HDKBR Info 2012., broj 9

Godina / Year 2013
ZAGREB
Svibanj/ May
Broj / No 9
NDT WEEK in ZAGREB
7-12 October 2013.
Sadržaj / Content
Poruka predsjednice /A Message from the President
1
Ivana Banjad Pečur:
PRIMJENA NERAZORNIH ISPITIVANJA u GRAĐEVINARSTVU
2-6
Radovi održani na savjetovanju MATEST 2011:
Biljana TANATAREC,Nenad NIKOLIĆ;
AKREDITACIJA LABORATORIJA, NORME, ZAKONI i PROPISI EUROPSKE UNIJE
José P. SOUSA, Francisco DEMONY, Nuno PEDROSA,Telmo G. SANTOS, Pedro VILAÇA, Luísa QUINTINO;
DEVELOPMENT of AUTOMATIC SYSTEMS for NDT INSPECTION of WHEELS and PROPELLER BLADES of AIRPLANES
7-9
11-18
Predstavljamo vam:
Intervju: Goran Sofronić
Siegfried Vogelbacher
PREVENTIVE MAINTENANCE: FUNCTION and ADDED VALUE of PREVENTIVE THERMOGRAPHIC MEASUREMENTS
in the FRAMEWORK of INDUSTRIAL MAINTENANCE
19-21
NDT WEEK in ZAGREB
22-24
The Preliminary Program: CERTIFICATION 2013
25
HDKBR Centar za obrazovanje
HDKBR Centar za certifikaciju
28
29
Seminar:
Upravljanje rizikom & kontrola kvalitete temeljena na procjeni rizika
30-31
Pročitali smo za vas
ToFD ISPITIVANJE FAZNIM SONDAMA
32
Izdavač: HDKBR
Hrvatsko društvo za kontrolu bez razaranja
Publisher: CrSNDT
The Croatian Society for Non Destructive Testing
Direktor / Director:
mr.sc. Miro Džapo
HDKBR Info izlazi četiri puta godišnje/ distribucija 300 kom/broj
CrSNDT journal is published four times a year/circulation 300 each journal
Godišnja pretplata 300 kn
4 issues per year 40 Euro
Časopis je besplatan za članove HDKBR-a
The yournal is free for CrSNDT members
HDKBR Info možete pratiti na
www.hdkbr.hr
An online version is available
Tajništvo/Secretariat:
HIS, Petra Berislavića 6. 10000 Zagreb, RH
Tel: +385 (01) .....Fax:+385 (01).....
E-mail: hdkbr@hdkbr.hr,
Website: www.hdkbr.hr
Kontakt/Contact: Tijana Gadža
DOSTAVA PRILOGA
HDKBR poziva članove i sve koji imaju materijale interesantne čitateljima ovog
časopisa da ponude priloge. Znanstveni i stručni radovi će biti recenzirani od
strane međunarodno priznatih eksperata. Za reprodukciju publiciranih radova
i izvadaka treba osigurati dozvolu. Tekstovi i mišljenja autora u časopisu ne
moraju biti u suglasju sa stavovima HDKBR-a i uredništva. Uredništvo ne nosi
odgovornost za pogreške i propuste autora radova.
Urednik / Editor-in-chif:
prof.dr.sc.Vjera Krstelj
Berislavićeva 6
HR-10000 Zagreb, Croatia
Tel: + 385 1 48 80 985
Email: vk@hdkbr.hr
PAPER SUBMISSION
CrSNDT invites contributions that will be interesting for readers of HDKBR info
Journal. Technical papers submitted are peer-reviewed by an Internationaly recognised experts. Permition should be obtained for reproduction of individual artlices
and extracts.the Articles and views expressed in the publication are not necessarily
in line with CrSNDT, editor and editorial. No liability is accepted for errors or omission.
OGLAŠAVANJE/ADVERTISEMENT
Cijena oglašavanja/The cost for advertising is:
Uredništvo, tehn/Editorial, tech.
mr. sc. Irena Leljak
mr.sc. Ivan Smiljanić
Lektor / Lector
Marina Manucci, prof.
Davor Nikolić, prof.
Priprema za tisak/Production:
Sandro Bura
Stranica/Page in yournal
Cijena za 4 broja /Cost for 4 numbers per year
Zadnja/The last page
(cover page A4 size)
8000 kn
1080 Euro or 1380 $ (US)
Unutarnja/Inside pages (A4 size)
4000 kn
540 Euro or 690 $ (US)
Unutarnja/Inside pages
(A4/2 size; half page)
2000 kn
270 Euro or 395 $ (US)
Cijena oglasa u samo jednom broju iznosi pola cijene godišnjeg oglašavanja. The
price of advertisement published (in only one journal number) is half of the yearly
cost.
vog
d
ova
osi
gs
ly
is-
year
US)
Poruka predsjednice
Poštovani čitatelji, dragi kolege i kolegice, s radošću i veseljem vas obavještavam da
će Zagreb, sjedište HDKBR-a, imati čast i zadovoljstvo ugostiti mnoge značajne osobe koje brinu i uvelike unapređuju našu profesiju, primjenu nerazornih ispitivanja.
Jeste li se već uključili?
NDT week in ZAGREB;
7-12 October 2013
Upravo tako nazovimo taj tjedan, na engleskom jeziku i međunarodno razumljivo,
jer taj tjedan u Zagrebu ćemo imati prilike družiti se s onima koji se mogu uvrstiti u
najznačajnije, najpoznatije i najzaslužnije osobe u svijetu KBR-a.
Na popisu onih koji su se već do sada uključili možete naći imena vrijedna posebne pozornosti. Teško je sve
nabrojiti, ali tu je već sada predsjednik ICNDT-a, predsjednik EFNDT-a, zatim najzaslužniji za normizaciju i
spajanje EN473 i ISO9712 u zajedničku normu koja osigurava jednostavniji sustav certifikacije kadra u KBRu. Sastanke će održati EFNDT-ov Upravni odbor, odbori za certifikaciju EFNDT-a i ICNDT-a te radna skupina
za sigurnost, sudionici EU projekta Leonardo i drugi.
HDKBR ovom prigodom obilježava 50-u obljetnicu. Svi ste pozvani na prijam, svi koji HDKBR smatrate svojom udrugom, prijateljskim društvom i udrugom s kojom dobro surađujete.
Pridružite nam se i podržite HDKBR u nastojanjima i uspješnom sudjelovanju u razvoju i napretku KBR profesije za dobrobit široke zajednice, općeg razvoja tehnologija, kvalitete i sigurnosti. U časopisu su dani samo
osnovni podatci, a više nađite prateći www.CERTIFICATION2013.com.
A message from the President
Dear readers, dear colleagues,
It is with great pleasure and joy that I may inform you that Zagreb, the CrSNDT headquarters, will have the honour
of hosting many distinguished persons who care for and greatly improve our profession – Non-Destructive Testing.
Have you joined already; have you recognized yourself in this?
NDT Week in ZAGREB;
7-12 October 2013
Let us call this week precisely that, in English and at an international level, since it will be a week in Zagreb in which
we will have the chance to enjoy the company of those who may be the most significant, best-known and most meritorious persons in the world of NDT.
On the list of those who have joined until now you may find names that really deserve special attention. It would be
difficult to mention them all, but among others the list includes the ICNDT President, the EFNDT President, most
deserving for the standardization and combining of EN473 and ISO9712 into a joint standard which ensures a simpler NDT personnel certification system. Meetings will be held by the EFNDT BoD, committees for the certification
on the European and world level and by a EFNDT WG5, group for safety, participants in the EU project Leonardo,
and others.
On this occasion CrNDST is celebrating its 50th anniversary. You are all invited to a reception, all of you
who consider CrNDST your society or friendly society and association with which you cooperate well.
Join us and support CrNDST in its efforts and successful participation in the development and advancement of
the NDT profession to the wellbeing of the wider community, general development of technologies, quality and
safety. You will find just the basic data in the Journal, but please look for more at www.CERTIFICATION2013.com.
S)
S)
The
arly
Prof. Vjera Krstelj, Ph.D.
1
PRIMJENA NERAZORNIH ISPITIVANJA U GRAĐEVINARSTVU
prof.dr.sc.Ivana Banjad Pečur
APPLICATION OF NON-DESTRUCTIVE TESTING IN CIVIL ENGINEERING
PRIMJENA NERAZORNIH ISPITIVANJA U GRAĐEVINARSTVU
Summary
Testing properties of materials and structures using non-destructive testing today it is an everyday
necessity in modern the construction industry. Mostcommonly used methods of non-destructive testing of reinforced concrete structures are presented in the paper. Some of these methods are: visual
inspection, Schmidt hammer, ultrasound, rebar detection system, galvanostatic pulse measurements
technique and air permeability. For each method are given the main features and the possibility to use
a certain
method to determine the specific properties of materials and structures.
Key words: non-destructive testing, visual inspection, Schmidt hammer,ultrasound, properties
of durability
1. UVOD
Poput ostalih tehničkih područja građevinarstvo koristi ispitivanja kako bi se došlo do novih spoznaja o
građevinama i materijalima od kojih su te građevine
izrađene. Rezultati tih ispitivanja osim što služe kao
izvor novih spoznaja, koriste se kao kontrola postignute kvalitete tijekom izvedbe građevine, te kao
kontrola promjene svojstava tijekom uporabnog
vijeka. Sama ispitivanja prema načinu djelovanja
na materijal/konstrukciju mogu biti s razaranjem,
polurazaranjem i nerazorna.
Nerazorna ispitivanja imaju višestruke prednosti u
odnosu na ona s razaranjem: moguće je ponavljanje
ispitivanja na istom uzorku ili mjestu konstrukcije,
ispitivanja istog uzorka tijekom uporabnog vijeka,
ispitivanje većeg broja uzoraka odnosno veći broj
mjernih mjesta na konstrukciji, ispitivanje istog
uzorka ili istog mjernog mjesta na konstrukciji s
više različitih metoda. Ovo posljednje iznimno je
važno kod kompozitnih materijala (kao što je beton) u svrhu kontrole kvalitete rezultata. Nedostatak nerazornih ispitivanja jest u tome što je za interpretaciju rezultata ispitivanja potrebno iskustvo
te je potrebno stručno i iskusno osoblje.
U građevinarstvu se nerazorna ispitivanja koriste više
desetljeća, a neka suvremenija ispitivanja trajnosnih svojstava materijala razvijena su u posljednjih
2
20-30 godina. Svrha provođenja ovih ispitivanja:
znanstvena istraživanja, kontrolna ispitivanja tijekom proizvodnje i kontrolna ispitivanja tijekom
eksploatacije.
U ovom članku biti će prikazana nerazorna ispitivanja koja se koriste kod pregleda armiranobetonskih građevina. Najčešća svrha tih ispitivanja
jest određivanje stanja betona i čelične armature
ugrađenih u konstrukciju u različitim starostima
građevine. Uz to, nerazorna ispitivanja se koriste i u
svrhu kontrole kvalitete materijala tijekom izvedbe
konstrukcije.
2. VIZUALNI PREGLED
Prva i osnovna metoda koja se koristi kod pregleda
armiranobetonskih (AB) građevina ili za kontrolu
građevnih proizvoda kod ugradnje jest vizualni
pregled. U normama i specifikacijama za betonske
radove navedeno je da se dodatna ispitivanja svojstava rade ako je uočeno ili se sumnja u zadovoljenje pojedinih zahtjeva kvalitete. Za postojeće veće
AB - građevine, kao što su na primjer mostovi, propisani su obvezni periodički pregledi. Tako se redovni
pregled mostova radi svakih 5 godina, a taj pregled
Na temelju vizualnog pregleda određuju se mjesta
na konstrukciji gdje će se provoditi detaljna ispitivanja betona i armature, a koja uključuju ispitivanja
s razaranjem i bez razaranja. Ta detaljna ispitivanja, pogotovo nerazorna u pravilu se ne rade na
površinama betona koja su svrstana u 3, 4 i 5 kategoriju oštećenja jer su to mjesta gdje je vizualnim
pregledom utvrđeno da je potreban popravak konstrukcije na tim mjestima. Na Slikama 1 i 2 prikazana su tipična oštećenja AB - konstrukcije mosta
koja se prepoznaju u vizualnom pregledu.
Tablica 1. Kategorizacija oštećenja površine betona
K ategorije
oštećenja
Opis
0
Nema oštećenja
1
2
3
4
5
Manja oštećenja kao posljedica
izvedbe
Manja oštećenja kao posljedica
eksploatacije
Oštećenja koja dugoročno
smanjuju trajnost građevine i
potreban je popravak
Oštećenja koja u dogledno
vrijeme mogu smanjiti
pouzdanost građevine i popravak
je odmah potreban
Oštećenja koja predstavljaju veću
opasnost za sigurnost građevine.
Potrebna je hitna intervencija, a
prema potrebi i ograničenje i
zatvaranje prometa.
