American Mineralogist, Volume 60, pages l04l-1O46, 1975 Cookeitewith a Perfect RegularStructure, Formedby Bauxite Alteration Zove Y. VnugLsvsrnJe,Icon S. DrlrrsrN, BoRrsB. Zvye,clN, nNn SvEu-nNnV. Sosolnvn Institute of Geologyof Ore Deposits,Petrography,Mineralogy, and Geochemistry Academyof Scienceof the U.S.S.R.,Moscow, U..S.,S.R. Abstract A di,trioctahedralLi-chtoritecookeite(Lio.?Alr.r ., ,rISi,,rAlou2],.oO,o )r.s(Alr.r"Fe;.tnFe3.+or), (OH)t"u,with an exceptionally perfectcrystalstructurehasbeenfound in bauxiteof Djalair (Middle Asia). High-voltagediffraction(oblique-texture) patternswereusedfor its structural ..identification.It was establishedthat it is a oneJayertriclinic polytypelo'uo'rlraraloLoll w i t h s y m m e t r y Cai n d u n i t c e a l l : 5 . 1 4 , b : 8 . 9 0 , c : l 4 . l 5 A , a : 9 0 o 3 3 ' , A : 9 6 " 1 2 ' , 1= 90'. The smalldeviationofa from 90oresultsin very peculiarfeaturesofthe diffractionpatterns,giving the falseimpressionof a monocliniclattice but with two non-selfconsistent Bvalues. The formation of the cookeiteinvestigated is the final resultof a peculiartransformationof bauxite rock following an intermediatestage of formation of a two-layer monoclinic pyrophyllitepolytype. Introduction Unlike trioctahedral chlorites, dioctahedral and di,trioctahedralvarietiesare much lessabundant and are therefore of great interest in the crystal chemistry and genesisof minerals. In this respectthe di,trioctahedral Li-chlorite cookeite, found in bauxites of Djalair (Middle Asia), is especiallyremarkable.This chlorite, belonging to the concluding stage of a peculiar transformation process in bauxite rock, proved to be unique in its high degreeof structural order, which permitted its polytype identification. Environmental Conditions The bauxite of the Djalair deposit is interbedded betweenthe Upper and Lower Carboniferous in the zonesof the terrestrialbreak. Limestones,underlying bauxite, underwent some karst development. The resultant small cavitieswere later filled with bauxite matter. In areas of intense karstification sheet-like bodiesof bauxiteoccur, but thesecompletelythin out as undissolved limestone is approached. Subsequently, the bauxite serieswas overlain by younger middle Carboniferous limestone. Later the whole rock serieswas metamorphosed. As a result limestonewas marmorized while bauxite was partly convertedto emery.At presentthe bauxite bed forms a number of disconnectedareas with a thickness of up to 3 m. In one such area, near its lower contact (in a zone up to 0.4 m thick), the bauxite bed is broken into blocks up to 0.1 m in size.The joints between the blocks are filled with pyrophyllite. In some casesthe developmentof pyrophyllite is so intensivethat blocks of bauxite, partly transformed into emery, appear to be enclosed in cells of a pyrophyllite net. Specimensof brown bauxite with compact shot texture from this area, kindly provided by A. P. Gapeev, contain scaly aggregates of greenish pyrophyllite. The pyrophyllite flakes, up to 4 mm in length, are usually arranged normal to the selvage joints. According to electron diffraction oblique texture patterns, the pyrophyllite belongs to the widespread 2M - mo dification o sosr p s6sr56sos (Zv y agin, Mischenko and Soboleva, 1968). Distinct, weak, glide surfaces or zones developed in