On the estimation of the second order parameter in extreme-value theory By El Hadji DEME Joint work Laurent GARDES & Stéphane GIRARD Strasbourg March 6th 2012 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat 1 Extreme-Value Theory 2 New family of estimators for the second order parameter 3 Asymptotic properties 4 Link with existing estimators 5 Numerical results 2 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Main results on extreme value theory Let X1 , . . . , Xn be a sequence of independent copies of a real random variable (r.v.) X with cumulative distribution function F . The order statistics associated to this sample are denoted by : X1,n ≤ · · · ≤ Xn,n . Fisher-Tippett-Gnedenko theorem Under some conditions of regularity on F , there exists a real parameter γ and two sequences (an )n≥1 > 0 and (bn )n≥1 ∈ R such that for all x ∈ R, lim P an−1 (Xn,n − bn ) ≤ x = EVγ (x), n→∞ ( with EVγ (x) = where y+ = max(y , 0). 3 / 38 “ ” −1/γ exp −(1 + γx)+ ` ´ exp −e −x if γ 6= 0, if γ = 0, Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Definition : The parameter γ is the tail index, the primary parameter of extreme events. EVγ is called the extreme value distribution and F is then said to belong to the domain of attraction of EVγ (F ∈ DA(EVγ )). Heavy-tailed models In statistics of Extremes, a model F is said to be heavy-tailed whenever, for some γ > 0, its survival function is of the forme : 1 − F (x) = x −1/γ `F (x) ⇔ U(x) = x γ `U (x) where U(x) = inf{y : F (y ) ≥ 1 − 1/x} is quantile function and `• (·) is a slowly varying function i.e. `• (λx)/`• (x) → 1 as x → ∞ for all λ ≥ 1. The present model is now often restated as the asumption of F is regulary varying at infinity with index −1/γ (denoted 1 − F (x) ∈ RV −1/γ ). 4 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Exemples of heavy-tailed models Strict Pareto distribution 1 − F (x) = x −α , x > 1; α > 0. is heavy-tailed with γ = 1/α and `F (x) = 1. F (m, n) f (x) = distribution ` ´ “ ” Γ m+n m ”−(m+n)/2 m m/2 m/2−1 “ `m´ 2 `n´ x 1+ x x > 0; m, n > 0 n n Γ 2 Γ 2 is heavy-tailed with γ = 2/n and `F (x) = ´ “ ” ` „ «−(m+n)/2 Γ m+n 1 m m/2 m/2−1 m `m´ 2 `n´ x + (1 + o(1)) n n x Γ 2 Γ 2 for x → ∞. Others : |t|, log-gamma, inverse gamma, Fréchet, Burr,... 5 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Inference statistic of γ for heavy-tailed model In Statistics of extremes, inference is often based Wi,k = (log Xn−i+1,n − log Xn−k,n ) Zi,k = i (log Xn−i+1,n − log Xn−i,n ) the log-excesses the rescaled log-spacings Exemples of γ estimators k k 1X 1X Wi,k = Zi,k , Hill k i=1 k i=1 0 ”2 1−1 “ (1) M n,k 1B C (1) γ̂n = Mn,k + 1 − @1 − A (2) 2 Mn,k Hn,k = Deker et al (1989) with M(α) n,k = Estimator, Hill (1975) Moment Estmator, k 1X α Wi,k k i=1 Others Estimators of γ, received a lot of attention Smith (1987), Csörgő et al. (1985), Schultze and Steinebach (1996), Kratz and Resnick (1996), 6 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Asymptotic behavior Since F ∈ RV −1/γ , then if k → ∞ and k/n → 0 as n → ∞, (α) α (1) then Hn,k −→ γ, γ̂n −→ γ and Mn,k /µ(1) α −→ γ with