Uz tablicu u kojoj su dani postoci oštećenja u pojedinoj kategoriji za sve elemente konstrukcije daju se
još i nacrti s razvijenim površinama svih elemenata s
ucrtanim mjestima oštećenja prema vrsti oštećenja
(npr. segregacija, boja hrđe, pukotine, odlamanja,
...). Prilikom provođenja vizualnog pregleda koriste
se i druga pomagala za lakše uočavanje oštećenja:
fotoaparat (za izradu fotodokumentacije), defektoskop za pregled teže dostupnih mjesta (npr.
kod ležajeva na stupovima ili upornjacima), čekić
za otkrivanje odlamanja ili postojanje šupljina ispod površine betona, mikroskop i povećalo za
određivanje širine pukotina. Za preglede elemenata
pod vodom koriste se roboti s daljinskim upravljanjem i kamerom za podvodno snimanje.
Slika 1. Detalj oko odvodnje sjevernog mosta,
prisutna korozija armature i odlamanje zaštitnog
sloja betona
Slika 2. Oštećenja pješačke staze i vijenca na mostu
Za obavljanje vizualnog pregleda konstrukcija često
je potrebno koristiti različite dizalice, pomične platforme ili specijalna vozila kojima bi se omogućio
pristup svim mjestima na konstrukciji. Na Slici 3
prikazano je specijalno vozilo Barin kakvo imaju
Hrvatske ceste d.o.o. za potrebe pregleda mostova.
Faze u provedbi vizualnog pregleda: zahtjev za
provedbu vizualnog pregleda, definiranje radnog
zadatka, priređivanje podloga za provedbu pregleda, provedba pregleda, obrada rezultata vizualnog
pregleda, izrada izvješća s ocjenom stanja objekta, arhiviranje dokumentacije i predaja izvještaja
naručitelju.
3
PRIMJENA NERAZORNIH ISPITIVANJA U GRAĐEVINARSTVU
uključuje vizualni pregled kao nužnu metodu za
otkrivanje nedostataka i oštećenja na površini AB
- elemenata konstrukcije. Vizualnim pregledom
određuju se mjesta na konstrukciji s različitim vrstama oštećenja kao što su mjesta segregacije betona,
zračnih pora na površini betona, pojava pukotina (s
bilježenjem širine pukotine), boja hrđe na površini,
izluživanje betona, mrvljenje i odlamanje betona,
otpadanje zaštitnog sloja betona do armature. Na
temelju snimanja oštećenja radi se vizualna kategorizacija na način da se za svaki pojedini element
konstrukcije kategorizira odnosno da se odrede
postoci oštećene površine pojedinog elementa koji
spadaju u određenu kategoriju u odnosu na ukupnu površinu elementa. Kod nas je uobičajeno da
se kategorizacija radi prema DIN 1076, smjernice
RI-EBW-Pruf 88, a u Tablici 1 prikazana je kategorizacija oštećenja.
PRIMJENA NERAZORNIH ISPITIVANJA U GRAĐEVINARSTVU
Slika 3. Specijalno vozilo Barin za preglede mostova
Vizualni je pregled na prvi pogled jednostavna metoda, ali treba biti oprezan jer vizualni pregleda
daje pouzdane rezultate, ako ga provode stručne i
iskusne osobe.
3. SKLEROMETAR
Jedna od najčešćih nerazornih metoda koja se koristi kod utvrđivanja kvalitete betona u konstrukciji
jest sklerometar. Ispitivanje se provodi prema normi HRN EN 12504-2. Sklerometrom (Slika 4) mjeri
se indeks odskoka igle sklerometra, a koji ovisi o
površinskoj tvrdoći betona. Moguće je ispitivati i
vertikalne i horizontalne plohe kao i one nagnute
pod nekim kutom.
4. ULTRAZVUK
Nerazorno ispitivanje metodom ultrazvuka ima
vrlo široku primjenu u više tehničkih područja pa
tako i u građevinarstvu. Ultrazvuk se kao nerazorna metoda koristi za određivanje homogenosti betona, detektiranje šupljina i gnijezda ispod
površine betona, određivanje dubine pukotine u
betonu te posredno za određivanje tlačne čvrstoće
betona uz poznavanje faktora konverzije između
tlačne čvrstoće izračunate iz brzine ultrazvučnog
vala (izravnim prolazom) u betonu i tlačne čvrstoće
betona. Ultrazvukom se može odrediti dinamički
modul elestičnosti betona iz izračunate brzine
ultrazvučnog vala, gustoće betona i Poissonova koeficijenta prema formuli:
gdje je:
Ebd – dinamički modul elastičnosti, GPa
v – brzina ultrazvučnog vala izmjerena izravnim
prolazom, km/s
ρ– gustoća betona, kg/m3
µ– Poissonov koeficijent
Slika 4. Digitalni sklerometar tipa Digi Schmidt (broj
ND -1-2983-1234) proizvođača Proceq iz Švicarske
Analizom izmjerenih indeksa odskoka moguće je
odrediti ujednačenost kvalitete, homogenost betona, a posredno i tlačnu čvrstoću betona (tlačna
čvrstoća u dobroj je korelaciji s tvrdoćom betona). Da bi se odredila tlačna čvrstoća iz indeksa
sklerometra potrebno je prije utvrditi faktore korelacije između rezultata tlačne čvrstoće i indeksa
sklerometra za određenu vrstu betona ugrađenu u
konstrukciju. Komponente betona i njihov udjel u
ukupnom sastavu betona imaju najveći utjecaj na
indeks sklerometra. Kada se utvrdi faktor korelacije,
onda je dopušteno iz izmjerenih indeksa sklerometra odrediti tlačnu čvrstoću betona.
4
Određivanje homogenosti ugrađenog betona i
određivanje dubine pukotina u betonu provodi se
mjerenjem brzine prolaska ultrazvučnog vala kroz
beton sukladno normi HRN EN 12504-4:2004.
Na Slici 5 prikazan je ultrazvučni uređaj tipa Tico
proizvođača Proceq iz Švicarske za mjerenje vremena prolaska vala kroz beton
Slika 4. Ultrazvučni uređaj tipa Tico
Tablica 2. Kriteriji za kvalitetu ugrađenog betona
određenog mjerenjem brzine prolaska ultrazvuka
(Građevinski godišnjak, 1995)
Brzina ultrazvuka (m/s)
> 4000
3000 - 4000
< 3000
Kvaliteta betona
Dobra
Srednja
Loša
Ako je potrebno odrediti dubinu pukotine u betonu,
onda se provodi mjerenje vremena prolaza na način
da su sonde ultrazvuka (predajnik i prijamnik)
simetrično udaljene od pukotine (na udaljenosti x) i
potrebno je izmjeriti vrijeme prolaza kroz „zdravi”,
nenapuknuti beton kada su sonde međusobno na
udaljenosti 2x.
Za određivanje dubine pukotine u betonskim elementima koristi se sljedeći izraz:
Točan položaj potrebno je odrediti jer se na tim
mjernim mjestima rade druga nerazorna ispitivanja
u svrhu ocjene stupnja korodiranosti čelične armature u betonu. Tijekom mjerenja na površini betona
ucrtava se položaj armaturnih šipki i upisuje debljina betona zaštitnog sloja do armature.
Točnost mjerenja ograničena je u slučajevima
preklapanja armature i ugrađenih mreža, sidara i
drugih metala, slučajevima prisutnosti agregata s
magnetskim svojstvima u betonu te kod većih debljina zaštitnog sloja betona (> 8 cm).
6. ODREĐIVANJE TRAJNOSNIH SVOJSTAVA
Određivanje trajnosnih svojstava betona u prvom
redu svojstava propusnosti fluida, od iznimne je
važnosti. Vrlo je važno ispitati ta svojstva u fazi projektiranja sastava betona na uzorcima u laboratoriju, ali isto tako provjeriti svojstva propusnosti na
konstrukciji u fazi gradnje, ali i tijekom eksploatacije. Uz ispitivanje svojstva propusnosti također je
bitno odrediti vjerojatnost pojave korozije čelične
armature u betonu.
6.1. Kartiranje polučelijastih potencijala
gdje je:
h – dubina pukotine (mm)
x – duljina puta od pukotine do sonde (mm)
Ts – srednje vrijeme prolaska ultrazvuka kroz beton
bez pukotine (μs)
Tc - srednje vrijeme prolaska ultrazvuka kroz beton
s pukotinom (μs)
5. TRAGAČ ARMATURE
Za određivanje položaja armature u betonu, kao i
debljine zaštitnog sloja betona do armature koristi
se uređaj tragač armature (slika 5). Tragačem armature moguće je odrediti razmak između šipki armature te međusobni položaj horizontalne i vertikalne
armature u elementu betonske konstrukcije.
Slika 5. Tragač armature tipa Profometar 5,
proizvođača Proceq
Za ocjenu napredovanja korozije armature ugrađene
u beton, što je danas jedan od najčešćih uzroka
oštećenja betonskih konstrukcija koja iziskuju
skupe popravke, služi metoda polućelijastog potencijala (E, mV)
U sklopu korozijskog monitoringa i ispitivanja stanja armature provode se ispitivanja polućelijastog
potencijala (E, mV), gustoće korozijske struje (icorr,
µA/cm2) i električnog otpora betona (R, kΩ). Uređaj
za provođenje galvanostatičke impulsne metode je
GalvaPulse, proizvođača Germann Instruments iz
Danske (Slika 6).
Slika 6. Uređaj GalvaPulse
Sustav se postavlja električnim spajanjem na armaturu i postavljanjem senzora s referentnom i protuelektrodom na betonsku površinu preko vlažne
spužve, kako bi se omogućio električni kontakt.
5
PRIMJENA NERAZORNIH ISPITIVANJA U GRAĐEVINARSTVU
Kriteriji za ocjenu kvalitete betona ispitanog mjerenjem brzine prolaska ultrazvučnog pulsa dani su u
Tablici 2.
Galvanostatičkom impulsnom metodom nameće
se struja u rasponu od 5 µA do 400 µA, a tipično je
trajanje impulsa od 5 do 10 sekundi. Slaba anodna
struja rezultira promjenom potencijala armature,
koja se bilježi kao funkcija vremena polarizacije.
Uz pomoć izmjerenih vrijednosti polućelijastog potencijala i električnog otpora betona moguće je ocijeniti vjerojatnost pojave korozije prema utvrđenim
vrijednostima danim u Tablici 3, 4 i 5.
6.2. Ispitivanje zrakopropusnosti
Ispitivanje zrakopropusnosti provodi se uz pomoć
uređaja Perme@TORR, prikazanog na Slici 7.
Uređajem se ostvaruje vakuum na površini betona unutar dviju komora. Prilikom ispitivanja u
unutrašnjoj komori stvori se podtlak od 30 mbar
te se prati povećanje tlaka u komori do kojeg dolazi
zbog ulaska zraka iz pora u betonu u unutrašnju komoru uređaja.
PRIMJENA NERAZORNIH ISPITIVANJA U GRAĐEVINARSTVU
Tablica 3. Odnos polućelijastog potencijala i vjerojatnosti pojave korozije [ASTM]
Potencijal E [mV]
u odnosu na Ag/AgCl
Vjerojatnost pojave
korozije
E > -119mV
-119mV < E< -269mV
E < -269mV
< 10 %
nepouzdano
< 90 %
Tablica 4. Odnos električnog otpora betona i stupanj pojave korozije [RILEM TC 154-EMC]
Električni otpor
betona
Kriterij za procjenu
> 100 kΩcm
Nemoguće je razlikovati aktivni od pasivnog čelika
50 - 100 kΩcm
Nizak stupanj korozije
10 - 50 kΩcm
< 10 kΩcm
Srednji do visok stupanj korozije
Otpornost više nije parametar
koji određuje stupanj korozije
Tablica 5. Odnos gustoće korozijske struje i vjerojatnosti pojave korozije [Clear]
Gustoća korozijske
struje
icorr [µA/cm2]
< 0,5
0,5 - 2,7
2,7 - 27
> 27
Tablica 6. Razredi betona prema koeficijentu zrakopropusnosti kT [Torrent]
Razred
PK1
PK2
PK3
PK4
PK5
PK6
7. ZAKLJUČAK
Kriterij za procjenu
Ne očekuje se korozija
Korozija je moguća za 10 do
15 godina
Korozija se očekuje za 2 do
10 godina
Korozija se očekuje za 2
godine ili manje
Iz izmjerenih podataka o srednjoj godišnjoj gustoći
korozijske struje, icorr (µA/cm2), moguće je
koristeći Faradeyev zakon izraziti brzinu korozije
kao potrošnju armature po godini, Bk (mm/god),
prema sljedećem izrazu:
Bk = 0,01163 × icorr
6
Slika 7. Mjerenje zrakopropusnosti uređajem
Perme@TORR
Iz rezultata ispitivanja moguće je izračunati koeficijent zrakopropusnosti kT u m2 te prema vrijednosti koeficijenta kT svrstati beton u određeni razred kvalitete. U Tablici 6. dani su kriteriji za ocjenu
kvalitete betona ovisno o vrijednosti koeficijenta
zrakopropusnosti.
kT [10-16 m2]
< 0,01
0,01 – 0,1
0,1 – 1,0
1,0 – 10
10 - 100
> 100
Propusnost
Jako mala
Mala
Srednja
Velika
Jako velika
Iznimno velika
Danas se u građevinarstvu sve češće koriste nerazorne metode ispitivanja materijala i elemenata
konstrukcija radi kontrole kvalitete proizvodnje,
ali i radi određivanja stalnosti svojstava. Prednost
je takvih nerazornih metoda i to što se ispitivanja
mogu ponavljati u različitim razdobljima na istom
ispitnom uzorku ili mjestu, te se rezultati prikupljaju u svrhu praćenja (monitoringa) promjene
svojstava. Također je na istom ispitnom uzorku ili
mjestu moguće provesti više vrsta ispitivanja čime
se dobiva potpunija slika o strukturnim svojstvima materijala ugrađenog u konstrukciju. U ovom
su radu prikazana nerazorna ispitivanja koja se
najčešće koriste u praksi. Svakako treba spomenuti
i nerazorna ispitivanja koja nisu toliko uobičajena i
tek se provode u svrhu istraživanja, ali i upoznavanja korisnika konstrukcija s mogućnostima suvremenih ispitivanja kao što su impact echo, akustična
emisija, infracrvena termografija i druga.