the pyrophyllite, commonly along an oblique direction relative to the long axes of the scaly pyrophyllite aggregates. The material filling these zones strongly differs from the pyrophyllite both in color (white or bluish gray) and texture (from fine-grained to macrocryptocrystalline). Exceptionally good electron diffraction texture patterns with a great number of very clear, sharp, and well resolvedreflectionshave been obtained for this material. The analysis of the reflection set has indicated that the specimen is a di,trioctahedral chlorite with a regular structure indicative of a definite polytype. r042 VRUBLEVSKAJA, DELITSIN, ZVYAGIN, AND SOBOLEVA Chlorite Polytypes unit cell, spacegroup symmetry,and components Sincechlorite structuresconsistof two kinds of (xn,!n) of the c axis in normal projectionon the ab alternatinglayers,which may have differentrelative planeare indicated. displacements and orientations, an enormousvariety Electron Diffraction Featuresof of polytypesis possible.All thesepolytypescan be Chlorite Polytypes dividedinto six groupsdifferingby the projectionon In the courseof electrondiffractionstudyof,layer the planeac of the chloritepacket (:repeating comsamplesof dioctahedral anddi,trioctahedral bination of layers).Thesegroupshavebeen desig- silicates, nated by Bailey and Brown (1962) as Ia-2n, lb-2n, chlorites from different depositsof the USSR and other countrieshavebeenidentifiedand examined. IIb-(2n1 l),Ila-2n,lla-(2n * l),llb-2n, whereI { 2n,2n + I < 4. Zvyagin(1967)has usedfor these Accordingto the intensitiesof the k : 3n reflections, groupsdesignations o, o',lol,lo'l,lo,lo', hereo being most of thesechloritesconsistof packetslo'1, the a generalsymbol for intersheetdisplacements in an othersconsistingofpackets o. The k I 3n reflections 2:l layer.A prime or its absence indicatesthe relative that indicate 3-dimensionalstructural regularity, orientationof octahedralsheetsof both layersof the though sometimespresenton the patterns,were inpacket:in packeto' they havethe sameorientation sufficientfor unequivocalidentificationof polytypes. and in packeto, oppositeorientations.The vertical In contrastthe chlorite from the bauxiteof Djalair lineindicatesa superposition of octahedral cationsof has a much more regular structure,and its oblique the hydroxidelayer and of the adjacenttetrahedral texture patterns(Fig. l) offereda favorableopporcations in the normal projection on the ab plane. tunity for a preciseanalysisof the lattice geometry Within eachof the sixgroups,thepolytypestructures and a reliablepolytype identification. differ by intersheetand interlayerdisplacements of Lattice Geometryof the Cookeite Xb/3 along the b axis. If thesedisplacements are randomlydistributed, The geometryof texturepatternsmight appearat Bailey and Brown (1962) call the corresponding first glanceto satisfythe "rnonoclinic" arrangement polytypes"semirandom."For any of the polytype of rtflections.In a monocliniccasethe heightsDgroupsthere is one semirandompolytypewith the namely,the distancesof reflectionsfrom the minor same designation.Natural chlorites are usually axisofthe ellipses, thesedistances beingproportional semirandom,the o-polytypebeingmore abundant. to the projectionsofreciprocallatticevectorslhkllon Semirandompolytypeswith packet o',o'l,lo'l are the c* axis-depend only on indicesh,l becauseD : morerare,whilethosewith packetslol ,ol havenever hp + lq wherep - c*cos0*, q - c*. The reflections beenfound. 