II6F Maths Welcome PDF File

Mathematics
Pre-Course Work
This work is important – please bring solutions to your
first lesson. This transition document is common to all
centres in the Cambridge Area Partnership. You will
have a test on the content covered herein at the
beginning of term.
Welcome to 6th Form Mathematics. This booklet is designed to
prepare you for studying Mathematics post-16 by focusing on
those topics from the GCSE course which have strong links to
Key Stage 5 Mathematics. These questions do not require the use
of a calculator.
Below is a list of resources you may find useful for guidance or
additional practice:
Mymaths
GCSE
Bitesize
MangaHigh
Maths Made
Easy
www.mymaths.co.uk
www.bbc.co.uk/schools/gcsebitesize/maths/algebra
www.mangahigh.com/en_gb/maths_games/algebra
www.mathsmadeeasy.co.uk/algebra/algebragcse.htm
Good luck!
Calculators
You will need a scientific calculator. IVC recommends a TI84+
and will put in an order in September. Other centres use
different models
"#$%&'#$()*!+,&-./0,*&!1/,2!
!
!"###
$%&'()*+,#
ଶ
ଵ
ଷ
ଶ
-.&/012,3!"#$%&$#'(!)*!! " ! !!!! !
!
/0$&'10,!)*!
ଶ
ଵ
ଷ
ଶ
%! " ! !
!
!
!
!
!
!
!
ହ
ଷ
ଷ
ଶ
ଵ଴
ଽ
&% " !
଺
଺
!
ଵଽ
& !
଺
!
!
!
!
!
&' !
#*!
!
(*!
3*!
!
4*!
ଵ
଺
!
4*5%#65%+3#
%*!
!
-*!
଼
ଽ
/0$&'10,!+*!
#
!
!
!
ସ
ଷ
଼
#,-!
ସ
ଽ
ସభ
଼
ଽయ
# !
మ
&
!
& # !
!
& !
ଵ
ଵ
ଶ
ଷ
ଷ
ସ
ହ
଺
ଷ
ସ
ହ
!
!
!
!
& $ !
!
&
!
& # !
!
2! ସ !
ଽ
ଷ
ସ
ହ
ଽయ
ସ
ଷ
ହ
ସ
ଵ
!
7*!
!
!
6*!
!
!
7"#
8&9,#*:#;+<)'2,#
!
-.&/012,3!
!
/0$&'10,!)*!
!
!
!
!
/189$14:;!<=1'1,5!#>!#!>1,5$(!90<(=?!!)*!@+!A!@B!
@+!A!@B!
2!@+!D!B!
2!@E!
!
4*5%#65%+3#
#*!
(ଶ # (ହ &!!
ସ
ଷ
3*!
' $ ' &!
%*!
!)଻ $ )ଷ # )ଶ &!
/0$&'10,!+*!
!
!
!
!
!
)ଽ $ )ଷ !
& )ଽିଷ !
& %)଺ !
-*!
*‫ ݔ‬ହ +ଷ &!
(*!
!
*ܽସ +ଷ $ *ܽଶ +ଷ &!
+*!)ଽ $ )ଷ !
!
.*!CB+*B!
/0$&'10,!.*!
!
!
!
4*!
!
-.&/012,3!!!"#$%&$#'(!'6(!G#$&(!<1'60&'!#!%#$%&$#'0=?!)*!BH.!
+*!I)J.!
/0$&'10,!)*! BH.!!
!
!
!
!
!
/0$&'10,!+*! I)J.!
!
!
&
!
!
&
ଵ
ହయ
య
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!& ξ,! !
ଵ
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2!+
ଵଶହ
!
௖ య #௖ మ
௖ళ
CB+*B!
2!B+!A!B!
2!B)F!
&!
ହ
# భ!
ଵହ
1*!
!
ଵ
( $ !
!
!
!
/0$&'10,!.*!
!
!
!
!
ଵ
5*!
!
ଷభ
!
ଵ
!.*!+ $ !
!
# !
!
&% " !
!
ଷ
+*! # !!
ଷ
!
4*5%#65%+3#
5*!!!!!!!!!!'ିଶ &!
6*!
భ
-଴ &!
ଷ
1*!
( # ' &!
7*!
(ଶ # 'ଶ &!
="#
>5%<,#
K*!
!
.)మ &!
$*!