AKREDITACIJA LABORATORIJA, NORME, ZAKONI I PROPISI EUROPSKE UNIJE
Biljana TANATAREC, DORON NET d.o.o., Zagreb, HRVATSKA, btanatarec@doron-net.hr
Nenad NIKOLIĆ, HRVATSKI ZAVOD ZA NORME, Zagreb, HRVATSKA, nenad.nikolic@hzn.hr
SAŽETAK - Mandat M/451 EN europskim organizacijama CEN-u, CENELEC-u i ETSI-ju u okviru kojeg bi
se uredilo područje akreditacije laboratorija dodijeljen je od strane Europske unije krajem 2007. godine. Europske normizacijske organizacije CEN, CENELEC i ETSI su taj mandat prihvatile i u radu su opisani daljnji
postupci tih organizacija na izradi normi u okviru dodijeljenog mandata kao i novi zakonski propisi Europske
unije koji reguliraju to područje. U radu su prikazane i najnovije izmjene popisa normi koje ulaze u mandat
M/451 EN koje se očekuju krajem 2011. godine.
Ključne riječi: normizacija, akreditacija, laboratorij, novi pravni okvir, mandat M/417 EN
ACCREDITATION OF LABORATORIES, STANDARDS AND SUPPORTED LEGISLATION
IN EUROPEAN UNION
ABSTRACT – Mandate M/451 EN was assigned to the European organizations CEN, CENELEC and ETSI , under
which the field of laboratory accreditation would be regulated, was assigned by the European Union at the and of
year 2007. European organizations CEN, CENELEC and ETSI have accepted the mandate and this paper describes
their work on the development of standards under the assigned mandate and the legal regulations governing the
area. The most recent amendments to the list of standards covered by the M/451 EN mandate expected to be made
by the end of year 2011 are presented as well.
Key words: standardisation, accreditation, laboratory, new legal framework, mandate M/417 EN
1. UVOD
2. MANDAT EUROPSKE KOMISIJE M/417 EN
Prilikom revizije strategije Novog pristupa [1] u
veljači 2007.godine Europska komisija je prihvatila
cijeli paket mjera pomoću kojih će se uspostaviti i
podržati novi strategijski sustav propisa i zakona
nazvan New Legislative Framework (Novi zakonski
okvir - NZO) za stavljanje proizvoda na tržište Europske unije. Kada je taj strategijski sustav zakona
i propisa u tom području prihvaćen krajem 2008.
godine od strane Savjeta Europske unije i Skupštine
Europske unije ukazala se potreba za usklađivanje
starih i izradu novih normi u području akreditacije, ocjenjivanja sukladnosti, sustava upravljanja
kvalitetom i drugih kako bi se omogućila neposredna
primjena tog strategijskog sustava zakona i propisa.
Krajem 2007. godine a u okviru priprema za realizaciju sustava NZO objavljen je mandat M/417 EN
Europske komisije europskim organizacijama CENu, CENELEC-u i ETSI-ju [3]. U okviru tog mandata
bi se uredilo, između ostalog, područje akreditacije
laboratorija. Europske organizacije CEN, CENELEC
i ETSI su taj mandat prihvatile.
Pored toga, direktive sustava Novog pristupa (New
Approach) koje su na snazi kao i Globalnog pristupa
(Global Approach) također koriste neke od normi iz
tih područja. Istovremeno, različita područja poput
zaštite okoliša [2] upotrebljavaju također norme
koje su po svojoj strukturi i namjeni vrlo slične normama iz sustava NZO pa bi i njih trebalo vremenom
osuvremeniti i međusobno uskladiti u okviru jedinstvenog sustava.
Bez rezultata laboratorijskih ispitivanja, među kojima značajno mjesto zauzimaju ispitivanja bez
razaranja, nema niti adekvatne zaštite tržišta, radnika, kupaca i korisnika. Uočilo se da dosadašnji
mehanizmi nisu dovoljno učinkoviti kako bi se na
velikom području kako proizvoda i usluga tako i velikih zemljopisnih i populacijskih razmjera ostvarila učinkovita zaštita života i zdravlja ljudi, zaštita
okoliša ili održivog razvoja. Stoga se u jednu ruku
potiču normizacijske organizacije na daljnji razvoj
nužno potrebnih normi dok se u drugu ruku sve više
pooštravaju zakonski uvjeti kako bi se te norme što
šire primjenjivale u sve većem broju slučajeva. Na
neki način se iskazuje sve dublja zainteresiranost
Europske unije da se primjena normi i akreditacija
organizacija za određene poslove sve više koristi kao
7
MATEST 2011
Biljana TANATAREC, DORON NET d.o.o., Zagreb, CROATIA, btanatarec@doron-net.hr
Nenad NIKOLIĆ, HRVATSKI ZAVOD ZA NORME, Zagreb, CROATIA, nenad.nikolic@hzn.hr
sredstvo za poboljšanje stanja kvalitete i sigurnosti
proizvoda na europskom tržištu. Tome se pridaje
još veći značaj izravnim upućivanjem na norme bilo
unutar pojedinih zakonskih propisa bilo u njihovim
dodacima i prilozima.
U trenutku dodjele mandata postojala je ovakva situacija:
Dio međunarodnih normi iz područja od interesa
bio je već prihvaćen kao europske norme ali nisu
bile harmonizirane, tj. nisu implementirane u sustave članica niti su povučene oprečne nacionalne
norme i propisi koji se na njih pozivaju.
MATEST 2011
Dio potrebnih međunarodnih normi iz područja od
interesa nije uopće bio prihvaćen u europsku normizaciju i potrebno ih je što prije prihvatiti.
Područja od interesa u okviru ovog mandata su:
1.
Norme iz područja akreditacije
2.
Norme iz područja ocjenjivanja sukladnosti
3.
Norme iz područja osiguravanja kvalitete
4. Opće norme
5.
Norme iz područja zaštite okoliša
3. UREDBA O AKREDITACIJI
Europska komisija je uočila da u ovim važnim
područjima postoji veliki nesrazmjer od države do
države u implementaciji tih važnih normi unutar
propisa i zakona. Odlučeno je da se te norme uključe
u niz harmoniziranih normi kako bi se na jednak
način upotrebljavale kao stručni materijal za postizanje učinkovitosti zakonskih odredbi u pojedinom
području. Ovog puta harmonizacija bi se postigla
putem uredbe uz koju bi bio objavljen popis normi
na koje se ta uredba odnosi.
Objavljena je 9. srpnja 2008. temeljna uredba pod
nazivom Regulation (EC) No 765/2008 of the European Parliament and of the Council [4] kojom se
uređuju zahtjevi u području akreditacije i nadzora
nad tržištem. Popis harmoniziranih normi uz tu
uredbu objavljen je u Official Journal of the European Union 2009 C/136/08 [5].
4. USKLAĐIVANJE POPISA NORMI
Nakon objave sredinom 2009. godine prvog popisa
normi koje bi trebalo harmonizirati u područjima
od interesa, pojavile su se neke nove norme, zatim
neke su norme zastarjele a pojavila se i potreba da
se područje od interesa na neki način proširi
8
normativnim dokumentima iz područja zaštite
okoliša i medicine. Tako je Europska komisija u svojem dokumentu iz 2010. godine Certif 2010–03,
Follow up of mandate M 417 for the use of harmonised standards in support of the New Legal Framework and ECO-Management and Audit Scheme
(EMAS) – Update of the list of standards [6] kao
i u svojem dopisu istog naziva europskim normizacijskim organizacijama predložila europskim organizacijama za normizaciju dodatne norme koje bi
se mogle uvrstiti u popis harmoniziranih normi iz
2009. godine.
5. KOJE SE NOVE NORME OČEKUJU?
Europske normizacijske organizacije su odgovorile
Europskoj komisiji [7] kakve izmjene predlažu u
popisu normi iz 2009. godine.
Prema njihovom mišljenju potrebno je dodati
slijedeće normizacijske dokumente, ispravke normi:
• EN ISO 9001:2008/AC:2009 “Quality manage
ment systems - Requirements (ISO 9001:2008/
Cor 1:2009)”
• EN ISO 14001:2004/AC:2009 “Environmental
management systems -Requirements with guidance for use (ISO 14001:2004/Cor 1:2009)”
Također treba zamijeniti s novijom verzijom:
• EN ISO/IEC 17050-1:2004 s EN ISO/IEC
17050-1:2010 “Conformity assessment - Supplier’s declaration of conformity - Part 1: General
requirements (ISO/IEC 17050-1:2004, corrected
version 2007-06-15)”
Potrebno je dodati u popis normi iz 2009. godine
slijedeće norme:
• EN ISO 14004:2010 “Environmental management systems - General guidelines on principles, systems and support techniques (ISO
14004:2004)”
• EN ISO 14015:2010 “Environmental management - Environmental assessment of sites and
organizations (EASO) (ISO 14015:2001)
• EN ISO 14050:2010 “Environmental management - Vocabulary (ISO 14050:2009)
• EN ISO 14063:2010 “Environmental management - Environmental communication - Guidelines and examples (ISO 14063:2006)”
• EN ISO 13485:2000 “Quality systems - Medical devices – Particular requirements for the
application of EN ISO 9001 (revision of EN
46001:1996) (identical to ISO 13485:1996)”
Iz popisa treba izbaciti normu EN 45503:1996 koja
je povučena na europskoj razini. U popis bi trebalo,
prema mišljenju europskih normizacijskih organizacija u njihovom odgovoru s početka 2010. godine,
uključiti i norme slijedom kako budu prihvaćane
na europskoj razini: već kako se očekivalo tijekom te 2010. godine ISO/IEC 17021-2, ISO/IEC
17043:2010 i ISO/IEC 17065, kao i ISO 140641:2006, ISO 14064-2:2006, ISO 14064-3, ISO
14065:2007 nakon što završi postupak prihvaćanja
na europskoj razini početkom ili tijekom 2011. godine.
Za ostale dokumente, kao što su prEN ISO 14005
treba vidjeti kako će završiti postupak prihvaćanja
zbog negativnog rezultata glasovanja na konačni
nacrt te norme, za ISDO/TS 22003:2007 u ovom
trenutku izgleda kako je stav CEN-a (Europskog
odbora za normizaciju) da je ta tehnička specifikacija zastarjela, a kod ISO Guide 34 trenutno ne
postoji namjera rada na prihvaćanju kao europske
norme.
7. POPIS LITERATURE
[1]
http://ec.europa.eu/enterprise/newap
proach/review_en.htm
[2]http://ec.europa.eu/environment/emas/
index_en.htm
[3]
M/417 EN, Standardisation mandate addressed to CEN, CENELEC and ETSI for the use of
harmonised standards in support of the New Legal
Framework and Sectoral Certification Schemes,
Brussels, 4th December 2007
[4]
REGULATION (EC) No 765/2008 OF THE
EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 July 2008 setting out the requirements for
accreditation and market surveillance relating
[5]
Official Journal of the European Union
2009 C/136/08 http://eurlex.europa.eu/JOIndex.
do?year=2009&serie=C&textfield2=136&Submit=
Search&ihmlang=en
[6]http://ec.europa.eu/enterprise/policies/
single-market-goods/files/accreditation/doc 2010/
sogs_n621_certif_2010_03_new_elements_for_
m417_en.pdf
[7] BT N 8557 (Draft Resolution
C142/2010), Issue date : 2010-12-20
BT
6. ZAKLJUČAK
U najskorije vrijeme očekuje se objavljivanje
poboljšane verzije popisa normi koji slijedi mandat M417 u službenim novinama Europske unije. U
okviru ovog mandata razvijen je sustav normi koje
bi trebale pomoći svima koji se bave ispitivanjima,
od akreditiranih multidisciplinarnih laboratorija pa
sve do pojedinačnog tehničara na terenu. Taj sustav je izuzetno važan za živote i zdravlje građana,
korisnika i uposlenika, zatim za zaštitu okoliša i
održivi razvoj. Sustav se neprekidno razvija, a Republika Hrvatska je obvezna primjenjivati ga u svojim zakonskim rješenjima. Potrebno ga je što bolje
upoznati i prilagoditi sustave upravljanja unutar organizacija ovom europskom sustavu zakona i normi
u području akreditacije i certifikacije.
