TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MAK 501 ENGINEERING MATHEMATICS FALL 2014 Due Date: 23.09.2014- Tuesday* HOMEWORK 1 In question 1 and 2 derive the general solution of the given equation by using an appropriate change of variables. 𝟏. 2 𝟐. 𝜕𝑢 𝜕𝑢 +3 =0 𝜕𝑡 𝜕𝑥 𝜕𝑢 𝜕𝑢 −2 =2 𝜕𝑡 𝜕𝑥 3. (a) Use the change of variables α = x + ct, β = x − ct to transform the wave equation (1) into ∂2 u ∂2 u = 0. (You should assume that ∂α ∂β = ∂α ∂β 𝜕2 𝑢 𝜕𝑡 2 ∂2 u ) ∂β ∂α 𝜕2 𝑢 = 𝑐 2 𝜕𝑥 2 (1) 𝜕𝑢 (b) Integrate the equation with respect to α to obtain 𝜕𝛽 = 𝑔(𝛽), where g is an arbitrary function. (c) Integrate with respect to 𝛽 to arrive 𝑢 = 𝐹(𝛼) + 𝐺(𝛽) where F is an arbitrary function and G is an antiderivative of g. In question 4 and 5 you are asked to solve the wave equation (1), subject to the boundary conditions (3), (4) and the initial conditions (5), (6) for the given data [equations are given in Asmar section 1.2]. 1 4. 𝑓(𝑥) = 0, 𝑔(𝑥) = 2 𝑠𝑖𝑛 5. 𝑓(𝑥) = 0, 𝑔(𝑥) = 5𝜋𝑥 𝐿 1 − 10 𝑠𝑖𝑛 8𝜋𝑥 𝐿 3𝜋𝑥 𝐿 *Ödevin geç getirildiği gün başına 15 puan kesilecektir. *Ödevleri Teknoloji Merkezi/Su Türbini Test Merkezi/ ZA-06 nolu ofis’e Ece Aylı’ya teslim ediniz.
© Copyright 2025 Paperzz