 π§ + β2 Plug in z and u to get I2. πΌ2 = 1 2β2 ln tan π₯ β β2 tan π₯ + 1 tan π₯ + β2 tan π₯ + 1 Finally, I1+I2 gives the answer. 1 β2 tanβ1 π‘πππ₯ β 1 β2π‘πππ₯ + 1 2β2 ln tan π₯ β β2 tan π₯ + 1 tan π₯ + β2 tan π₯ + 1 Method 3: In the same manner as method 2, obtain the following: β« 2π’2 π’2 ππ’ ππ 2 β« ππ’ 1 + π’4 1 + π’4 First factor the u4+1 into (π’2 + β2π’ + 1)(π’2 β β2π’ + 1). This becomes a tedious partial fractions problem. Most people would then use classical methods to decompose the fraction in the following manner: π΄π’ + π΅ π’2 + β2π’ + 1 + πΆπ’ + π· π’2 β β2π’ + 1 = 2π’2 1 + π’4 Doing it this way leads to a nasty system of equations that perhaps cannot be solved without the aid of linear algebra. This yields the following system of equations: David Skrovanek University of Pittsburgh 1 0 ββ2 1 [ 1 ββ2 0 1 1 β2 1 0 0 π΄ 0 1 π΅ ] β [ ] = (2) πΆ 0 β2 0 π· 1 Using [π₯] = π΄β1 π΅, (I will leave finding the inverse matrix to the reader) π΄= ββ2 β2 , π΅ = 0, πΆ = ,π· = 0 2 2 However, this can be solved more elegantly with the aid of complex analysis. We will decompose the fraction in the same manner one would compute residues. First, we must further factor the denominator. π’2 + β2π’ + 1 = (π’ β πβ2 β2 πβ2 β2 + )(π’ + + ) 2 2 2 2 π’2 β β2π’ + 1 = (π’ β πβ2 β2 πβ2 β2 β )(π’ + β ) 2 2 2 2 The expression can now be written as (1) (2) (3) (4) π’2 π΄0 π΄0 π΄0 π΄0 = + + + 1 + π’4 πβ2 β2 πβ2 β2 πβ2 β2 πβ2 β2 π’β + π’+ + π’β β π’+ β 2 2 2 2 2 2 2 2 To compute each π΄π0 , simply employ the technique to compute residues of simple poles. One can either use the π(π₯) shortcut π ππ (π΄π0 ) = or simply take the limit as x approaches the respective pole. To illustrate: πβ²(π₯) (1) π΄0 = π’2 lim πβ2 β2 π’β 2 β 2 (π’2 β β2π’ + 1) (π’ + (2) π΄0 = ββ2 πβ2 β 8 8 ββ2 πβ2 + 8 8 (3) π΄0 = (4) πβ2 β2 + ) 2 2 = π΄0 = β2 πβ2 β 8 8 β2 πβ2 + 8 8 (π) Now comes the most tedious partβadding together each π΄0 . β2 β2 β2 β2 (β1 β π) (β1 + π) (1 β π) (1 + π) π’2 8 8 8 8 = + + + 1 + π’4 πβ2 β2 πβ2 β2 πβ2 β2 πβ2 β2 π’β + π’+ + π’β β π’+ β 2 2 2 2 2 2 2 2 David Skrovanek University of Pittsburgh π’2 π’ π’ β2 β2 = ( )β ( ) 4 1+π’ 4 π’2 β β2π’ + 1 4 π’2 + β2π’ + 1 Doing the correct algebra and multiplying by two yields: β2π’ β2π’ β« ππ’ β β« ππ’ 2(π’2 β β2π’ + 1) 2(π’2 + β2π’ + 1) After getting this, you have to use trig substitution on both integrals, but this becomes tricky as you must first complete the square on both. For the first integral, the denominator becomes (π₯ β integral has (π₯ + β2 2 ) 2 β2 π‘πππ = π’ β + 1 2 and the second 1 2 + . β« 1 β2 2 ) 2 1 β2 , 2 β2 β2π’ 2(π’2 β β2π’ + 1) π πππ = βπ’2 β β2π’ + 1, ππ’ ππ’ = 1 β2 π πππ 2 ππ, π‘πππ = β2π’ β 1 1 1 β2 π πππ 2 β ( π‘πππ + ) ππ 2 β2 β2 β2 β2 β2 β2 β2 β« =β« π‘πππ ππ + β« ππ = ln π πππ + π 1 2 2 2 2 2 π πππ 2 2 = βπ’2 β β2π’ + 1 β2 β2 ln | |+ tanβ1(β2π’ β 1) 2 2 β2 π₯ ln(2) β2 2 Use the fact that ππ ( ) = ln(π₯) β = and the power identity of logarithms β2 β2 ( ln|π’2 β β2π’ + 1| β ππ2) + tanβ1 (β2π’ β 1) 4 2 Doing similar techniques for the other integral yields: ββ« β2π’ 2(π’2 + β2π’ + 1) ππ’ = β β2 β2 ( ln|π’2 + β2π’ + 1| β ππ2) + tanβ1 (β2π’ + 1) 4 2 Combining, using the subtractive property of logarithms, we obtain π’2 β β2π’ + 1 β2 β2 ln | |+ [tanβ1(β2π’ β 1) + tanβ1 (β2π’ + 1)] 2 4 2 π’ + β2π’ + 1 In order to make this in the form of method 2βs answer, we must employ some trig identities for arctan. tanβ1 (βπ₯) = β tanβ1 (π₯) David Skrovanek University of Pittsburgh 1 π tanβ1 ( ) = β tanβ1 (π₯) ± π₯ 2 π’ + π£ tanβ1 π’ + tanβ1 π£ = tanβ1 ( ) 1 β π’π£ β2 [tanβ1(β2π’ β 1) + tanβ1(β2π’ + 1)] 2 2β2π’ π’2 β 1 β2 β2 β1 ( β2π’ ) = β2 tanβ1 ( = tanβ1 ( ) = β tan ) 2 2 β 2π’2 2 π’2 β 1 2 β2π’ Finally plugging in our substitution, π’ = βπ‘πππ₯ and using the fact that 1 β2 tanβ1 π‘πππ₯ β 1 β2π‘πππ₯ + 1 2β2 ln β2 4 tan π₯ β β2 tan π₯ + 1 tan π₯ + β2 tan π₯ + 1 just as method 2 proved. Phew! = 1 2β2 πππ β2 2 = 1 β2 ,
© Copyright 2025 Paperzz