Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation in a stochastic model for immunotherapy of cancer Modibo DIABATE PhD Student in Applied Mathematics Laboratoire Jean Kuntzmann - University Grenoble Alpes Supervised by Loren COQUILLE: UGA - IF Adeline LECLERCQ SAMSON: UGA - LJK Septièmes rencontres des Jeunes Statisticien-ne-s Porquerolles, Avril 2017 1/18 Context Modeling of tumor evolution Parameter estimation Results References Outline 1 Context 2 Modeling of tumor evolution 3 Parameter estimation 4 Results 2/18 Context Modeling of tumor evolution Parameter estimation Results References Context: Immunotherapy/ACT therapy Previous works: stochastic model for skin cancer immunotherapy (Baar et al., 2015) Adoptive Cell Transfer (ACT) therapy (Landsberg et al., 2012) 3/18 Context Modeling of tumor evolution Parameter estimation Results References Context: Immunotherapy/ACT therapy Previous works: stochastic model for skin cancer immunotherapy (Baar et al., 2015) Adoptive Cell Transfer (ACT) therapy (Landsberg et al., 2012) • Extinction of T-cells & Relapse 3/18 Context Modeling of tumor evolution Parameter estimation Results References Context: Immunotherapy/ACT therapy Previous works: stochastic model for skin cancer immunotherapy (Baar et al., 2015) Adoptive Cell Transfer (ACT) therapy (Landsberg et al., 2012) • Extinction of T-cells & Relapse Objective: understanding the resistance of tumors 3/18 Context Modeling of tumor evolution Parameter estimation Results References Context: Immunotherapy/ACT therapy Previous works: stochastic model for skin cancer immunotherapy (Baar et al., 2015) Adoptive Cell Transfer (ACT) therapy (Landsberg et al., 2012) • Extinction of T-cells & Relapse Objective: understanding the resistance of tumors • Modeling the mechanism • Estimating parameters using real data 3/18 Context Modeling of tumor evolution Parameter estimation Results References Experimental data Therapy and groups of mice CTRL mice (5): no therapy ACT mice (7): ACT therapy (70th day) ACT+Re mice (7): ACT therapy (70th, 160th day) Tumor evolution measurement obs yij y if yij ∈]3 mm, 10 mm[ ij 1.9 mm if yij ∈ [0 mm, 1.9 mm] = 3 mm if yij ∈ [2 mm, 3 mm] 10 mm if yij ≥ 10 mm 4/18 Context Modeling of tumor evolution Parameter estimation Results References Modeling of tumor evolution: Birth and death process (BDP) Cell populations involved in the dynamic are modeled by BDP (continuous time Markov process). Individual level: • → •• • → † with a rate b with a rate d waiting time before an event modeled by an exponential distribution 5/18 Context Modeling of tumor evolution Parameter estimation Results References Modeling of tumor evolution: Birth and death process (BDP) Cell populations involved in the dynamic are modeled by BDP (continuous time Markov process). Individual level: • → •• • → † with a rate b with a rate d waiting time before an event modeled by an exponential distribution Population level: M (t) → M (t) + 1 M (t) → M (t) − 1 with a rate b × M (t) with a rate d × M (t) 5/18 Context Modeling of tumor evolution Parameter estimation Results References Modeling of tumor evolution: Birth and death process (BDP) Cell populations involved in the dynamic are modeled by BDP (continuous time Markov process). Individual level: • → •• • → † with a rate b with a rate d waiting time before an event modeled by an exponential distribution Population level: M (t) → M (t) + 1 M (t) → M (t) − 1 with a rate b × M (t) with a rate d × M (t) Large population approximation: M K (t) = MK(t) 1 M K (t) → M K (t) + K with a rate b × M K (t) × K 1 M K (t) → M K (t) − K with a rate d × M K (t) × K 5/18 Context Modeling of tumor evolution Parameter estimation Results References Modeling of tumor evolution: BDP - Large population approximation Let M K (t) = M (t) , K lim M K (t) (in law) = n∗ K→∞ where n∗ is the