µα = Γ(α + 1) P P P Asymptotic normality ? The asymptotic distribution of estimators of γ is obtained under a second order condition. Second Order Condition (S.O.C) There exist a function A(x) → 0 and a second order parameter ρ ≤ 0 such that, for every x > 0, lim t→∞ 7 / 38 log U(tx) − log U(t) − γ log x xρ − 1 = . A(t) ρ Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Second Order Condition Remarks Under the regularly variation condition log U(tx) → γ log x U(t) for, t → ∞ So the (S.O.C) specifies the rate of this convergence. |A| is regularly varying with index ρ. Exemple : Hall class of Heavy-tailed models Hall class (Hall and Welsh, (1985)) U(x) = Cx γ (1 + Dx ρ + o(x ρ )), (x → ∞) with C > 0, satisfies the second order condition with A(x) = ρDx ρ . Exemples : Frechet, Burr, Generalized Pareto (GP), |t|,... 8 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Asymptotic representation of γ’s estimators Hill’s estmator A(n/k) γ D Hn,k = γ + √ Nk + (1 + oP (1)) 1−ρ k Moment’s estimator (1) (α) D Mn,k = γ α µ(1) α + γ α σα (α) √ Pk + αγ α−1 µ(2) α A(n/k)(1 + oP (1)) k (α) where Nk and Pk are asymptotically standard normal random variables, µ(2) α = p α 1 − (1 − ρ)α (1) and σα = Γ(2α + 1) − Γ2 (α + 1). α ρ (1 − ρ) (1) The Hill’s estimator Hn,k correspond to Mn,k 9 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Asymptotic normality √ kA(n/k) → λ ∈ R, then „ « λ D − γ) −→ N , γ2 1−ρ if k, n → ∞ with k/n → 0 and √ k(Hn,k and √ D (α) k(Mn,k − γ α µ(1) α ) −→ N „ “ ”2 « α (1) λαγ α−1 µ(2) α , γ σα Comment ρ controls the bias of the estimators of γ How to estimate the second order tail parameter ρ ? 10 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat New family of estimators for the second order parameter The model a random vector in Rd drawn from the sample X1 , . . . , Xn . The statistics can always be expanded as : Tn = Tn (X1 , ..., Xn ) : ωn−1 (Tn − χn I) −→ f (ρ) P where I = t (1, . . . , 1) ∈ Rd , and ωn : random variables, a random vector, − f : R → Rd : a function continuously differentiable in a neighborhood of ρ (independent of γ). χn ξn ∈ Rd : 11 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat General approach Notations ψ : Rd → R such that Invariance properties (Inv-prop) ψ(x + λI) = ψ(x) ψ(λx) = ψ(x) for all x ∈ Rd and λ ∈ R, for all λ ∈ R \ {0}, Regularity properties (Reg-prop) ψ is continuously differentiable in a neighborhood of f (ρ), ϕ := ψ ◦ f is continuous in a neighborhood of ρ Bijection property (Bij-prop) there exist J0 ⊆ R− and an open interval J ⊂ R such that ϕ is a bijection from J0 to J. 12 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat The estimator Clearly by the invariance and the regularity properties ψ(ωn−1 (Tn − χn I)) = ψ(Tn ) −→ ψ(f (ρ)). P Zn = ψ(Tn ) ≈ ϕ(ρ). Under the bijection property, our family of estimators of the second order parameter is thus defined by : ρ̂n = ϕ−1 (Zn )1l{Zn ∈ J}. 1lA 13 / 38 is the indicator function of the set A. Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Asymptotic properties Theorems Suppose that Inv-prop, Reg-prop and Bij-prop hold then P ρ̂n −→ ρ as n → ∞ if there exist a sequence vn → ∞, a function, m : R− → Rd and a d × d matrix Σ such that D vn (ωn−1 (Tn − χn I) − f (ρ)) −→ Nd (m(ρ), Σ) then D vn (ρ̂n − ρ) −→ N 2 mψ (ρ) σψ (ρ) , 0 0 ϕ (ρ) (ϕ (ρ))2 ϕ0 (ρ) = t f 0 (ρ)∇ψ(f (ρ)), mψ (ρ) = t m(ρ)∇ψ(f (ρ)), 2 σψ (ρ) = t ∇ψ(f (ρ)) Σ ∇ψ(f (ρ)). 14 / 38 ! with, Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators 1. Estimators based on rescaled log-spacings : log Xn−j+1 − log Xn−j Kernel estimators Rk (τ ) = « « „ „ k k Xn−j+1,n 1X 1X j j Hτ j log = Hτ Zi,k , k j=1 k +1 Xn−j,n k j=1 k +1 1 Z Hτ is a kernel function such that Hτ (u)du = 1. 0 This statistic is used for instance by Beirlant et al., (Extremes, 1999) to estimate the extreme value index γ and by Goegebeur et al. (JSPI, 2010) to estimate the second order parameter ρ. They proved asymptotic normality of these estimators under a technical condition on the kernel, denoted by (C1) hereafter and under. For the asymptotic normality of ρ estimators they use a third order condition. 15 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Third Order Condition Third There order β≤0 Order Condition (T.O.C) exist functions A(x) → 0 and B(x) → 0, a second parameter ρ ≤ 0 and a third order parameter such that, for every λ > 0, lim t→∞ log U(tx)−log U(t)−γ log x A(t) B(t) − x ρ −1 ρ = 1 β „ « x ρ+β − 1 xρ − 1 − , ρ+β ρ where the functions |A| and |B| are regularly varying with index ρ and β respectively. 16 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Links with existing estimators Link with our framework Suppose the third order condition and (C1) hold. If the sequence k satisfies k → ∞, n/k → ∞, k 1/2 A(n/k) → ∞, k 1/2 A2 (n/k) → λA and k 1/2 A(n/k)B(n/k) → λB , then the random vector “ ” Tn(R) := (Rk (τi )/γ)θi , i = 1, . . . , d , P satisfies the model i.e. ωn−1 (Tn(R) − χn I) −→ f (R) (ρ) with χn = 1, ωn = A(n/k)/γ(1 + oP (1)), „ Z f (R) (ρ) = θi 1 0 17 / 38 Hτi (u)u −ρ du, i = 1, . . . , d « Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators Link with our framework d = 8, ψδ : D 7→ R \ {0} ψδ (x1 , . . . , x8 ) = ψeδ (x1 − x2 , x3 − x4 , x5 − x6 , x7 − x8 ), where δ ≥ 0 D = {(x1 , . . . , x8 ) ∈ R8 ; x1 6= x2 , x3 6= x4 , and (x5 − x6 )(x7 − x8 ) > 0}. „ «δ y1 y4 ψeδ : R4 7→ R is given by : ψeδ (y1 , . . . , y4 ) = . y2 y3 (R) Hτi , i = 1, ..., 8, the statistic Tn depends on 16 parameters {(θi , τi ) ∈ (0, ∞)2 , i = 1, . . . , 8}. Let θ̃ = (θ̃1 , . . . , θ̃4 ) ∈ (0, ∞)4 with θ̃3 6= θ̃4 and consider {θi = θ̃di/2e , i = 1, . . . , 8} with δ = (θ̃1 − θ̃2 )/(θ̃3 − θ̃4 ) and dxe = inf{n ∈ N|x ≤ n}. τ1 < τ2 ≤ τ3 < τ4 , τ5 < τ6 ≤ τ7 < τ8 (R) (R) Tn involves 12 free parameters. Zn (R) ϕδ = ψδ ◦ f (R) . 