9
MATEST 2011
• EN ISO 13485:2000/AC:2009 “Medical devices
- Quality management systems - Requirements
for regulatory purposes (ISO 13485:2003/Cor
1:2009)”
• EN ISO 15189:2007 “Medical laboratories Particular requirements for quality and competence (ISO 15189:2007)”
• EN ISO 15195:2003 “Laboratory medicine
- Requirements for reference measurement laboratories (ISO 15195:2003)”
• EN ISO 22870:2006 ‘Point-of-care testing
(POCT) - Requirements for quality and competence (ISO 22870:2006)”
10
DEVELOPMENT of AUTOMATIC SYSTEMS for NDT INSPECTION of WHEELS and
PROPELLER BLADES of AIRPLANES
José P., SOUSA, IST/UTL, Lisboa, PORTUGAL, josepedrosousa@ist.utl.pt
Francisco, DEMONY, FCT/UNL, Lisboa, PORTUGAL, francisco_demony@hotmail.com
Nuno, PEDROSA, ISQ,Lisboa, PORTUGAL, nmpedrosa@isq.pt
Telmo G., SANTOS, FCT/UNL, Lisboa, PORTUGAL,tjg.santos@fct.unl.pt
Pedro, VILAÇA, SchoolofEngineering, AaltoUniversity, FINLAND, pedro.vilaca@aalto.fi
Luísa, QUINTINO, IST/UTL, Lisboa, PORTUGAL, lquintino@ist.utl.pt
ABSTRACT Many maintenance operations in Aeronautic industry are based on the application of NDT
techniques. Along with the demands for higher capability in accurately detect, localize and size the imperfections one key challenge for NDT technology is to cope with the high productivity demands.One solution
to assure high reliability level and increase productivity is to automate many procedures which are still
performed manually with validation of results typically pending on a certified NDT technician.
The present paper addresses the design, implementation, calibration and validation of new automatized
procedures for the quality inspection of aeronautic wheels, and aeronautic propeller blades.
Non-destructive testing (NDT) is based on techniquesthat rely on the application of physical principles to determinethe characteristics ofmaterials and to detect and assessflaws or harmful imperfections without change of theusefulness or serviceability of inspected materials and structures [1].
Concerning the application of NDT in aeronautic components, the failure of an important part of an aircraft during
service is consideredunacceptable by the aeronautic industry. To prevent such disasters and to maintain a high degree
of quality and reliability, the utmost care is necessary during production and maintenance of the several aircrafts
components, where NDT plays a very important role [2].In fact, NDT techniques are considered the most economical,
fast and accuracy way to proceed an inspection [3].
Eddy Current (EC) testing is the NDT technique most used in metallic aircraft components because it’s accessibility,
reliability and cost [2]. For example, unlike the dye penetrant and ultrasonic techniques, when using ECtechnique,
there is no need to paint remove from the surface or other kind of coating prior to inspection [4].
The aircraft wheels are a critical aeronautic component where the frequent quality assessment is fundamental. They
are continually subjected to severe conditions of operations: high level cyclic fatigue loads,enormous maximum stress
and heat generated during take-off and landing[3][5][6]. The thermo mechanical fatigue loading may result in small
imperfections or damage that can potentially grow into defects.The increased reliability associated with the introduction of periodic EC testing inspection,enabled the increase of take-off/landing cycles from 50 to 350 [2][4].
Also, the aircraft propellers are submitted to extreme operating conditions, due to the high mechanical fatigue load
applied in service, and the high temperature gradients they are subjected, with very low temperatures when in higher
altitudes. In this context, any type of superficial and internal defect is unacceptable because it will grow fast into
critical dimensions. Aircraft maintenance operations are veryexpensivebecause the aircraft is stopped at the hangar
instead of being flying in commercial operation. Thus NDT inspection has to be done as fast as possible [3]. In order to
answer to this demand several NDT companies designed NDT automatic systems.However, they are normally focus
in local component geometry and not flexible for small different conditions. Although these systems are automatic,
NDT automatized inspection schemes the interpretation and/or the validation of the results are pending on a certified NDT technician.
There are some developments in EC techniques in order to increase the area inspected, e.g. array EC probes, and yet
keep the high resolution of conventional EC probes [8]. Nevertheless, the array probes need to be shaped to follow
the wheel profile, which means to have probes for each inspected wheel. One significant recent advance is the new
patented differential EC probe – Ionic Probe, which can be printed in flexible substrate and thus adapted to different
superficial shapes of the components [7].
Aircraft wheels and hubs are typically made from aluminium and magnesium alloys [4] and produced by forging
process. An airplane landing gear, Figure 1 a) is composed by a tire and a wheel which is divided in outer half-wheel
side (lightly bigger) and the inside half-wheel side, Figure 1 b).To prevent the danger of tyre explosion, due to the
overheating originated by the braking action, the wheels have got fusible plugs which melt at a predetermined temperature, allowing the tyre to deflate. In most cases, the aeronautic wheels are fitted with pressure relief valve to
prevent over-inflation of the tyre [5].
11
MATEST 2011
1. INTRODUCTION
MATEST 2011
Figure 1: Aeronautic wheel
characterization a) Airplane
landing gear; b) Airplane Wheel
and Tire modelling; c) and
d) Important wheel zones to be
inspected.
There are three important zones to be inspected in each half-wheel: the beadseat, zone A in Figure 1 d), the ventilation holes, zone D in Figure 1 d), and the bolt holes side walls, zone C in Figure1 d).Concerning the bolt holes walls,
even if the screws are removed, it is a hard-to-reach area for direct testing, due to typical small diameters (from 3 to
20 mm) at rather big depth.
Other factors that may difficult EC inspection of bolt holes are oval shape of holes, presence of thread marks, scratches or grooves. Regarding the beadseat, it is a circular concave zone [2] [4]. It is also advised to proceed aconductivity
test to the breaks zone, zone B in Figure 1 d) when appears signals of overheating [5].
The aircraft propellers initially considered to the development of this study was the ones from the Hercules C-130airplane, Figure 2a). They are composed by an aluminum alloy, and have a hole inside, that is filled with lead when in
service, to equilibrate the several aircraft propellers of the rotor. This component is submitted to a blasting process
in part of his surface to prevent fissuration and to improve the material proprieties, and is equipped with an anti-ice
system to prevent water freeze, when in service.
To perform the inspection, it is necessary to decouple the aircraft propellers of the rotor, disassemble the anti-ice system, and depaintingthe entire surface to perform the fluorescent penetrating NDT, as the visual inspection.
There are some differences in the inspection procedures, depending on the aircraft propeller model. Due to the large
dimensions of the aircraft propeller of the Hercules C-130 airplane, and the difficulties that it brings to the transportation to the laboratory, the inspection studies made in this project context will use aircraft propellers of smaller
airplanes, Figure 2 b). The intention is that the final system could perform the inspection of any type of aircraft propeller, by introducing the parameters or the component model in the inspection software.
Any aeronautic component maintenance has got strictly to follow the time between maintenances and the procedures
(e.g. NDT techniques advised to use) described in the manufacturer Component Maintenance Manual.
Figure 2: Aeronautic propeller blade characterizationa) Hercules C-130 Propellers; b) General aircraft Propeller; c)
Top-view with cutting AA plan, and d) Transversal section of the aircraft Propeller.
12
In aircraft wheels maintenance, there are two types of inspections: tire replacement inspection and overhaul. The
first inspection occurs every time the tire is changed, normally after 300 landings, and it´s advised to make EC
testing in the beadseat zone [5]. The overhaul occurs after five times tire replacement inspection, where all wheel is
inspected by Eddy Current and Fluorescent Penetrant testing.
Although a superficial inspection may be carried out with the wheel installed on the aircraft, the main wheel maintenance is made when it is removed to replacement inspection or overhaul [3]. To enable the wheel inspection, the tire
must be removed from the wheel after disassembly the two half-wheel sides. It is made a metal-part, non metal-part
and bearing cone cleaning following by the NDT and dimensional inspections.Depending on the wheel damage, we
can repair parts that are worn, distorted or damage. In any case a part that is cracked can be repaired.
The inspection of the aircraft propellers uses the fluorescent penetrating testing in the entire surface and in the connection to the rotor, to detect any possible fissure in the material. The component is submitted to an Eddy Current
NDT to ensure that there is no possibility of a fissure in the material, superficial or even sub-superficial, creating a
redundancy between the two NDT processes applied, increasing the probability of defects detection. The component
is also submitted to a visual inspection inside, using an endoscope, allowing to analyse a zoom of this region (difficult
access is the principal restriction to apply other NDT).
2. AUTOMATED SYSTEMS DEVELOPMENT
Automated System for Aircraft Wheel Inspection
The NDT Automated System for Aircraft Wheel Inspection is a rigid compact system that enables semi-automatic
full inspection of bolt holes of any aeronautic wheel, Figure 3 a). This prototype uses Eddy Current to detect flaws or
damage in aircraft wheels of all sizes. It enables the operator to perform faster inspections without compromising
their integrity maintaining the setup and operation simple and intuitive.
The prototype consists in four main subassembly sets: theCross slide XY tablethat allows the XY movement of the EC
probe, the System base provides the system support, the Probe subassemblywhich is responsible for the probe rotation and the Wheel settlement subassemblythat supports and centers the aircraft wheel, Figure 3 b).
Figure 3: NDT wheel automated system a) NDT automated system, b) Main
system subassemblies.
The System base is made from anodized aluminium and fixed to any regular table by two M6 bolts. This allows the
system manual rotation over 60 degrees, Figure 4 e).
The Cross slide XY consists of two lubricant-free linear axes driven by trapezoidal thread with a 200 mm maximum
stroke length in both X and Y directions. The vertical movement is automatic and the horizontal is manual, Figure 4
a). As a preventive measure, there are limit switches in each XY table end, Figure 4 c).
The prototype uses two phases stepper motors with 200 Steps per revolution to promote the probe rotation (by a
Rack pinion transmission) and the vertical movement of the Cross slide XY table,Figure 4 d). Due to the motors high
precision, ±3 %, there is no need to use encoders: the prototype programming ensures that the probe covers 100%
of the hole’s surface. Nevertheless, the NDT technician must input the wheel height or manually set the prototype
reference surface.
With the Wheel settlement subassembly cone, the NDT technician can easily center all types of wheels and sizes in
the Rotary table. The spring below the cone applies only enough force to center the wheel. For the lighter wheels, the
technician tightens the wing nut to compress the spring, insuring that the height of the wheel is correct,Figure 4 b).
13
MATEST 2011
Main motivation for the prototype’sconception and design are theimprovement of NDT inspection speed, resolution,
reliability and easy operation. The operator is then free to focus on the probe signals overcoming problems such as liftoff effect due to loss of perpendicularity of the EC probe to the surface,during manual manipulation. Recording the
NDT inspection results is one more added feature.Following it is presented a descriptionof the two NDT automated
systems developed, for aircraft wheels and propellers inspection.
The NDT technician places de half-wheel in the Wheel settlement subassemblyand manually aligns the hole probe
with the bolt hole, so the prototype can do the remaining tasks automatically. In this prototype model, the technician
has got to rotate manually the wheel in order to start the inspection of a different bolt hole.
MATEST 2011
Figure 4: Main characteristics of prototype a) and b)
System different movements;
c) Limit switches; d) EC probe
transmission; e) Rotation of
the system base.
This system is currently being improved and extended to include several inspection styles and wheels zones (e.g.
beadseat), to increase the inspection speed, to be able to use different NDT techniques, Eddy Current and Ultrasonic,
in the same inspection and to use the patented Ionic probes. The unique modular design of this prototype allows the
incorporation of these changes by only removing the Probe subassembly, while the system base and the Cross slide
XY table remains the same.
Production of a test block half-wheel for testing the prototype
Typically, certified standard blocks are used for testing and calibrating NDT probes, nevertheless to evaluate an
entire NDT system is usual to introduce defects similar to real ones in equal components. A known method is EDM
notches, as used byU. Godbole, et al [2].
To test and validate this particular prototype, several EDM notches were made in one aircraft half-wheel with 0,5
and 1 mm deep inside the bolt-holes. Before testing the prototype, a dye and fluorescent penetrant inspection was
made to ensure that the only defects present were the ones introduced by EDM. In conclusion, Figure 5shows that for
both visual inspections the only defects in the bolt-hole are the notches done by EDM.
Figure 5: Dye and fluorescent penetrant inspection of aircraft half-wheel test specimen a) Application of penetrant;
b) EDM notch by dye penetrant testing; c) EDM notch by fluorescent penetrant testing.
Automated System for Aircraft Propellers Inspection
The NDT automated system for aircraft propeller inspection is a modular system that allows the inspection of the
surface of this aeronautic component, by performing the automatic displacement of the probes, Figure 6 a). Constituted by a structure made in Bosch Rexroth aluminium profile, two linear Cross slide XY table driven by belt, one
Cross slide XY table driven by trapezoidal thread and a system with bearings where the aircraft propeller is fixed.