021,lll are disposednon-uniformlyalongthe first elRegular polytypes have quite definite intersheet lipsein the patternsof the chloritestudied,while the displacements differingby componentsalong axesa,b 201,201,l3l, l3l reflections of the secondellipseare of their normalprojectionon planea6, specified by groupedin compactsetsof four reflections(Zvyagin s u b s c r i pit s= 1 , 2 . . . 6 a n d * , - , 0 ( Z v y a g i n , 1 9 6 7 ) et . al, 1972).Such peculiaritiesusually mean that p In additionto displacements o insidethe 2:l layer, differsfrom q/3-thatis, p/q differsfrom l/3-to the the displacement z betweenadjacentsheetsbelonging extentthat 0 deviatesfrom its idealvalue.The realD to different layers must be specified.For a trioc- valueshave indicated,however,that the ratiosp/q, tahedralhydroxidelayer,r is measuredbetweenthe determinedseparatelyfrom the first and secondelorigins of the tetrahedralsheetsadjoining the in- lipse, are non-equal,the first (0.305)being smaller termediatehydroxide layer. Any chlorite structure and the second(0.375)beinggreaterthan l/3. These may be thus describedby a succession of letterso, r two plq ratios lead to two differentp valueshaving with conventionalmarks and subscripts. oppositedeviationsfrom the idealB value,for which Regularpolytypesare ratherrare.Usuallythey ap- p/q : l/1 and c'cos?/a : -l/3. To resolvethis pear in single crystals and are more probable for paradox,the heightsD for the secondellipsereflecdioctahedraland di,trioctahedralchlorites because tions werecalculatedby useofp and q valuesdetertrioctahedralvarietiesare lesssensitiveto displace- mined from the heightsD of the first ellipsereflecments(tbl3) alongtheb axis.TableI listsall regular tions, and then compared with the experimental polytypesknown to dateincludingthe cookeiteunder values.As it turned out, the inner and the outer study. For each polytype the symbolic notation, reflectionsof the abovementionedsetsof four reflecmodeof octahedralpopulation,numberof layersper tions essentiallydiffer by degreeof agreementof 1043 COOKEITE FORMED BY BAUXITE ALTERATION TesI-r l. lfurber otr latoa]. Experimentally IdentifiedRegularChloritePolytypes Synboll.o scocrdiJlg to o 1il5:t"/ il'fi zw"eoroezraotatlon3*'iI;.HIB#3$'l.,r.rr i,-rrt-z -1/3.o (rrb-z) B S T I I Z B S -1/3'O (1/3,o) donbassl.te D-l[ -t/3ro ('t/3.o) ch].orlte C T B Or-1/3 ohlorl.te D T B alonbasslte D DA Cr-culorlte T BB 2',l c7 6zr+62 ( o61266) ia-I.I'b-G (rrb-4)) (q-rrb-+ C2/c 631163r.563 ( 65.i4651266) x1-Ib-3:1-Ib-5 {ia-rru-6:ir-lrt-+) c4 63a565r5o3 (66;12621266) x1-1b-5:r2-Ib-5 (i1-rrb-4:*2-rrb-4) c7 63a361T 5o1rj63 ( o5f5 o4r2 041666) ti.-rru-e:*r-rru-+i;r-rruz) (o,1/3) qo[lt_.r. lo-il) xa-Ila-1 (1..-!e-2 (Ia-2)) 0/3,o) 16;lr_16;l q6.ilt+l6,il) (ra-a) i'r-ta-t (xr-Ila-1 ) 1/3,-1/3 (-1/3.0) xz-Ila-1 (i.-ra-5 -l/3,O g/3r1/3) ci F?l r*r_ l6il 16llr r 16l-l i.Zi) d4i=l"l c2/c lo;lt_ lo;l lu;l ". cc cc 10 -l/3,o (-1/3,-1/3) -lbrA (ra-6)) -'t/3ro ir-ra-+:ia-ta-6 x?