18 / 38 (R) = ψδ (Tn ) and Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators Link with our framework (R) Zn does not depend on the unknown parameter. We can thus define the following family of estimators : (R) ρ(R) = ϕ−1 ∈ JR }. n δ 1l{Zn “ ” “ ” (R) (R,i) (R) (R,i) Let denote mA = mA , i = 1, ..., 4 , mB = mB , i = 1, ..., 4 “ ” and v (R) = v (R,i) , i = 1, ..., 4 with (R,i) mA 1 Z = exp (θ̃i − 1) ff ` ´ −ρ Hτ2i−1 (u) + Hτ2i (u) u du , 0 ” 9 8 R1` ´“ < 0 Hτ2i−1 (u) − Hτ2i (u) u −(ρ+β) − u −ρ du = (R,i) mB = exp − , ´ R1` : ; β 0 Hτ2i−1 (u) − Hτ2i (u) u −ρ du ( R1` ) ´ Hτ2i−1 (u) − Hτ2i (u) du (R,i) 0 v = exp R 1 ` . ´ Hτ2i−1 (u) − Hτ2i (u) u −ρ du 0 19 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators Link with our framework Suppose the third order condition and (C1) hold. (R) Since ϕδ is bjective and differentiable in ρ then if the sequence k satisfies k → ∞, n/k → ∞, k 1/2 A(n/k) → ∞, k 1/2 A2 (n/k) → λA and k 1/2 A(n/k)B(n/k) → λB , we have „ « “ ” λA D (R) (R) k 1/2 A(n/k) ρ̂(R) ABA (δ, ρ) − λB ABB (δ, ρ, β), AV (R) (δ, ρ) n − ρ −→ N 2γ with (R) (R) ABA (δ, ρ) = ϕδ (ρ) (R) [ϕδ ]0 (ρ) (R) and (R) AV (R) (δ, ρ) = 20 / 38 (R) (R) log ψ̃δ (mA ), ABA (δ, ρ, β) = γϕδ (ρ) (R) [ϕδ ]0 (ρ) 1 Z (R) ϕδ (ρ) (R) [ϕδ ]0 (ρ) log2 ϕδ (v (R) (u))du 0 (R) log ψ̃δ (mB ) Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators Exemples Hτi = τi u τi −1 , i = 1, ..., 8, τi > 1 New estimators of ρ (explicit or not), with Consistency and Asymptotic normality (consequence of ours theorems) Examples of explicit estimators (R) (R) δ = 1 i.e. θ̃1 − θ̃2 = θ̃3 − θ̃4 . The rv Zn is denoted by Zn,1 . (R) (R) ρ̂n,1 = τ5 ω(1, θ̃) − τ1 Zn,1 (R) ω(1, θ̃) − Zn,1 (R) 1l{Zn,1 ∈ ω(1, θ̃) • (1, ψe1 (τ4 , τ1 , τ4 , τ5 ))}. (R) δ = 0 i.e. θ̃1 = θ̃2 . The rv Zn (R) is thus denoted by Zn,2 : (R) (R) ρ̂n,2 = τ4 ω(0, θ̃) − τ1 Zn,2 ω(0, θ̃) − (R) Zn,2 (R) 1l{Zn,2 ∈ ω(0, θ̃) • (1, ψe0 (τ4 , τ1 , τ4 , τ5 ))}. with ω(δ, θ̃) = ψeδ (θ̃1 (τ1 − τ2 ), θ̃2 (τ2 − τ4 ), θ̃2 (τ2 − τ4 ), θ̃4 (τ6 − τ4 )) 21 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators 2. Estimators based on the log-excesses : log Xn−j+1 − log Xn−k Sk (τ, α) = «„ „ «α k Xn−j+1,n 1X j log Gτ,α , α > 0, k j=1 k +1 Xn−k,n Gτ,α is a positive function. In the particular case where Gτ,α is constant, this statistic is used by Dekkers et al. (Annals of statistics, 1989 ) to estimate γ and by Fraga et al. . (Portugaliae Mathematica, 2003 ) to estimate the second order parameter ρ Ciuperca and Mercadier (Extremes, 2010 ) used the general statistic to estimate the parameters γ and ρ. They proved the asymptotic normality under a technical condition on the function Gτ,α , denoted by (C2) hereafter. 22 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators Link with our framework Suppose the third order condition, (C2) hold. If the sequence k satisfies k → ∞, n/k → ∞, k 1/2 A(n/k) → ∞, k 1/2 A2 (n/k) → λA and k 1/2 A(n/k)B(n/k) → λB , then the random vector Tn(S) „ = Sk (τi , αi ) γ αi (S) ! «θi , i = 1, ..., d satisfies the model i.e. ωn−1 (Tn − χn I) −→ f (S) (ρ) with χn = 1, ωn = A(n/k)/γ(1 + oP (1)), and „ « Z 1 (S) αi −1 f (ρ) = −θi αi Gτi ,αi (u)(log(1/u)) K−ρ (u)du; i = 1, . . . , d , 0 23 / 38 P Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators Link with our framework d = 8, the function ψδ and ψ̃ are the same as above 24 free parameters : {(θi , τi , αi ) ∈ (0, ∞)3 , i = 1, . . . , 8} Let (ζ1 , . . . , ζ4 ) ∈ (0, ∞)4 with ζ3 6= ζ4 , such that {θi αi = ζdi/2e , i = 1, . . . , 8} with δ = (ζ1 − ζ2 )/(ζ3 − ζ4 ). dxe = inf{n ∈ N|x ≤ n}. (τ2i−1 , α2i−1 ) 6= (τ2i , α2i ), for i = 1, . . . , 4 and, for i = 3, 4, (τ2i−1 , α2i−1 ) ≤ (τ2i , α2i ) where (x, y ) 6= (s, t) means that x 6= s and/or y 6= t and (x, y ) ≤ (s, t) means that x ≤ s and y ≤ t. (S) (S) Tn involves 20 free parameters. Zn (S) ϕδ = ψδ ◦ f (S) . 