14
Figure 6: NDT propeller
blades automated systema)
System different movements;
b) and c) coupling probes and
stepper motors.
The Rotation System, where the aircraft propeller is fixed, allows the rotation of the component in his centre line,
Figure 7a) and b). This feature will be used to align the surface that is being inspected with the probe, to obtain the
perpendicularity between those two. This will be achieved by a pair of arms that work as claws, with the forces being
applied by three springs in each arm, Figure 7 c and d).
MATEST 2011
Figure 7: Main characteristics
of prototype a) and b) Rotation
System; c) and d) Alignment
arms.
3. CONTROL OF AUTOMATED SYSTEMS
Automated System for Aircraft Wheel Inspection
The prototype uses a controller CompactRIO from National Instruments in order to: i) control the stepper motors; ii)
acquire the limit switches and iii) acquire the Nortec 500C signals. Figure 8 illustrates the system.
Figure 8: System
connections
overview
15
The Figure 9 shows the system overview, the cross slide XY, the system base and the probe subassembly.
Figure 9: NDT automated
system a) Overview; b)
Cross slide XY and system
base; c) Probe subassembly.
The controller CompactRIO was programmed in LabVIEW Professional 2011, with FPGA (Field-Programmable Gate
Array) and Real-Time modules. The actual paper reports the evaluation of the first stage of development of the automated system. Thus a basic control is developed where the NDT technician is able to rotate and translate the probe
enabling the inspection of the hole’s surface. This first stage will allow the validation of the prototype and further
enhancements of the control. The Figure 10 illustrates the actual programming layout.
MATEST 2011
4. IMPLEMENTATION AND VALIDATION
In order to check the performance of the automated system, a comparison was made between the traditional manual
inspection method and automatic inspection method. Both methods were experimented by two NDT certified technicians in Eddy Current Testing.
Figure 10: Programming layout in LabVIEW.
In both methods, the NDT technicians calibrated the
EC probe using an standard calibration block with a
0,2 mm deep crack, shown in Figure 11 a) and d). The
inspections results were output in the Nortec 500C, Figure 11: Wheel inspections by EC technic a) Calibration
but in the manual method, the technician needed to use on manual method; b) and c) Manual inspection; d) Calibraboth hands in order to rotate and translate the probe, tion on automatic method; e) and f) Automatic inspection.
Figure 11 b) and c).
In the automatic method, as shown in Figure 11 e) and f) the technician could focus only in observing and analysing
the signal.
The signal was acquired in the pc via USB port and was taken some print screens. The results are plotted in Figure 12
a) for the calibration block and wheel cracks inspections in both methods.
From the analysis of Figure 12 a) it is possible to conclude that both methods make a correct crack dimensioning,
although the automatic has a better precision, due to higher probe stability. The residual noise due to lift-off effect is
very significant in manual method and almost imperceptible in automatic method.
Furthermore, was done a study of the inspections reproducibility Figure 12 b) and c): were made 10 inspections in the
same wheel 1 mm deep crack without cleaning the screen. These inspections were made for each method.
16
From the analysis of Figure 12 b) and c) it is possible to conclude that automatic method is more reproducible compared to the manual one. In order to address the productivity impact of the developments, a graph showing the time
need inspecting one half-wheel is presented in Figure 13. Notice the inspection time is composed by the assembly,
inspection and disassembly time, in both methods.
Figure 13: Graph of NDT
inspections time for manual and
automatic method.
Analysing Figure 13 it is possible to conclude that for a number of wheel holes to inspect higher than 3 the automatic
method is more productive.
5. CONCLUSIONS
The main conclusions from the work are:
•
An automated Eddy Current Testing system for aircraft wheel was successfully developed.
•
The prototype allows the automatic control of the vertical translation and probe rotation. The horizontal
positioning is manual because the radial distance of several holes to the center of each wheel is typically constant.
•
The EC automated system demonstrated the following advantages:
o In the case of a C130 aircraft half-wheel with 11 holes full inspection cycle, the time reduced was about 41%
In general the productivity associated with the use of the automated system, increases with the number of
wheel holes to be inspected;
o Increasing the probe motion stability in the automatic system lead to better signal quality;
o Increase the probe positioning accuracy and the inspection reproducibility;
o Increase the inspection reliability by allowing the NDT technician to be dedicated exclusively to the NDT
signal analysis;
o Allows treating and storing the inspection result. With possibility to activate an automatic alarm to notify
in case of detection of an imperfection above a certain threshold.
•
Due to the probe stability, we can eliminate the signal noise that typically not allows the small imperfections
detection. By this, the threshold of detectability is lower in automatic method.
•
When compared with the manual method, in which the NDT technician only has got to carry the EC equipment, one disadvantage of the prototype is his lower mobility.
•
The prototype modular design presents the following advantages:
o Possibility to inspect other wheel areas incorporating new probes, in particular beadseat and ventilati
holes;
o Easy to carry out automated system maintenance operations.
17
MATEST 2011
Figure 12: Inspection resultsa)
Calibration block and wheel
cracks inspections in both methods; b) and c) Study of the inspection reproducibility
MATEST 2011
6. REFERENCES
1.
T. G. Santos, P. Vilaça, R. M. Miranda, “Electrical conductivity field analysis for evaluation of FSW joints
in AA6013 and AA7075 alloys”. Journal of Materials Processing Technology. Volume 211, Issue 2, Pages 174-180.
doi:10.1016/j.jmatprotec.2010.08.030. February 2011.
2.
GODBOLE, U., GOKHALE, A.; Eddy Current Inspection in Aircraft Industry; Proc. National Seminar on
Non-Destructive Evaluation; 7 – 9 Dezembro 2006, Hyderabad; http://www.ndt.net/article/nde-india2006/files/
tp-59-pap.pdf.
3.
KHAN, Md. AlahiUddin;Non-destructive Testing Applications in Commercial Aircraft Maintenance; 7th
European Conference on Non-destructive Testing – ECNDT; 26-29 May 1998, Copenhaga; http://www.ndt.net/
article/ecndt98/aero/031/031.htm.
4.
TurnKey NDT; VD3-71 universal eddy current flaw detector application for field inspection of aeronautical
engineering;http://www.ndt.com.ua/en/articles/2_tools.html.
5.
CIVIL AVIATION AUTHORITY, U.K.; Civil Aircraft Inspection Procedure, Systems And Equipment –
Wheels and Brakes – Chapter AL/3-19, 1973.
6.
KRAUSE, H.;HOHMANN, R.;GRüNEKLEE, M.; MAUS, M.; ZHANG, Y.; LOMPARSKI, D.; SOLTNER, H.;
WOLF, W.; BANZET, M.; SCHUBERT, J.; ZANDER, W.; BOUSACK, H.; BRAGINSKI,A.I.;Aircraft Wheel and Fuselage Testing with Eddy Current and SQUID; 7th European Conference on Non-destructive Testing – ECNDT; 26-29
May 1998, Copenhaga; http://www.ndt.net/article/ecndt98/aero/043/043.htm.
7.
Luís Rosado, Telmo G. Santos, MoisésPiedade, Pedro Ramos, Pedro Vilaça, “Advanced technique for nondestructive testing of friction stir welding of metals”, Measurement (ISSN: 0263-2241), Volume 43, Issue 8, Pages
1021-1030. doi:10.1016/j.measurement.2010.02.006. 2010.
8.
LECLERC, Rémi, SAMSON, Rock; Eddy Current Array Probes for Aircraft Applications; 15th World Conference on Non-Destructive Testing; 15-21 October 2000, Rome;http://www.ndt.net/article/wcndt00/papers/
idn514/idn514.htm.
AUTHORS wish to acknowledge to QREN - ADI via project
“Aeroinspect”; contract n. 11518, co-supported by FEDER.
18
Za Srpsko društvo za ispitivanje bez razaranja SDIBR
Goran Sofronić, dipl. ing.
Poštovani, molim Vas predstavite se našim čitateljima.
Ja sam diplomirani inženjer elektrotehnike i trenutno obavljam funkciju generalnog direktora Zavoda u kome sam prošao put od pripravnika, preko
rukovodioca IBR-a i direktora laboratorije. Dodatna
školovanja su svakako bila u oblasti zavarivanja (evropski inženjer zavarivanja-EWE, međunarodni inspektor zavarivanja-IWI, operater nivoa 3 za MT i PT)
i kvaliteta (vodeći ocenjivač u TUV SUD za ISO 9001
posle završene TUV-ove akademije). Podpredsednik
sam SDIBR-a i dugogodičnji član upravnog odbora.
je također bila izuzetna, kako za HDKBR tako i za
SDIBR jer smo dobijali sveže ideje i podršku, pogotovo u delu regionalnog povezivanja, što je imperativ za članice EFNDT i ICNDT. Ne mogu a da ne
spomenem i direktora HDKBR-a, Miru Đapu koji je
opet na svoj način podržao celu realizaciju.
Goran Sofronić sa prof. dr. sc. Vjera Krstelj
Potpisivanje ugovora je naša zajednička obaveza da
sve što je interesantno, novo i progresivno u oblasti
ispitivanja bez razaranja razmenimo i primenimo.
Dokument se prvenstveno odnosi na razmenu
ispitivača, predavača, banke pitanja i uzoraka jer je to nešto što će i jednima i drugima
uštedeti novac i vreme. Moguće je takođe
povezivati firme (laboratorije, kontrolna
tela) na određenim projektima i realizacijama na samim objektima, kako u Hrvatskoj
tako i u Srbiji. Prostora ima za sve.
Upoznajte nas, molimo vas, sa strukturom vaše
udruge i glavnom djelatnosti.
Goran Sofronić, dipl.ing.- SDIBR-Podpredsejednik, i
Miro Džapo, dipl.ing-HDKBR-Direktor
Što očekujete od ove suradnje, koju ste upravo potpisali ?
Ugovor o poslovno-tehničkoj saradnji između HDKBR-a i Zavoda je jedna veoma dobra „priča“ i nastala
je potpuno spontano kao rezultat desetogodišnjeg
kontakta između predsednice HDKBR-a, profesorke, Vjere Krstelj i mene kao podpredsednika SDIBR-a. Uloga Prof. Krstelj kao predsednice EFNDT-a
Zavod je firma koja ove godine slavi 55.
rođendan i deo je od 2009. Delta Inženjering
Grupa kao druga članica po važnosti. Naša
firma je predstavnik Srbije u Međunarodnom
institutu za zavarivanje-IIW a član je preko svojih
zaposlenih u Društvu za unapređivanje zavarivanja
Srbije-DUZS i Srpskom društvu za ispitivanje bez
razaranja-SDIBR. U svom delokrugu ima sve što
zavarivanje zahteva, počevši od: akreditovane laboratorije za ispitivanje sa i bez razaranja, akreditovanog kontrolnog tela, imenovanog tela za opremu
pod pritiskom, reparaturnog centra, sektora za
obuku i obrazovanje, sertifikacionog tela.
19
PREDSTAVLJAMO VAM
Kolega, Davor Gruber i ja, Goran Sofronić dolazimo
iz Zavoda za zavarivanje AD - Beograd, firmi koju su
osnovali ondašnji vizionari zavarivanja, još davne
1958. godine. Davor je diplomirani inženjer zaštite
na radu, operater nivoa 3 (za UT i VT) i neko ko
iza sebe ima veoma veliko iskustvo u IBR-u, kako na
domaćem tako i na inostranom polju. Ono u čemu
je lider u našoj firmi je svakako ultrazvučno ispitivanje zbog čega je imenovan za ocenjivača u našem
sertifikacionom telu, Zavod CertPers-u. Takođe je i
neko ko sve novine u ultrazvučnom ispitivanju implementira u našoj firmi. Naš je predstavnik u Institutu za standardizaciju Srbije i član Srpskog društva
za ispitivanje bez razaranja (SDIBR).
Kada govorimo o obukama u Zavodu misli se svakako na obuke zavarivača, instruktora za zavarivanje,
operatera za IBR, a treba napomenuti i obuke koje
radimo po ovlašćenju IIW-a, kao što su obuke za
međunarodne inženjere, tehnologe i inspektore za
zavarivanje.
ponude, a mi smo svoj dolazak već najavili za MATEST u Zagrebu, ove godine. Na ovaj način realizujemo zajednički cilj zadat i od strane EFNDT-a, a to
je regionalno povezivanje Društava. Možda zajedno
u bliskoj budućnosti napravimo i evropsku konferenciju za IBR (ECNDT), ko zna.
Za sertifikaciono telo Zavoda interesantna je sertifikacija kompanija prema ISO 3834 koju izvodimo
takođe po ovlašćenju IIW-a i sertifikacija osoblja
kao što su zavarivači, instruktori i operateri u IBRu, ali samo do nivoa 2.
On behalf of the Serbian Society for
Non-Destructive Testing SDIBR
PREDSTAVLJAMO VAM
Kako ste zadovoljni sa obrazovanjem koje vaši članovi
stjeću na tečajevima u organizaciji HDKBR-a?
Moramo da vam kažemo da smo prezadovoljni.