-IIa-5:x2-IIa-3 loilr loglt.loil (il-ra-e:irlre-2 I ftelr. lo4lr- loil) x"-If,a-1:xr-IIa-1 bil r+16;lr-l6il q6el'r_ I6ilr. loet) (ii-ta-+,*.r2u-a1 r+'r-+ l6blr_-r-l6hl i"- ra-2:ir-ra-2 164l q6;lr.t l6ilr-r_l6el)fii-ra-+:i]-ra-+ I ia-ta-G:ir-te-6 r+ l6ilr_ 166l l6GI (;z-IB-2:i3-Ia-2 ) {o21.r. lo4lr_ loip .c3661 d;l 12651 (6;l11qtr26iD B BB DA DI IrB . . . - Br1t1t[Ley et el' 1tJ0 Brorlr Balleyr 4963 Drltsr Al,exeadrovar 196? hlts' Ira6a^renko, 195? Ilster, B&1leyr 195? D-T cookeLte 1/ 3 , 0 ?'t /3,1/3) verhl.ou].lte MW I /3,o ( - 1/ 3 , 1 / 3 ) vernl.cu]-lte,,r"T oookelte 0 r o Cr-ohlor1te (o'o) . . - Tbl.s TA MW -1 /3,-1 /3 F1/3,o' ilW S SB Ihl-s Z W D-T oookelte 2 Te!o1ou11te,,J, I - 1 / 3 , O donbaesltD (-1 /3i /3) i,'-La-3:xr-IIa-6 (xr-IIa-2:-xr-Ta-'l) H*,:1"- **; T I CZln x4-fb-1:xa-Ib-5rx"-Ib-1 sa'lle ne'e pennl.ne B trnoobJ.orlte ohl.orlte pennlD€ A ch.Lori.te 11 Cz 61116.o L,Yn ,,9" T Mw D Dtr f 16 1 l,lathl.esoD, lilalker, 1954 Stelnflnkr 1958 Shlrozu, Ba11ey, 1956 thl.s uoxk ZtysgLnt 1953 'To s1opllfy the deElgnetl-oDs of oeatroEy@etrlc 2:1 layer sLng3.e oynbols 6i insteBd of double eynbolo 6;di are ueeil. In lnrentheoee axe gl.ven whl.ch corIespond elther altemetLve notatlona to an orlentetloa i,,, of the fbst layer or to a ceIl il1th ody one obll.que engle o( or P (yo ora-o). '*Botb structuree are corneoted by a reflexJ.o! ln a plaDe nornel to the b -axls or W 18oorotatlon aroutil tb€ 6 -ai.6. ***AU (oonpoeltloa illfferenoee theEe four etruotUres bel,ng negleoted) are 1t1 feot ooDgruent. Aft€r rotatlon rltb by 18Oe arourd, c*the struotures eyeD subeorlptg ld'l booaD€ equlvilt4t rotatloD by 1gO' to yerEl'ou].1.te,,i'i rbl-cb la 1ts tur! traaefera 1ato, yerol.ouflte,,g"after -axls , arouDil the c/2. ooobj.ned witb a tralllatLon 1044 VRUBLEVSKAJA, DELITSIN, ZVYAGIN. AND SOBOLEVA FIG. I Electron diffraction oblique texture pattern of the Djalair cookeite (inclination angle @ : 70'). calculated and measured D values. Taking into account that the reflections of the second ellipse have the hk indices20,r0,13, or I3, one can concludethat such a discrepancy is due to a small "triclinic" distortion of the lattice (a I 90"). As a consequencenot only p I 0 butalso s - b*.cos a* I O,so that in fact D : hp f ks * /4. This distortion does not affect the positions of the k : 0 reflectionsbut its influenceon the positions of the k + 0 reflections becomesmore pronounced as k increases.The splittingof the k + 0 reflections must lead in principle to an increaseof the number of reflectionsin an interval AD : q, but if s is small, this may not be revealed.lf I Fhhtl 11 | Fni,l , the inequality s I 0 is manifested only by small displacements of reflections against their theoretical "monoclinic" positions.For this reasonthe heightsD of the first ellipsereflections(k : 1,2) lead to rough but yet reliable-at least concerning the relation p/q-values p,q. The values of p,q so obtained indicatep/q < l/3. Therefore in the "monoclinic" sets of four reflections on the second ellipse, the outer reflectionsmust have indices 1.3l,13.l+1, while the i n n e r o n e sh a v e i n d i c e s2 . 