24 / 38 (S) = ψδ (Tn ) and Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators Link with our framework (S) Zn does not depend on the unknown parameter. We can thus define the following family of estimators : −1 (S) ρ(S) ∈ JS }. n = ϕδ 1l{Zn (S) Using third order condition and (C2), since ϕδ (S) is bijective then ρn is asymptotically Gaussian (consequence of our theorem) exemple of weighted function Consider the weighted function Gτ,α is given defined by : Gτ,α (u) = R 1 0 gτ −1 (u) gτ −1 (x)(− log x)α dx , τ ≥ 0, α > 0 where g0 (x) = 1 and gτ −1 (x) = (τ )(1 − x τ −1 )/(τ − 1) for τ > 1. 25 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators exemples of estimators of ρ New estimators of ρ (not necessarily explicit) with Consistency and Asymptotic normality. Exemples of explicit estimators δ = 0 (i.e. ζ1 = ζ2 ), α1 = α2 = α3 = α4 = 1, τ1 = α5 = α8 = 2 (S) (S) τ4 = α6 = 3. Denoting by Zn,4 the rv Zn , the estimator of ρ is given by : (S) (S) ρ̂n,4 = 6(Zn,4 + 2) (S) 3Zn,4 + 4 (S) 1l{Zn,4 ∈ (−2, −4/3)}. Consider ω ∗ , a function depends only on δ and ζ 26 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators Exemples of explicit estimators δ = 0, α1 = α3 = α4 = 1, τ1 = τ4 = α2 = α5 = α8 = 2 and α6 = 3. (S) (S) Denoting by Zn,5 the rv Zn , (S) (S) ρ̂n,5 = (S) (S) ρ̂n,4 and ρ̂n,5 are estimators 2(Zn,5 − 2) (S) 2Zn,5 − 1 (S) 1l{Zn,5 ∈ (1/2, 2)}. Ciuperca and Mercadier , (Extremes, 2010). δ = 1, α1 = α3 = α4 = 1, τ1 = τ4 = α2 = α5 = α8 = 2 and α6 = 3 (S) (S) Zn,6 the rv Zn , a new estimator of ρ is given by (S) (S) ρ̂n,6 = 3Zn,6 − 4ω ∗ (1, ζ) (S) Zn,8 − ω ∗ (1, ζ) 1l{Zn,6 ∈ ω ∗ (1, ζ) • (1/2, 2/3)}. (S) δ = 1 (i.e. ζ1 − ζ2 = ζ3 − ζ4 ), α1 = α2 = α3 = α4 = 1, τ1 = α5 = α8 = 2 and (S) (S) τ4 = α6 = 3 denoting by Zn,7 the rv Zn , a nother new estimator of ρ is given by : 27 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Link with existing estimators Exemples of explicit estimators (S) (S) ρ̂n,7 = Zn,7 + 4/3ω ∗ (1, ζ) (S) 2Zn,7 + 4/3ω ∗ (1, ζ) 1l{Zn,7 ∈ ω ∗ (1, ζ) • (−4/3, −2/3)}. (S) δ = 1 (i.e. ζ1 − ζ2 = ζ3 − ζ4 ), α1 = α3 = α4 = 1, (S) (S) τ1 = τ4 = α2 = α5 = α8 = 2 and α6 = 3 denoting by Zn,8 the rv Zn , we obtain a new estimator of ρ (S) (S) ρ̂n,8 = 28 / 38 3Zn,8 − 4ω ∗ (1, ζ) (S) Zn,8 − ω ∗ (1, ζ) 1l{Zn,8 ∈ ω ∗ (1, ζ) • (1/2, 2/3)}. (S) Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Asymptotic comparaison Choice of the parameters We use here the estimator of ρ based on rescaled log-spacings. Hτi (u) = (τi )u τi −1 , i = 1, ..., 8, τi > 1. τ1 = 1.25, τ2 = τ3 = 1.75, τ4 = τ8 = 2, τ5 = 1.5, τ6 = τ7 = 1.75 and θ̃1 = 0.01, θ˜3 = 0.02 θ̃4 = 0.04 and θ̃2 = θ̃1 + δ(θ̃4 − θ̃3 ), δ ≥ 0. How to choose δ ?, 29 / 38 1 minimization of the AMSE is impossible (depends on unknown parameters). 2 We use an upper bound on the AMSE : AMSE ≤ c(γ, λA , λB )π(δ, ρ, β). 