Posmatrali smo mi i druge kako to rade, pogotovo
u zemljama iz okruženja. Za HDKBR smo se odlučili
iz više razloga. Prvo, jezik nam nije bio prepreka,
drugo poznajemo dobrim delom predstavnike, kao
i članove HDKBR-a. Predavanja su bila sveobuhvatna, dinamična sa praktičnim iskustvima a predavači
su oni koji zaista iza sebe imaju veliko iskustvo i
znanja potrebna za razvoj i primenu metoda za
IBR. Uostalom, poznato nam je vaše angažovanje u
EFNDT-u i ICNDT-u, tako da je sve ovo za nas bilo
dovoljno. Zahvalni smo na prijemu, kako od strane
„đaka“, tako i od organizatora.
Spojili smo lepo i korisno, sticali
nova znanja, družili se.
Goran Sofronić, dipl. ing.
Please, introduce yourselves to our readers
My colleague, Mr. Davor Gruber and I, Goran Sofronić,
we come from the Department of Welding AD – Belgrade, a firm that was founded in 1958 by the visionaries of welding at that time. Davor is a graduate engineer of occupational safety, level 3 operator (for UT and
VT) and a person with a large experience in NDT, both
at home and abroad. What makes him a leader in our
firm is certainly ultra-sonic testing, which was the reason why he was appointed assessor in our certification
body, CertPers Department. He is also a person who
has been implementing all the novelties in ultrasonic
testing in our firm. He is our representative in the Institute for Standardization of Serbia and a member of the
Serbian Society for Non-Destructive Testing (SDIBR).
Što biste vi promjenili ili dodali?
Ono što nam svima ne dostaje je možda još više primera iz
prakse, pogotovo za opremu pod
pritiskom, pošto nam PED 97/23
zadaje svima delikatne zadatke.
Zavodu je to, kao imenovanom
telu u Srbiji veoma bitno. Verovatno je to tako i u Hrvatskoj. Ono
što ne treba da promenite je da
držite nivo i da ne dozvolite da novac nadvlada kvalitet sertifikacije.
Na koji od skupova koji će se održati
u organizaciji vašeg društva pozivate članove HDKBR-a?
Što se tiče Srpskog drušva za IBR (SDIBR), svake
druge godine organizujemo savetovanje sa
međunarodnim učešćem, tako da je naredno u
septembru 2014. i svakako ćete dobiti pravovremeno poziv. Svi članovi HDKBR-a su uvek veoma
dobrodošli jer smatramo da imaju šta da kažu i
20
Miro Džapo and Goran Sofronić
I graduated in electrical engineering and I am currently
the CEO of the Department at which I have passed all
the way from a trainee, NDT manager and Director of
the Laboratory. Additional education was particularly
in the field of welding (European Welding Engineer –
EWE, International Welding Inspector – IWI, level 3
operator for MT and PT) and quality (leading assessor
in TUV SUD for ISO 9001 after the completed
What do you expect of this cooperation, the one that you
have just signed?
The Agreement on the Business and Technical Cooperation between CrSNDT and the Department is one very
good “story” and it has been created quite spontaneously
as result of a ten-year contact between the President of
CrSNDT, Professor Vjera Krstelj and myself as theVicePresident of the Serbian Society for Non-Destructive
Testing. Prof. Krstelj’s role as the EFNDT President
was also an exceptional one, both for CrSNDT and for
SDIBR, since we had been receiving fresh ideas and
support, especially in the part of regional connections,
which is imperative for the members of EFNDT and ICNDT. I simply have to mention here also the CrSNDT
Director, Mr. Miro Đapo who again, in his own way,
supported the entire realization.
Signing of this agreement is our mutual obligation so
that everything that is interesting, new and progressive
in the field of NDT is exchanged and implemented. The
document refers primarily to the exchange of lecturers,
bank of questions and samples, since this is something
that will save money and time to both parties. It is also
possible to connect the firms (laboratories, control bodies) in certain projects and realizations on objects themselves, both in Croatia and in Serbia. There is room for
everyone.
Please, tell us about the structure of your society and
the core activity?
The Department is a firm celebrating this year its 55th
birthday and has been since 2009 a part of Delta Ingeneering Groups as the second most important member. Our firm is a representative of Serbia in the International Institute for Welding – IIW, and a member
through her employees in the Serbian Society for Improvement of Welding – DUZS and the Serbian Society
for Non-Destructive Testing - SDIBR. It has within its
scope everything that welding requires, starting from:
accredited laboratory for NDT, accredited control body,
appointed body for pressurized equipment, repair centre, education and training sector, certification body.
When speaking about training in the Department, this
refers certainly to the training of welders, welding instructors, NDT operators, and we should mention also
the training performed according to the accreditation of
IIW, such as training for international engineers,
technologists and welding inspectors. The certification
body of the Department is interested in the certification
of companies according to ISO 3834 which we perform
also upon accreditation of IIW and the personnel certification such as welders, instructors, and NDT operators,
but up to level 2.
What do you think about the education that your members acquire at courses organized by the Croatian NDT
Society?
We have to tell you that we are more than satisfied.
We did have a look at others as well, how they do it,
especially in the neighbouring countries. We have decided on CrSNDT for several reasons. First, the language represented no barrier, second, we know most of
the representatives as well as the CrSNDT members.
The lectures were comprehensive, dynamic with practical experience, and the lecturers persons with a lot of
experience and knowledge necessary for the development and implementation of NDT methods. After all,
we are very familiar with your engagement in EFNDT
and ICNDT, so that we found all this satisfactory. We
are grateful for the reception, both by the “Candidates
at cources”, and by you, as organizer. We have combined
the nice and the useful, we have acquired new knowledge and we enjoyed the company.
What would you change or add?
What we all lack, are maybe more case studies from
practice, especially for the pressurized equipment, since
PED 97/23 has been assigning to all of us delicate tasks.
The Department, as the appointed body in Serbia finds
this very important. It is probably the same in Croatia.
What you should not change is that you should maintain the level and not let money overpower the quality
of certification.
To which of the Conferences that will be organized by
your Society will you invite the CrSNDT members?
As far as the Serbian Society for NDT (SDIBR) is concerned, we organize an international conference every
other year, and the next one is in September 2014. and
you will certainly receive an invitation on time. All the
CrSNDT members are always welcome since we believe
that they have something to say and offer; and we have
already announced our participation at MATEST in Zagreb this year. In this way we have been realizing our
joint goal set also by EFNDT, and this means regional
connection of the societies. Maybe together, in the near
future we will organize also a European Conference for
NDT (ECNDT), who knows.
21
PREDSTAVLJAMO VAM
TUV academy). I am a Vice-President of the Serbian
Society for Non-Destructive Testing (and a long-year
member of the board of directors).
Preventive maintenance: Function and added value of preventive thermographic
measurements in the framework of industrial maintenance
Siegfried Vogelbacher
TESTO; Senior Manager
Testo AG, headquartered in Lenzkirch in South-West Germany, is a world leader in the manufacture of
portable and stationary measurement technology. About 2400 employees in 31 international subsidiaries
research, develop, produce and market for Testo with one aim: to create innovative measurement solutions,
e. g. for the sectors climate, health, food, building technology and emission control. In 2012 Testo achieved
a turnover of 221 Million Euro. Roughly 10 percent of the annual turnover is invested in Research & Development
PREDSTAVLJAMO VAM
A core expertise of Testo AG is the development and
production of thermal imagers. The company offers a
broad spectrum of high-quality instruments “Made in
Germany”, whose resolutions ranging from 160 x 120
pixels via 320 x 240 pixels to 640 x 480 pixels fulfil all
demands.
With the SuperResolution technology, the infrared image quality of all Testo thermal imagers can even be improved by one class at the touch of a button. Four times
more measurement values and a geometric resolution
of the infrared image improved by a factor of 1.6 mean
for the customer even higher-resolution thermal images
and even more security in the measurement.
In maintenance work, the high-resolution testo 885
not only allows dangerous fire risks to be minimized
and production downtimes to be avoided. Using the
patent-pending SiteRecognition technology, extremely
efficient inspection route management for mechanical
and electrical applications is also possible.
If machines fail or if production has to be interrupted
because of defective components in a system, this has
far-reaching financial consequences for a company, because unexpected downtimes cause a drop in the productivity and profitability of the company. If overload
or other damage causes a fire, then the staff in a production site are also placed in danger. For these reasons,
preventive maintenance and the regular servicing of
machines are of central significance in industrial maintenance. Reliable and fast servicing methods are indispensible with regard to this.
Thermography provides an economically attractive
method of maintenance. Damaged or endangered electrical and mechanical components can be diagnosed
by their thermal properties. If a conductor, a cable or
a fuse is defective, or if individual components fail, an
increased resistance is created, causing an atypical heat
development. Friction, incorrect adjustment, play in
the components or lack of symmetry also lead to an
22
increased heat development. Conspicuous changes in
the thermal quality of individual components function
as indicators for potential or actual defects. Not only
existing faults, but also potential sources of error and
danger can be directly and accurately diagnosed using
thermography. This way, potential sources of error can
be diagnosed before failures or fires can occur. Finally,
thermographic images provide a reliable, visual possibility for the documentation of faults, as well as a longterm timeline comparison of the status of a system.
Thermographic measurement methods are used in
many different areas of application. In electrical systems, infrared measurements are possible at all voltage
levels. For example, switch boxes, distributors, cables
and wires, fuses, motors and other components in low
voltage systems can be tested using the thermographic
measurement procedure, but also means of production
in medium, high or highest voltage systems (outdoor
switchgear). The diagnosis of defective wiring or fuses,
loose screw or clamp connections, overloaded switches
or defective insulation in a switching cabinet is directly
and accurately possible.
Electrical switchgear
Overloaded condensers, overheated wires or circuit
breakers, loose clamps, damaged insulation or defective screw connections are only a few of the components
which can lead to damage or failure of a system. Faults
on individual components are sufficient to risk failure
or fire in the entire system. Roughly 35 percent of all
fires in industrial businesses can be traced to extreme
overheating in electrical components.1 Thermographic
inspections ensure fast and precise maintenance of a
system, preventing the danger of failure or fire. The second thermographic inspection of a system already lowers the risk of failure by about 80 percent.2
1
2
Instandhaltung (06/2007): Der Kampf mit den Hot Spots. S. 41.
Instandhaltung (06/2007): Der Kampf mit den Hot Spots. S. 41.
Hot wires in switching cabinet
Switching cabinet real image
System with thermal anomalies
Fuses real image
Transformers; Thermal weak spots in transformers
can be diagnosed reliably using thermography. Frequent sources of fault are material aging or overload
symptoms. Early checks can safely prevent an unexpected defect. Measurement procedures such as oil checks
can provide complementary results.
PREDSTAVLJAMO VAM
Switching cabinet real image
Thermogram with overloaded fuse
Motors; Thermographic inspections can diagnose
potential or existing defects in motors or turbines quickly and reliably. The surface temperature of a motor is
an indicator of raised temperature in the interior of the
motor, and therefore for potential damage to bearings,
coils or gearing. Defects in individual components, for
example caused by overheating due to a lack of symmetry, overload or incorrect shaft fitting, can be avoided
by regular preventive testing.
Motor
Thermogram motor
23
Mechanical systems; Thermography is used in refineries, in the petrochemical and chemical industries,
in the oil and natural gas industries, in smelting and
cement-works, for example, to monitor the heat insulation of mechanical systems (furnaces, flue gas ducts,
pipelines, containers etc.). Deposits however, for example in pipelines and containers can also be proven using
thermography. Damaged heat insulation can lead to
massive process interference, and thus also to a impairment of the quality of the end product. In addition to
this, faulty insulation also leads to severely increased
primary energy costs, especially in energy-intensive
processes.
PREDSTAVLJAMO VAM
Application phases and maintenance intervals
In order to minimize the risk of production downtimes
or fire, components or systems should be checked regularly. Regular maintenance according to a fixed inspection route is recommended. The interval of necessary
maintenance is dependent on a number of different
factors, among others the electrical load of individual
system components and the age and general condition
of the system. Guidelines are provided, however, by
NETA (InterNational Electrical Testing Association),
who recommend, for example, one to two-month visual
checks on transformers, as a rule a mechanical test including visual check once a year, and every one to three
years a combination of visual, mechanical and electrical
testing.3 In Germany, electrical systems must be tested
according to the VdS guideline 2858 regularly, i.e. repeatedly, by the operator.
Thermographic measurement methods can already
be used in commissioning an electrical system, in the
course of a function test, in order to determine the load
placed on individual components. In addition to this,
soon after a new installation, a thermographic check of
the new system is recommended. The maintenance of
a system after being taken back into service after repair work, as well as before the warranty runs out, is
of central significance. Damaged, loose or overloaded
components can thus be located, repaired or replaced.
According to the thermographic image, which provides
information on normal or abnormal heat distribution,
components which in the long term represent weak
spots or even fire risks because of their temperature
qualities can also be diagnosed and kept under constant
observation.