0 . t + 1 , 2 0 1. l f s I 0 , e a c h -t3/ reflection 131,131,13/. splits into rwo reflections with opposite signs of k, one moving away from and the other toward a20l reflectionby a value AD : 3s. As a result the number of reflectionsin each set increases from 4 to 6. To seeall ofthem separately,sufficient resolution is needed.Otherwisethe closepairs of reflectionsappear to be single reflectionsand give the impression of a monoclinic structure. It is easy to show that for any p : q/3 + 6 a complete coincidence of these reflections takes place if s : 46, where D may be both ) and ( 0. The heightsof the second ellipse reflectionsgive a reliable q value and an apparent valuep' : S/3 - d', where6' : 26. Both by positions and intensities,the singlereflectionsl3/, l3l, 131,13/seem to be "monoclinic" 201and the coin- ciding reflectionsof the setsseemto be "monoclinic" 131,131,l3l,T3l (Zvyagin et al, 1972). The fact that only four reflections are distinguished in a set on the second ellipse is not yet complete evidenceon an exact coincidenceof the approached reflections.Therefore further analysisof the patterns s h o u l d b e b a s e do n t h e o u t e r r e f l e c t i o n sl 3 / , i . 3 . / + I of the sets.These are single and their situations can be measured with accuracy. Using the heights D of these reflections, a more exact value q may be calculated,for exampleby meansof the relationsq : (D'd' * h.sr+1)/(21 + l). Thereupon measuring the splitting of \kl,}klreflections adjacentto levelsD * /4-this splitting is more pronounced for reflections 041,041 of the third ellipse-one may establishthe s value as s : (Dom - Ds 1)/2k. With q and s known, the value of p can be obtained by using the noncoinciding reflections of the second ellipse. Thus the height difference AD of the outer reflections for each set ofsix reflectionsis equal to q * 6s - 2p and hence p:(q*6s-Lo)/2. In such a way the following relationshave beenobt a i n e d p: : 0 . 2 9 7 q , 6 : - 0 . 0 3 6 Qs, : 0 . 0 1 6 q , s : - 0 . 4 5 6 , t o w h i c h a u n i t c e l l c o r r e s p o n d sa: : 5 . 1 4 ,b : 8 . 9 0 ,c : 1 4 . 1 5A , a = 9 0 o 3 3 ' , 0 : 9 6 " 1 2 ' , 7 : 90". This chlorite is thus triclinic and contains one packet per repeat c. Low values for q and b as well as the intensity relation of the reflectionsof the sixth ( 2 6 1 , 4 0 1a) n d s e v e n t h( 1 7 1 , 3 5 1 , 4 2 l e ) l l i p s e si n d i c a t e that it may be di- or di,trioctahedral. In fact the structural formula (Lio.?Alr,)r..(Alr.r.Feo'.5nFeo1fr)r * 3u(OH)r.r,calculatedfrom the chem[Sisr8Alo.6r]o.ooro ical analyses(Table 2), correspondsto cookeite with a dioctahedral2:l layer (the degreeof octahedraloccupancy 1.99)and an almost trioctahedralhydroxide interlayer sheet (the degreeof occupancy 2.8). T,csl-B 2. Chemical Analysis of Dialair Cookeite+ Wt s102 a]-203 Fer0, Fe0 LL20 per cent uLL2v i+ 3e.25 44.28 1'3t o.48 2,00 1 3 .o o Total 99.33 *Analyst R.l.Teleshova COOKEITE FORMED BY BAUXITE ALTERATION The Polytype ldentification TAsr-s4. DistinguishingDiffraction Featuresof Three of the Cookeite According to theintensities of thesecond elipse reflections(Table 3), the structureof this cookeite s rc . sk r se t lso | o r i lnl Jl y Lt uhl E cJ Uor n fs rss fi .sb t usr o fppa a r re euol rn s -e p a-upKa s tc k e t f f i | . , |\._o "''.''i:f,::!iij.t iliit""ff||'tffi,:"f;0t"::,:'i:l''l' D/, p4-. D/n ';;'" glt=i""k|\' o p2 _ polytypesfrom di- and di,trioctahedral hht ,ofgi\!,t,,r,ifl.ll:.T:" satisfying the uniformity condition are possible, namelylo'solilroroloio!