(-య
భ
-.&/012,3#/189$14:;!<=1'1,5!#>!#!>1,5$(!>&=-!<6(=(!90>>13$(!)*!ξ' " (ξ'!!
/0$&'10,!)*! !ξ' " (ξ'! !
/0$&'10,!+*! ξ( # ξ/!
!
!
& 'ξ'!!
!
!
!
& ξ( # /!
!
!
!
& ξ!1!!
!
!
!
!
!
!
!
!
4*5%#65%+3#
!
!
-*!
'ξ. # ξ.!2!
#*!
'ξ- " (ξ- &!
3*!
)ξ( െ 'ξ( &!
(*!
ξ!,!2!!
%*!
'ξ- # ξ- &!
4*!
ξ'(!2!!
+*!ξ( # ξ/! .*!ξ01!
/0$&'10,!.*! ξ01!
!
!
& ξ0 # !1!
!
!
& ξ0 # ξ!1!
!
!
& 'ξ!1
5*!
ξ/)!2!!
6*!
ξ!( &
!
#
?"#
-.0&+<)+@#&+<#>)/01):A)+@#-.0%2,,)*+,#
-.&/012,3#LA9#,-!#,-!>189$14:!)*!@CA!D!+*!M!.CA!M!)*!
#,-!! +*!CA!D!@*CA!M!N*!
!
!
/0$&'10,!)*!! @CA!D!+*!M!.CA!M!)*!
/0$&'10,!+*! CA!D!@*CA!M!N*!
!
!
2!@A!D!I!M!.A!D!3!
!
!
!
2!@A!M!.A!D!I!D!3!
!
!
2!A+!M!+@!D!@A!M!NA!
!
!
2!A!D!11!
!
!
2!A+!M!+A!H!+@! !
!
!
4*5%#65%+3#
ଷ௫ା଺௬
4*!
CA!M!)*CA!D!)*!
#*!
N3+!D!B3!M!)!D!.3!D!@!
K*!
!
3*!
BCA!M!.*!
5*!
C.#!D!+*C#!M!)*!
%*!
H+C.A!D!)*!
6*!
C+3!M!.*C.3!M!+*!
-*!
.C@A!D!+*!D!BC+A!M!)*!
1*!
@CA:*!
(*!
BC+A!M!@*!M!+C.A!M!E*!
7*!
C.A*+!
B"#
$&'(*%),)+@#
-.&/012,3#
/0$&'10,!)*!!
!
!
!
!
)*!
OA:!D!)BA!
OA:!D!)BA!
!
.AC!!!!!!!!!!!!!!!!!!!!*!
.AC.:!D!B*!
!
ଷ
$*!
8*!
ସ
ଶ௫ାସ
!
ଶ
ହ௫ିଶ
!
+*!
A+!D!.A!D!+!
!
.*!
A+!M!O!
<=1'(!'6(!6156(>'!%0880,!4#%'0=;!P"Q;!0&'>1-(!'6(!3=#%K('>!
-1G1-(!30'6!9#='>!04!'6(!(A9=(>>10,!3:!'6(!P"Q!
%6(%K!:0&=!#,><(=!3:!8&$'19$:1,5!'6=0&56!'6(!3=#%K('>?!
!
/0$&'10,!+*! A+!D!.A!D!+!
!
!
CA!!!!!*CA!!!!!*!
!
!
CA!D!+*CA!D!)*!
!
/0$&'10,!.*! A+!M!O! !
!
!
CA!D!.*CA!M!.*!
#
4*5%#65%+3#
#*!
@A!D!I!2!!
!
!
/('!0&'!-0&3$(!3=#%K('>;!<=1'1,5!#,!A!1,!(#%6!0,(!
R61,K!04!'<0!4#%'0=>!04!+!'6#'!<1$$!#--!'0!.?!
!
!
O!#,-!A+!#=(!30'6!>S&#=(!,&83(=>T!'61>!1>!#!UVR/!S&(>'10,W!
#--!#,-!>&3'=#%'!'6(!>S&#=(!=00'>!1,!'6(!3=#%K('>?!
(*!
A+!D!@A!D!.!
1*!
A+!M!.N!
7*!
+A+!D!EA!D!B!
3*!
+#3!D!#-!
4*!
A+!D!IA!D!)B!
%*!
IA+!M!)FA!