Information on procedure and evaluation
The maintenance of an industrial system and its components should always be carried out taking the load on
NETA (k.A.): Frequency of Maintenance Tests. URL:
http://www.industrialelectrictesting.com/appendix_b.htm
3
24
the system, the ambient and production conditions as
well as the relevant safety standards into account. In
order to ensure the testing of a system and its components in a realistic operating situation, it should be
carried out under at least roughly half the normal operating load. The focus of the test should be on connections, distributors and components with a high load.
In order to observe a deterioration in the conditions, or
to ensure the success of repair work, the data recorded
in thermograms should be observed and compared over
a longer period, if possible. In order to avoid measurement errors, attention must be paid to reflections, e. g.
from shiny metal parts in electrical components, and
to other falsifying factors. The correct and reliable interpretation of the data always requires a solid training and profound knowledge of thermography.
An abnormal or high heat development indicates an
approaching or already existing thermal weak or damaged area. The fault source of an anomaly in the heat
quality of a connection, however, can also be found in
another component. It is recommended in such cases
to apply other additional measurement procedures.
Thermography also replaces neither necessary visual
or function tests, nor electrical measurements. It does,
however, provide a reliable safe and economic complement to classical measurement procedures, with
unique advantages.
Summary
The testing of electrical systems in industrial businesses is of central significance, and is required by law.
Due to its economic viability and reliability, thermography takes on a central role here. Regular IR measurements ensure easy and precise early recognition
of weak spots and damage, as well as an increase in
system availability and reliability. Severe follow-on
damage, fire and accident risk can be avoided using
preventive thermographic testing. Thermographic
measurement methods are thus used in many different
areas of application. Electrical and mechanical assemblies in production systems can be monitored using the
thermographic measurement procedure. In contrast to
other measurement procedures, thermography allows
non-contact inspection of the system in continuing operation. Inaccessible places can be tested precisely and
safely. Cost-intensive downtimes of failed machines or
systems are thus securely prevented. Repair costs and
follow-on damage are reduced.
D-79853 Lenzkirch; Testo-Strasse 1;
Tel. +49 7653 681-0; Fax +49 7653 681-701
NDT WEEK in ZAGREB
7-12 October 2013
MATEST 2013 & CERTIFICATION 2013&MEETINGS
2013. godine HDKBR obilježava 50 godina trajnog djelovanja u promociji i potpori primjene nerazornih
metoda u ispitivanju, kontroli kvalitete i tehničkoj dijagnostici. Godine 1963. bila je to samo skupina entuzijasta svjesna važnosti uvođenja kontrole kvalitete i metoda koje to mogu osigurati. Danas HDKBR s ponosom
najavljuje TJEDAN KBR-a u ZAGREBU u kojem će s nama biti mnogi cijenjeni stručnjaci.
Croatian Society of Non-Destructive Testing, HDKBR(local abbrevation) is celebrating 50 years of permanent activity in promoting and supporting R&D and implementation of NDT and Technical Diagnostic. The year 1963, it was
just a group of enthusiasts starting to implement NDT in Quality system. Fifty year later, we proudly announced
NDT WEEK in ZAGREB in which many of renown
scientists and experts from all over the world will be with us
ion.
working on NDT, nowdays an unavoidable proffess
Monday
7.10.2013
Tuesday
8.10.2013
ECEC meeting
EFNDT Certification executive Committee
ECEC & ICEC
joint meeting
ICEC meeting
ICNDT Certification executive Committee
MATEST 2013
Opening
ISO/TC 135/SC 7/WG9 meeting
10:00-18.00
EFNDT BoD meeting
EFNDT WG 5 meeting
HDKBR 50th Anniversary, Reception
Thursday
10.10.2013.
9:30-11:00
CERTIFICATION 2013
Opening
Session 1:
ICNDT Regional groups
Session 2:
National
Topics on
Certification &
Standardization
19:30-22:00
Topics on NDT
MATEST
predavanja-KBR
Wednesday
9.10.2013.
9:00-10:00
11:30-18:00
P.M.
EFNDT and ICNDT MRA; SIGNATURE CEREMONY
Friday
11.10.2013.
10:00-18:00
CERTIFICATION 2013
Topics on certification and standardisation
Conclusions & Closing
EU Leonardo project meeting
19:30-22:00
Conference dinner
Saturday
12.10.2013.
All day: EU Leonardo project; meeting of participants in project
P.M.
25
NDT WEEK in ZAGREB
Preliminarni program/preliminary program - više pratite na/more about at
www.hdkbr.hr; www.certification2013.com
The Preliminary Program: CERTIFICATION 2013
(Lectures, blue coloured, have been agreed; and black planed as follows):
Abstract Submission Deadline May 30, 2013,
The Preliminary Program: CERTIFICATION 2013
1.DAY;
10.10.2013
8:30-9:30 Registration
9:30-11:00
OPENING CEREMONY
Vjera Krstelj
9:30-9:50
Opening lecture
Patrick Fallouey:
9:5o-10:10
EN ISO 9712 -Succesfull merging; What’s after ?
Hajime Hatano
10:10-10:30
The activities of ISO/TC 135
Mike Farley:
10:30-10:50
ICNDT activities in field of Certification-challenges, progress and gaps
10:50-11:00
Discussion
11:00-11:30
Coffe break
11:30-14:00
Session 1: REGIONAL GROUP
Mathias Pursche:
11:30-11:45
EFNDT Certification Agreement – Way to an European Certificate?
11:45-12:00
AMERICA
Ir.Sajeesh Kumer Babu
12:00-12:15
NDt Personnel Certification updsates in Asia Pacific Region
Johan Zirnhelt, Sharon Bont:
12:15-12:30
Qualification and Certification in Canada
12:30-12:45
AFRICA
12:45-13:00
AUSTRALIA, NEW ZELAND
13:00-13:30
Question &Discussion
13:30-14:30
Lunch
Session 2: NATIONAL SOCIETIES;
14:30-16:00
Education, Qualification, Certification in:
Biserka B. Brezak:
14:30-14:40
Accreditation; National, Regional and Worldwide approach
Miro Džapo:
14:40-14:50
Qualification and Certification in Croatia
Gerhard Aufricht:
14:50-15:00
Professional, modular NDT-Certification in Austria
Emilio Romero:
15:00-15:10
Education and Qualification in Spain
Matt Gallagher, Philip Picton and David Gilbert :
15:10-15:20
An integrated education programme for NDT professionals
15:20-15:30
Pavel Mazal: Education and Certification in Czech Republic
15:30-15:40
Goran Sofronić: Qualification and certification in Serbia
15:40-15:50
Ekaterina Cheprasova: E&Q&C in Russia
15:50-16:00
Joseph Pessach: Qualification and Certification system in Izrael
16:00-16:30
Question &
Discussion&
Coffe
16:30-17:30
Session 3: SIGNATURE CEREMONY
Mike Farley/ICNDT-Patric Fallouey/CEN-Hajime Hatano /ISO
16:30-17:30
EFNDT and ICDNT MRA SIGNATURE CEREMONY
26
DAY; 11.10.2013
9:00-11:00
9:00-9:15
9:15-9:30
9:30-9:45
Session 4: Quality system, methods, laboratory.....
Miran Škerl:
Standardisation in Quality system in Croatia
Peter Trampus:
Interlaboratory comparisons, proficiency testing
Sergej Kolokolnikov, Antony Dubov:
Certification scheme based on ISO 9712:2012 of NDT personnel for
MMMM
The Preliminary Program: CERTIFICATION 2013
2.
9:45-10:00
10:00-10:15
10:15-10:30
10:30-11:00
11:00-11:30
Discussion
11:30-12:30
Session 5: Aerospace, Nuclear.......monuments, heritage
11:30-11:45
11:45-12:00
12:00-12:15
12:15-12:30
12:30-13:00
13:00-14:00
Coffe break
Dario Almesberger: Personnel Qualification and Certification in NDT
Quality control & Monitoring system of monuments
Patric Brisset
IAEA activitie related to NDT personel training and certification
Different sectors approach
Coffe break
Session 6: TRAINING SYLLABUSES / COMPETENCE
13:45-14:00
14:00-15:30
Rodolfo Rodriguez:
Leonardo project II-revision of training syllabuses
Ir.Sajeesh Kumer Babu
Comparison of training syllabuses in NDT Personnel Certificatiohn
John Thompson
The ICNDT Examination Question Bank
Question &Discussion
Lunch
15:30-17:00
Session 7: SECURITY; STANDARDISATION, CERTIFICATION
13:00-13:15
13:15-13:30
13:30-13:45
16:30-17:00
Kurt Osterloh:
How to approach rare events
Davor Zvizdić:
University approach
Theobald O.J.Fuchs, Frank Sukowski...(Fraunhofer inst)
3-D X-ray Tomography for Container Inspection
Ivica Prlić
Security; Education, Qualification, Certification
Question &Discussion
17:00-18:00
FINAL CONCLUSIONS + CLOSING
15:30-15:45
15:45-16:00
16:00-16:15
16:15-16:30
27
TEČAJEVI za KVALIFIKACIJU i CERTIFIKACIJU
Program tečajeva je razrađen u skladu sa
potrebama industrije, te kandidati mogu
odabrati pohađanje tečajeva u skladu sa
svojim obavezama.
Više od ovdje ponuđenih termina može
se dogovoriti, kao i održavanje tečajeva u
tvrtki, kada za to ima potrebe.
PLANIRAJTE i REZERVIRAJTE
ODMAH
HDKBR Centar za obrazovanje
Kandidati za tečajeve 3. stupnja trebaju
osim gore navedenog dostaviti životopis
u kojem treba navesti iskustva u kontroli
kvalitete.
Zamolbe za pohađanje 3. stupanaj dostavljaju se najkasnije do 01. lipnja 2013.g.
Kandidati koji su završili studij na
sveučilištu, veleučilištu ili visokoj školi,
tehničkog ili prirodoslovno-matematičkog
usmjerenja stiču pravo na skračeni program obrazovanja za glavnu metodu - 3
stupanj.
Stupanj
Termini
održavanja
Magnetska kontrola
MT1
17.06.-19.06.2013.
Vizualna kontrola
VT2
01.07.-04.07.2013.
Penetrantska kontrola
PT1
06.05.-08.05.2013.
08.07.-10.07.2013.
Ultrazvučna kontrola
UT1
14.10.-25.10.2013.
Magnetska kontrola
MT2
25.11.-28.11.2013.
Vizualna kontrola
VT1
03.06.-05.06.2013.
02.09.-04.09.2013.
Penetrantska kontrola
PT2
16.09.-19.09.2013.
Ultrazvučna kontrola
UT2
13.05.-24.05.2013.
02.12.-13.12.2013.
Radiografska kontrola
RT2
04.11.-15.11.2013.
Opći dio; 3 stupanj
VT3
PT3
MT3
UT3
RT3
6. mjesec
Metoda
Glavna metoda;
3stupanj
9. mj, 10. mj
VAŽNA OBAVIJEST
Polaznici tečajeva od 1.1.2013. godine osigurati će obrazovanje i mogućnost certifikacije
u skladu sa zahtjevima nove norme
HR EN ISO 9712
ČLANSTVO u HDKBR-u
Obavještavamo sve članove da je u tijeku izdavanje iskaznica za 2013. godinu.
Iskaznice će primiti samo članovi HDKBR-a koji su uplatom članarine za 2013. godinu
ili drugim osnovom stekli članstvo. Obzirom da članovi ostvaruju popust pri certifikaciji, te dobivaju časopis HDKBR Info i druge obavijesti iz Tajništva HDKBR-a, važne
za vaš profesionalni život, molimo vas da provjerite jeste li osigurali članstvo. Svi koji
žele izbjeći gubitak vremena na uplatu od 100 kuna svake godine mogu to učiniti jednokratno za više godina i pri tome ostvariti popust. Uplatom članarine za tri godine u
iznosu od 200 kn ili uplatom članarine za pet godina u iznosu od 400 kn.
Tajništvo HDKBR
28
CENTAR za CERTIFIKACIJU
Za stjecanje uvjerenja za određenu metodu,
stupanj obrazovanja i područje ispitivanja treba:
- dostaviti prijavnicu,
-uspješno završiti tečaj obrazovanja u HDKBR
Centru za obrazovanje ili u centru obrazovanja
priznatom od strane HDKBR Centra za
certifikaciju,
-potvrdu o radnom iskustvu i obavljenom očnom
pregledu.
Za stjecanje uvjerenja za ispitivanje tlačne opreme
prema članku 13. Pravilnika PED 97/23/EC
treba: - dodatno obrazovanje u trajanju od jednog
dana u HDKBR Centru za obrazovanje.
Cijena izdavanja certifikata po osobi: 150 eura +
PDV, u što je uključeno i obrazovanje u HDKBR
Centru za obrazovanje. Za svaku dodatnu metodu
cijena uvjerenja je 100 eura + PDV.
Metoda
Stupanj
Vrijeme
Vizualna kontrola
VT1
05.06.2013.
04.09.2013.
Vizualna kontrola
VT2
04.07.2013.
Magnetska kontrola
MT1
19.06.2013.
Magnetska kontrola
MT2
28.11.2013.
Penetrantska kontrola
PT1
10.07.2013.
Penetrantska kontrola
PT2
19.09.2013.