|, lo,lo'sl r1r- lo'so:rl,,lo'uo'ul gg r*r*lo'uo'ulwith correspondingsymmetry C2/n. C2, ;;; Cf . b"fy the one with symm etry C2 has been rio Trnrr 3. SecondEllipseReflectionsfor Trioctahedral and Di,trioctahedral Chloritesfrom Packets lo'l at p/a : l/3, s: 0 andat p/q : l/3 0.036, s/q = g.gru lil 131 )v o.z 13o 166 rz G1 o21 | tv '11 o.97 'l'o3 +.256 4'231 111 111 +h +t) tt) oo 1'2a 1'31 4'128 '13 ,to 4'1c ] zo 9.25 ?.5-29?7 15o4;5 2U 1/3 58 12e 3:?33:?28 iil llZ I t) 8Ol 0.5O 2.516 2OO t?? 2.tt? 1;l z.b4e ,o lr..?r73 3:3[,,,,n 4.43j +.+26 zn 13o o.es o.ts o."" 3:3i |i1 a7a 152 ' -3:333 112 a rf,*o rf,* E F2*,F2*-,**lr-i!{.A::r' hklq/!1-\t3, 158 5Bo 3Bo ,,^ 113 ii| 2/) o rl'p &t oz3 +2 3:fi2 i:3f" ''ZE re J ?o 80 I ! o. " 5h 2+ot+2o i:tr/ t':313 12 | ..* t:trtr t23 ''13 t? z I :2 i 1+ GB 2:'il 7/3 .. 32 Bh 84 j4 -a 4. 52 4 ^c 106 18 2.28 a:41 l.q9 t.5gi es 58 I "' Z:tr7 3:37_,,& i.u, 2-q', ,:6i 2.?!5i:1i6 't' -9.21 6'+ J 7s 1+o 1.25 2.506 7r2,-)A a1"; ?.oaa o.o iil +/, 135185 ],li ilir'. F,t ::Z 11:,$/3 *B 152 3:3tr?:ffii 8:3. t3't if" il| a-l? 41) ,i; 2Q2 13s 73i 5/j .It) 11 eh 1.3 1+2 .') \ 4| 855 s55 ii| 1o/3 23 i3 iY vh 11 13 ,134 i; lU i3/j 57 33 't1/3 50 18 i:29 3:tr1 i"rl 30 u, 11'X ',''1, 2.25 2.4o ?.278 2.361 z.)i1 2,60 Z.W 2.52 3. 31 gr y,I 2 ' 2^n + 4 l7+ ata 1tt r ? b -114 l'r+ '-i #Z 5 iZi i,i|i ,\ 10 11?,$t3 i}i, ili[A i\ | tt ) nh 2 .029 a + ,?5 15 1 , 7 112 16 +.?2 ?.o?se. 44 ,!,:?,i 3:%Z,?] 1.969 #E wD ?81 6 ny' 14/3 332 364 I:i;, i:ili i1: ;;: fi2 $h 1'455 3 5'25 -;135 3 10 't7/3 e 8 1e/3 34 63 135 16/3 206 iX 136 l:& 206 2o/3 640 5o4 lil 112 2?/3 145 ^125 AU j7 21 iil zi/3 7te 13s i39 zi/3 2@ 51 17 zG,3 ifi ttg ,.i.?9o 28/3 44 4e5 363 t.32 1.919 5.4O 1.e25 ili it.ilil lf ?l 4) 6.25 1.5s3 26 E:?i i.2tr2 1rl 6.Eo 'r.e+z txl ?:fi| 3:3ZZ u!'o] 77 t-:'Jt 2.7t+6 zr '' t+ 14 3+ 2:W ,9 4.o3 53 ] J ot4 # '(+ ?791 2io 1i: 112 #h z.ts ?.21? 2.258 4.50 2A+ i'.tr" 2.35 'i. 1 .. rb 18 +.2a a') ' 4$1 i:tr| 2.q!2 2.631 ?2 I 24 |i n," 66 2:T'1,_ l "' 56 104 t:'& 2:323 ? ] q 3 21 ?:fr 2:ff2 A I r ',9 12 32 )L 1) 2:trfi Z.1rZ i:trZ 5 .7" ]I to $ 7 , z Z:EZ X II ,, Z:r& v'vr 2:fr i:S "".ri G5 ? ' 50 (Dritsand amongthe naturalchlorites recognized 'zvalues Alexandrova, 1968, Table l). The [F[ 55 calculated usingthe first ellipse for thesestructures com- 1so reflections-namely, lll,TTl,111,111,021,021- 2q ;; l o i o i l r _ r _ l o i o i l , b u t i t s h o u l db e t a k e ni n t o a c c o u n t that in this cases ( 0, a ( 90". (Table4) indicatethat the i'.2tr3trZfr);;; paredto thoseobserved 1.7F 29, 50 cookeitestudiedhas the triclinic (Cl) structure i'.iTtr Zgl ?o (lo,,o1r*r*lo!p;1).Thesamestructureafter rotatll e tion by 180'aroundtheb axiswouldhavea notation i:?3? Z:fi? 7.?2 4:tl, i:23 1 ' 4 a z 7'75 s.22 e.ts 8.40 : 1.4?1i.+io ipt 3:ti i:733 1?JI no g:gi:i?iii ,i ."lJn,'Tffi'll1ff ;:ffit'"li'":"Ji",,"J"', e.25 1.3@ 't2o-,1oo featuresof this polytype (Fig. 2) in the lessperfect 1,+O3 electrondiffracti,onoblique texturepatternsof ,o*" ?s/373 67 ilgi ii1i 29r ;11""'.'