5*!
A+!D!)+A!M!+I!
-*!
I#3+!M!@#+3!
6*!
A+!M!)EA!D!.F!
!
#
C"#
>*1D)+@#8)+2&%#-E5&()*+,#
-.&/012,3!
/0$G(!'6(!40$$0<1,5!(S&#'10,>!)*! 5 x 4 11 !!
/0$&'10,!)*! !
5 x 4 11
5 x 11 4
!
5x 7
7 y5
x
!
!
!
!
!
!
!
!
7
5
#
4*5%#65%+3#
#*!!
BA!D!E!2!.+!
!
3*!
-*!
%*!
+C+A!M!E*!2!E!
@A!M!B!2!+A!D!E!
#,-!
+*! 7 x 2 7 !
!
/0$&'10,!+*!
7 x 2 7
7 x 14 7
!
7 x 7 14 21
x 21 y 7 3
4*!
(*!
.9!D!+!2!B!M!9!
+!M!.C+A!M!B*!2!E!M!A!
5*!
ଷ௫ିଵଷ
଻
଺
௫
"
"
ଷ
ଶ௫
ଵଵିସ௫
ଷ
& 1!
ହ
& !
ଶ
#
F"#
$*%/51&2#
-.&/012,3#/&3>'1'&'(!1,'0!'6(!40$$0<1,5!40=8&$#(!'0!-('(=81,(!'6(!81>>1,5!G#$&(!)*!X4! x
<6(,! a 4 ;! b 12 !#,-! c 5 !
!
x ab c
4 u 12 5 4 u 12
2 and 5 is the same as 5
25
7
!
#
4*5%#65%+3#
ଶ
#*!
A!2!#3!D!%!
Q1,-!A!<6(,!#!2!ଷ;!3!2!O!#,-!%!2!H.!!
3*!
A!2!+#+!!
Q1,-!A!<6(,!ܽ & ସ!!
ଷ
!
ab c ;!41,-! x !
%*!
Y!2!@S=+!
Q1,-!=!<6(,!Y!2!N)N!!
-*!
#!2!3!M!Z%!
Q1,-!%!<6(,!#!2!N!#,-!3!2!)F!
(*!
G!2!&!D!#'!
Q1,-!#!<6(,!G!2!+)?B;!&!2!@!#,-!'!2!E!
#
#
-.&/012,3#[#K(! x !'6(!>&37(%'!04!(#%6!04!'6(>(!40=8&$#(T!!
)*! a x ab ! !
+*! xy w !!
#,-! !
!.*! f d x e !
!
/0$&'10,!)*!
a x ab
! a ab x
Treat ab as a single item; add ab to each side
Swap each side to give x
!
a ab
x
!
/0$&'10,!+*!
xy w
Remember that xy
x u y, you need to divide by y
w
y
x
!
/0$&'10,!.*!
f d x e
f dx de
f de dx
f de
x
d
f de
x
d
!
Firstly multiply out the brackets
Treating de as a single item; subtract de from each side
!
Divide by d
Swap each side to give x
#
#
4*5%#65%+3#
4*!
.A!2!3!
1*!
+C.A!M!)*!2!B:!
5*!
!ହ & ݀!
7*!
#A!2!3A!D!%!
6*!
4!2!@!M!A!
K*!
8A!2!&!M!+A!
௫
$*!
ξ‫ ݔ‬െ ( & ‫!ݕ‬
#
#
G"#
>*1D)+@#H5&<%&()'#-E5&()*+,#
-.&/012,3!
/0$G(!'6(!40$$0<1,5!S&#-=#'1%!(S&#'10,>T!)*! x 2 8 x 12 0 !!
#,-!! +*! y 2 13 y 40 0 ?!
!
/0$&'10,!)*!
X,!'6(!S&#-=#'1%!(S&#'10,! x 2 8 x 12 0 ;!'6(!(A9=(>>10,!%#,!3(!4#%'0=1>(-?!/0!CA!M!N*CA!M!+*!2!F!
\(!>('!(#%6!4#%'0=!9#1=!(S&#$!'0!](=0!'0!5('!0&=!'<0!>0$&'10,>?!!
A!M!N!2!F!
#,-!! A!M!+!2!F!
A!2!N!0=!+!
!
/0$&'10,!+*!