Ultrazvučna kontrola
UT1
25.10.2013.
Ultrazvučna kontrola
UT2
24.05.2013.
13.12.2013.
Radiografska kontrola
RT2
15.11.2013.
3. stupanj: VT3,MT3,PT3,UT3,RT3,
Listopad
2013.
Članovi Društva imaju popust od 10 %.
Više o certifikaciji na www.hdkbr.hr ili telefonski u tajništvu HDKBR-a.
Uvjerenje 3.stupnja u Centru za certifikaciju, HDKBR-a, ovlaštenom od HAA
stekli su; →
Abecedno:
PT3
MT3
Tomislav Andrić
+
+
Marijana Ećimović
RT3
+
+
+
+
Leo Kalogjera
+
Damir Maljković
+
Zoran Markešić
+
Berislav Nadinić
Vanja Odrčić
+
+
Ivan Petrović
Jože Rumac
+
+
Krešimir Sarajčić
+
+
Florian Sedmak
+
Darko Selaković
Goran Sofranic
+
+
+
Željko Škrtić
+
Branko Šola
+
Željko Škrtić
+
+
Dragan Šućurović
+
Anica Šuljak
+
Verica Terek
Dražen Žunac
ET3
+
+
Krunoslav Jukić
3. STUPANJ
Osobe sa uvjerenjem 3.stupnja osposobljene su u skladu s normama i
propisima:
- za vođenje laboratorija za nerazorna ispitivanja
- za preuzimanje pune odgovornosti
za provedbu i nadzor ispitivanja u
skladu sa normama i propisima
- za izradu postupaka za ispitivanje
u odgovarajućem sektoru i uputa za
ispitivanje.
VT3
+
Dabor Gruber
Zvonimir Ivković
UT3
+
+
+
+
+
29
HDKBR Centar za certifikaciju
STJECANJE UVJERENJA
objavljuju SEMINAR:
Upravljanje rizikom & kontrola kvalitete
temeljena na procjeni rizika
SEMINAR
Zagreb, 17.-18. 06. 2013.
Prijaviti se možete najkasnije do tjedan dana prije početka seminara;
Kotizacija za sudionike seminara iznosi 2.300,00 kn/dan PDV nije uključen u cijenu.
Članovi HDKBR-a i članovi Udruge eksperata i sudskih vještaka imaju popust 10%.
Mjesto održavanja: HIS, Berislavićeva 6, Zagreb. tajništvo@his-hr.hr
SADRŽAJ SEMINARA
Upravljanje rizikom i kontrola kvalitete temeljena na procjeni rizika daju optimalni sustav smanjenja rizika od narušavanja integriteta materijala, sklopova, industrijskih postrojenja i šireg sustava koji su
podložni mehanizmima degradacije. Ovim pristupom se utječe ne samo na smanjenje rizika, već i na smanjunje troškova održavanja optimiranjem ispitivanja, odnosno planiranjem ispitivanja po prioritetu rizika
od loma, za razliku od uobičajenih planova ispitivanja koji se rade temeljem vremenskih intervala najčešće
određenih iskustveno.
Rizik od loma se ocjenjuje temeljem procjene vjerojatnosti loma. Materijalni i nematerijalni troškovi posljedica loma uključuju se u program i postupak kontrole kvalitete u cilju dobivanja optimalnog sustava ispitivanja, odnosno održavanja.
Pretežno se koriste metode kontrole bez razaranja u proizvodnji i sustavu održavanja. Na optimalnost programa i ocjenu faktora rizika uvelike utjeće izbor nerazorne metode ispitivanja. Potrebnp je obzirom na materijal i objekt ispitivanja odrediti osjetljivosti i pouzdanost otkrivanja nepravilnosti, odnosno parametri
ispitivanja.
Iako se metode upravljanja rizikom najviše primjenjuju u području strojarstva, energetike, građevine i
ekologiji, principi i postupci su korisni i u drugim područjima u kojima je prisutno postojanje rizika u pozitivnom ili negativnom smislu.
30
SEMINAR JE NAMJENJEN
Osobama odgovornim za sigurnost proizvoda, te koje rade na prilagodbi normi i legislative prema EU
Predstavnicima industrijskih objekata i voditeljima ispitivanja i kontrole kvalitete,
Osobama koje provode kontrolu kvalitete metodama nerazornih ispitivanja,
Svima koji sudjeluju u sustavu osiguravanja kvalitete i sigurnosti tehničkih proizvoda, projektantima tlačnih
posuda i konstrukcija povećanog rizika (spremnici, liftovi, žičare, saobraćaj....)
Svima koji dolaze u susret sa potrebom ocjene rizika u industriji. Naročito je važno poznavanje principa upravljanja rizikom na razini upravnih tijela i rukovodećih kadrova u gospodarstvu radi uvida u mogućnosti
i ocjenu odgovornosti, te kadrova koji nose odgovornost pokrivanja rizika i eventualnih posljedica uslijed
krivih procjena.
PREDAVAČI
1.mr.sc. Predrag Dukić, dis Matkonerg, Stručnjak za rizik sa 30 g. Iskustva u energetici i naftnoj industriji, Certificitan za RBI na TWI Cambridge, UK,
Član tehničkog odbora Pressure and process Plant (TG5) TWI Cambridge, UK.
2.Dr.sc. Aco Šikanić,dis Brodarski institut, voditelj odjela obnovljivi stalni sudski vještak za industriju.
3. Ines Dukić, dipl.inž.fizike, stručnjak sa dugogodišnjim iskustvom na NDT ispitivanju energetskih i naftnih postrojenja
4. Silvester Jeršić, tehnički direktor HESS (hihroelektrane na donjoj savi – SLO)
5. mr.sc.Rajko Orlić, dis, Generali osiguranje, voditelj sektora osiguranja industrijskih objekata
SEMINAR
PROGRAM
1 dan:
8:30-9:00
Prijava sudionika
9:00-10:30 Upravljanje rizikom
10:30-11:00odmor
11:00-12:30 Određivanje mehanizma degradacije
12:30-13:30 odmor za ručak
13:30-15:00 Vjerojatnost loma, određivanje rizika
15:00-15:30 Radni odmor-diskusija-pitanja
15:30-17:00 Uloge, odgovornosti, kvalifikacija
17:00-18:00 Primjena u EU, RH i šire
2.dan:
9:00-10:30
10:30-11:00 11:00-12:30
12:30-13:30
13:30-15:00
15:30-17:00
17:00-18:00
Nerazorne metode u programu upravljanja rizikom
odmor
Osjetljivost, pouzdanost, mjerna nesigurnost
odmor za ručak
Demonstracija metoda i primjena 15:00-15:30
Radni odmor-diskusija-pitanja
Korištenje rezultata kontrole u izradi programa upravljanja rizikom
Tretman rizika na sudu i kod osiguravajućih društava
Učesnici seminara će dobiti potrebne materijale koji im omogućavaju praćenje seminara i za kasnije korištenje
u primjeni upravljanja rizikom
Po završetku seminara učesnici dobivaju potvrdu o prisustvovanju seminaru.
31
ToFD ISPITIVANJE FAZNIM
SONDAMA
Pripremila za INFO: Mr.sc. Irena Leljak
Intoduction
Phased arrays (PA) are mostly used in Pulse Echo mode of
ultrasonic inspection i.e. they are very seldom considered as
probes for detection of diffrated signals, wheather in forward diffraction as in ToFD technique or backward. The consideration thus is given to appearance of only three articles at
two WCNDT in which the innovative approach is explained
consisting of employing PA probes for diffraction techniques
The main topics of articles named in references , are presented herein.
PROČITALI SMO ZA VAS
Uvod
Fazne sonde (PA) u pravilu se koriste za ultrazvučno
ispitivanje metodom odjeka i ponekad za tandemsku
tehniku, a vrlo se rijetko upotrebljavaju u ToFD tehnici
ispitivanja (tehnici ispitivanja difrakcijom ToFD -Timeof-flight diffraction), stoga je vrlo zanimljivo i važno obratiti pozornost na inovativni pristup korištenja PA u ToFD
tehnici.
U ovom osvrtu biti će iznesene glavne postavke ToFD
tehnike s PA - sondama što se nalaze u trima člancima
navedenima u referencijama. Valja naglasiti da spomenuta tri članka nisu odabrana između ostalih članaka
s istom temom, već su to jedina tri članka pronađena
na dvije posljednje svjetske NDT konferencije. Prikaz
ovih članaka uvršten je u INFO zbog pravovremenog
sagledavanja potrebnog ulaganja u novu mogućnost
ultrazvučnog ispitivanja, koja sigurno znatno doprinosi
unapređenju pouzdanosti ispitivanja.
Referencije - prikazani radovi:
1.
C. Brillon1 , T. Armitt 2 i O. Dupuis1
“ToFD Inspection with Phased Arrays“
17th WCNDT , Oct. 2008, Shanghai.
1Olympus NDT Inc., Canada, 2Lavender International
NDT,
2.
UK.M. Moles1 i S. Labbé1
“ A complete solution for weld inspection – Phased arrays and Diffraction sizing“
17th WCNDT , Oct. 2008, Shanghai.
1Olympus NDT Inc., Canada
3.
F. Laprise1, J.Berlanger1, G.Maes1
“ Sectorial scan PA combined with ToFD - A robust weld
inspection“
18th WCNDT, April 2012, Durban.
1 Zetec Québec, Canada.
Sažeti prikaz navedenih radova
Osnovna prednost ToFD tehnike s obzirom na
ultrazvučno ispitivanje metodom odjeka jest mogućnost
32
otkrivanja pukotina neovisno o njihovoj orijentaciji.
Ta je značajka neupitno važna u kontroli te se ulažu veliki
napori da se umanje ili izbjegnu glavni nedostaci ToFD
tehnike koji jesu:
• povećavanje pogreške procjenjivanja vremena
prijma difrakcijskog signala povećanjem ulaznog
kuta ultrazvučnog snopa u objekt ispitivanja
• dužina mrtve zone površinskog vala koja zastire
difrakcijske signale pristigle unutar te zone
• pogrešna procjena položaja nepravilnosti kada
se nepravilnost u objektu ne nalazi u presjeku polovine razmaka između sondi
Navedeni nedostaci ToFD tehnike ispitivanja rješavaju se
višestrukim različitim pretraživanjima jednog područja,
što je vrlo dugotrajan i zahtjevan postupak obzirom
na potrebu primjene različitih razmaka između sondi,
različitih ulaznih kutova ultrazvučnog vala u objekt
ispitivanja, kao i različitih oblika ultrazvučnog snopa.
Paralelno, znatno razvijena tehnologija ultrazvučnog
ispitivanja s PA ponukala je autore navedenih radova da
pristupe realizaciji ideje o provedbi ToFD s PA - sondama.
Elektronsko oblikovanje izlaznog snopa fazne sonde
postignutog interferencijom ultrazvučnih valova s pojedinih neovisnih pretvornika fazne sonde obuhvaća
promjenu izlazne točke snopa, promjenu smjera, širine,
fokusa i dometa snopa, te se višestruko pretraživanje
određenog područja provodi bez fizičkog premještanja
ispitnog sklopa. To peterostruko ubrzava ispitivanje s
PA s obzirom na do sada već konvencionalno ToFD ispitivanje. Može se reći da je jedino brzina ultrazvučnog vala
parametar koji ograničava brzinu ispitivanja s PA.
Programska podrška za ToFD s PA - sondama sadrži sve
segmente ispitivanja. Započinje od pripreme ispitivanja
do sinteze mnoštva podataka koji se pohranjuju brzinom od 10 Mb/s u datoteke kapaciteta od čak 20 GB,
što omogućava brzu interpretaciju rezultata ispitivanja
koji se dobivaju u zornim prikazima i raznim potrebnim
projekcijama.
Od velikog je interesa i korištenje PA - sondi za
prihvaćanje povratnog difrakcijskog signala. U tom se
slučaju koristi jedna sonda, a tehnika se primjenjuje za
specifično ispitivanje površinskih pukotina; registrira se
značajno povećanje omjera signal/šum od čak 20 dB.
Na temelju navedenih radova može se ustanoviti da se
tehnika ToFD s PA - sondama razvija vrlo brzo i to instrumentalno i programski te se očekuje da će se tehnika
vrlo brzo prihvatiti u industriji, temeljem mogućnosti otkrivanja nepravilnosti, brzine i pouzdanosti ispitivanja.
Završni komentar
Objavljivanjem postavki triju navedenih inovativnih
članaka u HDKBR-info, željelo se ukazati na dodatni
razvoj ToFD ispitivanja upotrebom PA - sondi, potaknuti na praćenje razvoja ove tehnike i na uključivanje u
istraživanje mogućnosti ove nove i obećavajuće tehnike
ultrazvučnog ispitivanja.
33
Uninterrupted
production.
With the thermal imager testo 885 you identify thermal abnormalities
even more precisely and effectively.
• SuperResolution thermal images with 640 x 480 pixels (320 x 240 pixel detector)
• Flexible handling thanks to ergonomic rotatable handle and display
• SiteRecognition technology: Measurement site recognition with
www.testo.com/885
automatic image management