#:J':T i:i:.Ts #*,i:ili1i:'ff:,1?,::fjllJ"TH 1046 VRUBLEVSKAJA, DELITSIN, ZVYAGIN, AND SOBOLEVA as a resultof the interactionof new Li-rich solutions with pyrophyllite. It should also be noted that the pyrophyllite formednot only alongmacrojointsbut alsoinsidethe bauxite mass along microslackeningzones (zones wheremicrocracks-splits,clefts,fissures-areabundant). This is proved by the presenceof cookeiteadmixed with pyrophyllite in bauxite,though in this casethe cookeiteis not so structurallyperfectas in tectonicslackeningzones.Accordingto petrographic and X-ray data,the emeryin the bauxitecontainsan appreciableamount of hematiteand a small amounr of corundum.On thesegroundsone can reasonably suggestthat iron is essentially absentin the processes. Therebythe absenceof the noticeableisomorphous replacementsof Fe for Al, that is natural for pyrophyllite and cookeite,is observed. References BArLEy,S. W., rNo B. E. BnowN (1962)Chloritepolytypism: I. Regularand semi-randomone-layerstructures.Am. Mineral. 47,819-850. BnrNoLnv,C. W., Brnvl OucsroN, nNn K. RosrlisoN(1950) Polymorphismof the chlorites.L Ordered structures./cra Crystallogr.3, 408-416. rk,t6 BnowN,B. E., mlo S. W. BATLEv (1963)Chloritepolytypism: IL Crystal structureof a one-layerCr-chlorite.Am. Mineral. 4t, 42-6t. llr,rm Dntrs, V. A , nro V. A. ALExANonovl(1968)Structureof rto,!q mineral from donbassitegroup-dioctahedral chlorite from New Land. Mineral. Collect.Luou Uniu.22, 162-167. -, ANDE. K. LnsennNro(1967)Structurahy-mineralogical featuresof donbassites. Mineral.Collect.Luou Uniu.2l.40-48. FIc. 2. Schemesof reflection distributions along the first (I) and second (II) ellipsesofthe cookeite oblique texture pattern in cases Lrsrsn,JuorrHS., eNo S. W. Berlry (1967)Chloritepolytypism: f V: Regulartwo-layerstructures.Am. Mineral. 52, 1614-1631. o f p l q = / : , s : 0 ( a ) a n d p l q = 0 . 2 9 7 ,s l q : 0 . 0 1 6 ( b ) . T h e t i n e MntulBsoN, A McL., ,ANnG. F. Wllxrn (1954)Crystalstruclengths are taken proportional to F values; dotted lines indicate ture of magnesium-vermiculite. Am. Mineral. 39, 231-255. theoretical positions of reflections not revealed experimentally. Sutnozu,Hnnuo, tNn S. W. Berr-Ev(t966) Crystalstructureof a two-layerMg-vermiculite.Am. Mineral 51, llZ4-1143. geneticsignificanceof this di,trioctahedralchlorite SrrtNrrNx,H. (1958a)Thecrystalstructureofchlorite.I. A monoclinicpolymorph.Acta Crystallogr. ll, l9l-195. polytype. (1958b)The crystalstructureof chlorite.IL A triclinic The cookeitestudiedformedduringa latestageof polymorph.Acta Crystallogr.14, 198-199. bauxite transformation, reconstructedas follows. ZvyecrN, B. B. (1963)The theory of chloritepolymorphism. Followingmetamorphicand, later, tectonicaction, Kristallografya, 8. 12-38. (1967)Electron-Difraction Analysisof Clay Mineral Structhe bauxitestratadevelopedlocal zonesof intensive, tures. Plenum Press,New York fine jointing. Silica-rich solutions circulated along -, K. S MrsurNro, exo S. V. SogoI-eve (1968)The structhesefine joints and reactedwith the aluminaof the tures of phyrophilliteand talc in the tight of polytypismof bauxite to form pyrophyllite. The formation of micalike minerals.Kristallografiya, f3, 599-604. pyrophyllite may indicate that rather high p,Z -, A. F. Feoorov, S. V. Sosor-Bve, luo K. S. MlsurNxo parametersexistedduring the mineral genesisand (1972)The reflectionofmonoclinicangleoflayer silicatesin the electron diffraction oblique texture patterns. Kristallografiya, also that alkalinecationswereabsentfrom the solur7.851-853. tions. The formation "il of the structurally perfect di,trioctahedralchlorite cookeite occurred in the zonesof later tectonicshearsin the pyrophyllitemass Manuscript receiued,August 29, 1974;accepted for publication,April 28, 1975.
© Copyright 2025 Paperzz