solution of ṅM = (b − d)nM with initial condition n0 . (Ethier and Kurtz, 2009) 6/18 Context Modeling of tumor evolution Parameter estimation Results References Modeling of tumor evolution: BDP - Large population approximation Let M K (t) = M (t) , K lim M K (t) (in law) = n∗ K→∞ where n∗ is the solution of ṅM = (b − d)nM with initial condition n0 . (Ethier and Kurtz, 2009) 6/18 Context Modeling of tumor evolution Parameter estimation Results References Modeling of tumor evolution: Stochastic model Let: •: T cell, T (t): population of therapy cells •: differentiated cell, M (t): population of differentiated cells at time t •: dedifferentiated cell, D(t): population of dedifferentiated cells •: cytokine T N Fα , A(t): population of cytokines T N Fα 7/18 Context Modeling of tumor evolution Parameter estimation Results References Modeling of tumor evolution: Stochastic model Let: •: T cell, T (t): population of therapy cells •: differentiated cell, M (t): population of differentiated cells at time t •: dedifferentiated cell, D(t): population of dedifferentiated cells •: cytokine T N Fα , A(t): population of cytokines T N Fα Stochastic model = BDP + switch + predator-prey (Baar et al., 2015) Z(t) = (M (t), D(t), T (t), A(t)) 7/18 Context Modeling of tumor evolution Parameter estimation Results References Modeling of tumor evolution: Stochastic model Let: •: T cell, T (t): population of therapy cells •: differentiated cell, M (t): population of differentiated cells at time t •: dedifferentiated cell, D(t): population of dedifferentiated cells •: cytokine T N Fα , A(t): population of cytokines T N Fα Stochastic model = BDP + switch + predator-prey (Baar et al., 2015) Z(t) = (M (t), D(t), T (t), A(t)) prod µ = (bM , bD , bT , lA , dM , dD , tT , dT , dA , sA , sM D , sDM ) 7/18 Context Modeling of tumor evolution Parameter estimation Results References Modeling of tumor evolution: Deterministic model Large population approximation: Stochastic model → Deterministic model Let M K (t) = M (t) , K DK (t) = D(t) , K T K (t) = T (t) , K AK (t) = A(t) K lim (M K (t), DK (t), T K (t), AK (t)) (in law) = (n∗M , n∗D , n∗T , n∗A ) K→∞ 8/18 Context Modeling of tumor evolution Parameter estimation Results References Modeling of tumor evolution: Deterministic model Large population approximation: Stochastic model → Deterministic model Let M K (t) = M (t) , K DK (t) = D(t) , K T K (t) = T (t) , K AK (t) = A(t) K lim (M K (t), DK (t), T K (t), AK (t)) (in law) = (n∗M , n∗D , n∗T , n∗A ) K→∞ with (n∗M , n∗D , n∗T , n∗A ) the solution of the deterministic system: ṅM = (bM − dM )nM −tT nT nM −sM D nM + sDM nD − sA nA nM ṅ = (b − d )n +sM D nM − sDM nD + sA nA nM D D D D ṅT = −dT nT +bT nM nT prod ṅA = −dA nA +lA bT nM nT with initial condition (nM0 , nD0 , nT0 , nA0 ) (Baar et al., 2015). prod µ = (bM , bD , bT , lA , dM , dD , tT , dT , dA , sA , sM D , sDM ) (to be estimated) 8/18 Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation: Mixed Effects Models 9/18 Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation: Mixed Effects Model - Likelihood function • NonLinear Mixed Effects Model (NLMEM): yij = f (ψi , tij ) + ij , i ∼ N (0, σ 2 Ini ), ψi = µ + ri , with ri ∼ N (0, Ω), 1 ∗ 3 , n∗ , n∗ : deterministic system solution f (ψi , t) = (n∗ M (ψi , t) + nD (ψi , t)) M D 10/18 Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation: Mixed Effects Model - Likelihood function • NonLinear Mixed Effects Model (NLMEM): yij = f (ψi , tij ) + ij , i ∼ N (0, σ 2 Ini ), ψi = µ + ri , with ri ∼ N (0, Ω), 1 ∗ 3 , n∗ , n∗ : deterministic system solution f (ψi , t) = (n∗ M (ψi , t) + nD (ψi , t)) M D µ = (bM , bD , bT , . . . , sA , sM D , sDM ), ri = (bMi , bDi , bTi , . . . , sAi , sM Di , sDMi ): vector of random effects, Ω: variance matrix of the random effects Θ = {µ, σ, Ω} 10/18 Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation: Mixed Effects Model - Likelihood function • NonLinear Mixed Effects Model (NLMEM): yij = f (ψi , tij ) + ij , i ∼ N (0, σ 2 Ini ), ψi = µ + ri , with ri ∼ N (0, Ω), 1 ∗ 3 , n∗ , n∗ : deterministic system solution f (ψi , t) = (n∗ M (ψi , t) + nD (ψi , t)) M D µ = (bM , bD , bT , . . . , sA , sM D , sDM ), ri = (bMi , bDi , bTi , . . . , sAi , sM Di , sDMi ): vector of random effects, Ω: variance matrix of the random effects Θ = {µ, σ, Ω} • Likelihood function: L(y obs , δ; θ) = N Z Y L(yiobs , δi , yicens , ψi ; θ)dψi dyicens i=1 ψi : individual parameters; yicens : censored data (δij = 0); yiobs : observed data (δij = 1), obs L(yi cens , δ i , yi , ψi ; θ) = Y (i,j)|δij =1 obs p(yij |ψi ; θ)p(ψi ; θ) Y cens p(yij |ψi ; θ)p(ψi ; θ) (i,j)|δij =0 obs cens p(yij |ψi ; θ) and p(yij |ψi ; θ) are gaussian (Samson et al., 2006) 10/18 Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation: SAEM (Stochastic Approximation EM) SAEM: Stochastic Approximation Expectation Maximization 11/18 Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation: SAEM (Stochastic Approximation EM) SAEM: Stochastic Approximation Expectation Maximization Iteration k of the algorithm: step E: • Simulation step: draw (y cens(k) , ψ (k) ) with the conditional distribution p(y cens , ψ|y, θ̂k−1 ) 11/18 Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation: SAEM (Stochastic Approximation EM) SAEM: Stochastic Approximation Expectation Maximization Iteration k of the algorithm: step E: • Simulation step: draw (y cens(k) , ψ (k) ) with the conditional distribution p(y cens , ψ|y, θ̂k−1 ) • Stochastic approximation step: h i Qk (θ) = Qk−1 (θ) + γk log p(y obs , δ, y cens(k) , ψ (k) ; θ) − Qk−1 (θ) (γk ) is a decreasing sequence: P∞ k=1 γk = ∞, P∞ k=1 γk2 < ∞ 11/18 Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation: SAEM (Stochastic Approximation EM) SAEM: Stochastic Approximation Expectation Maximization Iteration k of the algorithm: step E: • Simulation step: draw (y cens(k) , ψ (k) ) with the conditional distribution p(y cens , ψ|y, θ̂k−1 ) • Stochastic approximation step: h i Qk (θ) = Qk−1 (θ) + γk log p(y obs , δ, y cens(k) , ψ (k) ; θ) − Qk−1 (θ) (γk ) is a decreasing sequence: P∞ k=1 γk = ∞, P∞ k=1 γk2 < ∞ step M: • Maximization step: update θ̂k−1 according to θ̂k = arg max Qk (θ) θ∈Θ 11/18 Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation: SAEM - MCMC SAEM-MCMC for regular exponential families: p(y obs ,y cens e obs , y cens , ψ), Ψ(θ)i} , ψ; θ) = exp{−ξ(θ) + hS(y Iteration k of the algorithm: • Simulation step: simulation of (y cens(k) , ψ (k) ) through the simulation of a Markov Chain having p(y cens , ψ|y, θ̂k−1 ) as stationary distribution • Stochastic approximation: update sk according to e obs , y cens(k) , ψ (k) ) − sk−1 ) sk = sk−1 + γk (S(y • Maximization step: θ̂k = arg maxθ∈Θ {−ξ(θ) + hsk , Ψ(θ)i} 12/18 Context Modeling of tumor evolution Parameter estimation Results References Parameter estimation: SAEM - MCMC SAEM-MCMC for regular exponential families: p(y obs ,y cens e obs , y cens , ψ), Ψ(θ)i} , ψ; θ) = exp{−ξ(θ) + hS(y Iteration k of the algorithm: • Simulation step: simulation of (y cens(k) , ψ (k) ) through the simulation of a Markov Chain having p(y cens , ψ|y, θ̂k−1 ) as stationary distribution • Stochastic approximation: update sk according to e obs , y cens(k) , ψ (k) ) − sk−1 ) sk = sk−1 + γk (S(y • Maximization step: θ̂k = arg maxθ∈Θ {−ξ(θ) + hsk , Ψ(θ)i} SAEM is considered to estimate correctly population parameters as well as having good theoretical properties Convergence of the estimate sequence of the SAEM-MCMC to a local maximum of the likelihood proved by (Delyon et al., 1999) using: • the assumption that p(y, ψ, θ) belongs to a regular exponential families, e • some continuity and differentiability assumptions on the likelihood and S(y, ψ), • the uniform ergodicity assumption on Markov Chains in the MCMC algorithm. 