3 ρ = β, we minimize the function π in delta and the optimal δ as a function of ρ. Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Asymptotic comparaison δ =1.8 δ=1.5 0 2 4 δ 6 8 10 Choice of δ −8 −6 −4 −2 ρ Fig.: Optimal δ as a function of ρ δ = 0, 1, 1.5, 1.8, +∞ 30 / 38 0 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Illustration on a Burr distribution Survival function of Burr distribution Burr(ζ,λ,η) : 1 − F (x) = (ζ/(ζ + x η ))λ , x > 0, ζ, λ, η > 0, is of heavy-tailed model with γ = 1/λη Satisfies the third order condition with ρ = −1/λ and β = ρ, A(x) = γx ρ /(1 − x ρ ) and B(x) = ρx ρ /(1 − x ρ ). n = 5000, γ = ζ = 1, η = 1/λ, ρ = −η and k = 1, ..., 4995, 31 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat 3.0 ρ = −1 3.0 ρ = − 0.25 2.5 2.0 1.5 AMSE 1.0 1.5 0.5 δ=0 δ=1 δ = 1.5 δ = 1.8 δ = +∞ 0.0 0.0 0.5 1.0 AMSE 2.0 2.5 δ=0 δ=1 δ = 1.5 δ = 1.8 δ = +∞ 0 1000 2000 3000 4000 5000 0 1000 k 2000 3000 k (R) Fig.: Asymptotic mean squared error of ρ̂n , ρ = −0.25; −1 32 / 38 4000 5000 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat ρ = −3 2.5 2.0 ρ = − 2.5 2.0 δ=0 δ=1 δ = 1.5 δ = 1.8 δ = +∞ AMSE 0.0 0.0 0.5 0.5 1.0 1.0 AMSE 1.5 1.5 δ=0 δ=1 δ = 1.5 δ = 1.8 δ = +∞ 0 1000 2000 3000 4000 5000 0 1000 k 2000 3000 k (R) Fig.: Asymptotic mean squared error of ρ̂n , ρ = −2.5; −3 33 / 38 4000 5000 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat ρ = −5 20 10 ρ = −4 15 δ=0 δ=1 δ = 1.5 δ = 1.8 δ = +∞ 10 AMSE 0 0 2 5 4 AMSE 6 8 δ=0 δ=1 δ = 1.5 δ = 1.8 δ = +∞ 0 1000 2000 3000 4000 5000 0 1000 k 2000 3000 k (R) Fig.: Asymptotic mean squared error of ρ̂n , ρ = −4; −5 34 / 38 4000 5000 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Concluding Remarks If ρ ≤ −4, the smallest AMSE is obtained with δ = 1.8. If −3 ≤ ρ ≤ −2.5, the best AMSE is given by δ = +∞. If ρ ≥ −1, the smallest AMSE is given by δ = 1.5. The values {1.5, 1.8, +∞} obtained by minimizing the function π are also of interest to minimize the asymptotic mean-squared error. More generally, the minimization of π should permit to determine optimal values for the parameters of any estimator of ρ. 35 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat Main references G. Ciuperca and C. Mercadier. Semi-parametric estimation for heavy tailed distributions. Extremes, 13, 55–87, 2010. A.L.M. Dekkers, J.H.J. Einmahl, and L. de Haan. A moment estimator for the index of an extreme-value distribution. Annals of Statistics, 17, 1833–1855, 1989. M.I. Fraga Alves, M.I. Gomes, and L. de Haan. A new class of semi-parametric estimators of the second order parameter. Portugaliae Mathematica, 60(2), 193–213, 2003. Y. Goegebeur, J. Beirlant, and T. de Wet. Kernel estimators for the second order parameter in extreme value statistics. Journal of Statistical Planning and Inference, 140, 2632–2652, 2010. B.M. Hill. A simple general approach to inference about the tail of a distribution, Annals of Statistics, 3, 1163–1174, 1975. 36 / 38 Outline Extreme-Value Theory New family of estimators for the second order parameter Asymptotic properties Link with existing estimat 37 / 38
© Copyright 2025 Paperzz