X,!'6(!(S&#'10,! y 2 13 y 40 0 ;!<(!6#G(! a 1 ;! b 13 !#,-! c
13 r 13 4 u 1u 40
2 u1
2
y
13 r 169 160
2
13 r 9
2
40 ?!/0!
13 r 3
2
13 3
13 3
or
2
2
#
4*5%#65%+3#
#*!
,+!D!B,!D!@!2!F!
-*!
A+!M!+A!M!N!2!F!
3*!
'+!M!@'!M!)+!2!F!
(*!
A+!M!NA!M!I!2!F!
%*!
A+!M!I)!2!F!
4*!
.A+!D!)FA!M!E!2!F!
#
I"#
>)/51(&+2*5,#8)+2&%#-E5&()*+,#
-.&/012,3#!
/0$G(!'6(!40$$0<1,5!9#1=>!04!>18&$'#,(0&>!(S&#'10,>!
7 x 2 y 32
5 x 2 y 26
)*!
!
!
!
!
+*!
!
x y 1
4x 3y 7
!
/0$&'10,!)*! !
!
!
!
/0$&'10,!+*!
U0&3$(!'6(!>(%0,-!(S&#'10,!'0!51G(!
[&$'19$:!'6(!41=>'!(S&#'10,!3:!.!#,-!
!
!
!
'6(!>(%0,-!(S&#'10,!3:!+!'0!51G(!
7 x 2 y 32 !
!
!
!
2 x 2 y 2 !!
15 x 6 y 78 !
/&3'=#%'!'6(!,(<!>(%0,-!(S&#'10,!!!
8 x 6 y 14 !
4=08!'6(!,(<!41=>';!#,-!>0$G(!'6(!! !
Y--!'6(!'<0!(S&#'10,>!#,-!>0$G(!
=(>&$'1,5!(S&#'10,!'0!41,-! x !!
23 x 92 !
!
!
!
5 x 30 !
x 4!
!
!
!
/&3>'1'&'(!1,'0!(1'6(=!04!'6(!0=151,#$!!
x 6 !!
/&3>'1'&'(!1,'0!(1'6(=!04!'6(!0=151,#$!!
(S&#'10,>!'0!41,-! y !
(S&#'10,>!'0!41,-! y ! !
!
!
5 x 2 y 26 !
!
!
!
x y 1 !!
Ÿ 20 2 y 26 !
!
!
!
Ÿ 6 y 1!!
2y 6 !
!
!
!
y 5 !
y 3!
#
#
4*5%#65%+3#
!
!
#*!
BA!M!.:!2!+.!
!
!
+A!D!.:!2!+N!
-*!
A!D!+:!2!@!
3*!
:!2!+A!D!)!
!
+A!D!:!2!B!
!
.:!D!)FA!2!E!
(*!
.A!M!N:!2!..!
%*!
BA!D!+:!2!))!
!
A!M!.:!2!)N!
!
.A!D!E:!2!HB!
5 or 8 !
#
!J"#
>(%&)@K(#8)+2#L%&0K,#
U=#<!'6(!5=#96!#,-!>'#'(!'6(!5=#-1(,'!#,-!:H1,'(=%(9'!40=!(#%6!$1,(?!
-.&/0123!:!2!.A!M!+!
L1'6(=!>('!&9!#!'#3$(!04!G#$&(>!'0!5('!>08(!%00=-1,#'(>!0=!50!>'=#156'!'0!'6(!5=#96!&>1,5!'6(!5=#-1(,'!
#,-!:H1,'(=%(9'?!
A!
H+!
F!
+!
:!
HI!
H+!
@!
!
:!2!.!A!H+!M!+!2!I!
:!2!.!A!F!M!+!2!H+!
:!2!.!A!+!M!+!2!@!
!
\6(,!<=1''(,!1,!'6(!40=8!:!2!8A!D!%!
௖௛௔௡௚௘%௜௡%௬
8!2!5=#-1(,'!2!௖௛௔௡௚௘%௜௡%௫!
%!2!:H1,'(=%(9'!
!
40=!'61>!(S&#'10,;!8!2!.!#,-!%!2!H+!
!
#
4*5%#65%+3 #
#*!
:!2!+A!D!)!
!
3*!
ଶ
‫ & ݕ‬ଷ ‫ ݔ‬െ '!
!
%*!
!
A!D!+:!2!N!