12/18 Context Modeling of tumor evolution Parameter estimation Results References Estimated parameters: Individuals fits (group ACT+Re) 13/18 Context Modeling of tumor evolution Parameter estimation Results References T-cells extinction & Relapse: Simulation of extinction with the stochastic model using estimated parameters Scenario (a): T cells survive Scenario (b): Extinction of T cells 14/18 Context Modeling of tumor evolution Parameter estimation Results References T-cells extinction & Relapse : Rare events probability estimation Monte Carlo, Importance Sampling 15/18 Context Modeling of tumor evolution Parameter estimation Results References T-cells extinction & Relapse : Rare events probability estimation Monte Carlo, Importance Sampling Importance Splitting (Jacquemart-Tomi et al., 2013) Tt : stochastic process S : threshold tS = inf{t ≥ 0, Tt ≤ S} The rare event : {tS ≤ tF } = {Tt ≤ S, for t ≤ tF } 15/18 Context Modeling of tumor evolution Parameter estimation Results References T-cells extinction & Relapse : Rare events probability estimation Monte Carlo, Importance Sampling Importance Splitting (Jacquemart-Tomi et al., 2013) Tt : stochastic process S : threshold tS = inf{t ≥ 0, Tt ≤ S} The rare event : {tS ≤ tF } = {Tt ≤ S, for t ≤ tF } Extinction probability P(tS ≤ tF ) P(tS ≤ tF ) = m Y pk k=1 p1 = P(t1 ≤ tF ) = P{Tt ≤ S1 , for t ≤ tF } pk = P(tk ≤ tF | tk−1 ≤ tF ) for k = 2, . . . , m 15/18 Context Modeling of tumor evolution Parameter estimation Results References Conclusion & Future Works Conclusion Simplification/adaptation of the model for parameter estimation Parameter estimation using real biological data (censored data) Estimation of the probability of T cell population extinction (relapse) 16/18 Context Modeling of tumor evolution Parameter estimation Results References Conclusion & Future Works Conclusion Simplification/adaptation of the model for parameter estimation Parameter estimation using real biological data (censored data) Estimation of the probability of T cell population extinction (relapse) Future Works Optimal selection of parameters for the relapse probability estimation Parameter estimation (with an Expectation Propagation algorithm) from a diffusion approximation of the stochastic model (Barthelmé and Chopin, 2014), (Cseke et al., 2016) Development (and parameter estimation) of a probabilistic model for lung cancer using MRI images 16/18 Context Modeling of tumor evolution Parameter estimation Results References Thank you for your attention ! 17/18 Context Modeling of tumor evolution Parameter estimation Results References References Martina Baar, Loren Coquille, Hannah Mayer, Michael Hölzel, Meri Rogava, Thomas Tüting, and Anton Bovier. A stochastic individual-based model for immunotherapy of cancer. Scientific Reports, 2015. Bernard Delyon, Marc Lavielle, and Eric Moulines. Convergence of a stochastic approximation version of the EM algorithm. Annals of statistics, pages 94–128, 1999. Stewart N Ethier and Thomas G Kurtz. Markov processes: characterization and convergence, volume 282. John Wiley & Sons, 2009. Damien Jacquemart-Tomi, Jérôme Morio, and François Le Gland. A combined importance splitting and sampling algorithm for rare event estimation. Proceedings of the 2013 Winter Simulation Conference, Washington 2013, Dec 2013, WASHINGTON, United States., 2013. Jennifer Landsberg, Judith Kohlmeyer, Marcel Renn, Tobias Bald, Meri Rogava, Mira Cron, Martina Fatho, Volker Lennerz, Thomas Wölfel, Michael Hölzel, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature, 490(7420):412–416, 2012. Adeline Samson, Marc Lavielle, and France Mentré. Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model. Computational Statistics and Data Analysis, 51(3):1562–1574, 2006. 18/18
© Copyright 2025 Paperzz